Simple, Seedy Derivations of Generating Functions for Simple Polytopes and *cd*-indices

Jiyang Gao, Vaughan McDonald

University of Minnesota - Twin Cities REU 2018

 $3 \ {\rm August} \ 2018$

Gao, McDonald

- **1** Introduction to Polytopes
- 2 Coxeter Group and Weight Polytopes
- 3 *f*-polynomials of Simple Weight Polytopes
- 4 Face Poset of General Weight Polytopes
- **5** A glimpse on the *cd*-index of Weight Polytopes

6 Summary

Polytopes

f-vectors and cd-index of Weight Polytopes

Section 1

Introduction to Polytopes

Gao, McDonald

3 / 51

What are polytopes?

Definition (Polytope)

A *polytope* is the convex hull of a finite number of points in \mathbb{R}^r .

Examples of polytopes in \mathbb{R}^3

Polytopes

Faces of Polytopes

- Polytopes have *faces*.
- Faces are polytopes themselves.
- Faces have dimensions. It's the minimal integer d such that the face can live in \mathbb{R}^d .
- A *j*-dimensional face is called a *j*-face.
- A 0-face is usually called a *vertex*. A 1-face is usually called an *edge*. An *r*-face is the polytope itself.

f-vector and f-polynomial

Definition (f-vector and f-polynomial)

Define the *f*-vector of a *r*-dim Polytope *P* as $f(P) := (f_0, \ldots, f_r)$, where f_i is the number of *i*-dimensional faces of *P*. Define its *f*-polynomial as $f_P(t) = \sum_{i=0}^r f_i t^i$.

Example:

A cube has 8 vertices, 12 edges and 6 faces.

$$f(P) = (8, 12, 6, 1)$$
$$f_P(t) = 8 + 12t + 6t^2 + t^3$$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the *h*-polynomial of a *r*-dim Polytope *P* as $h_P(t) = f_P(t-1) = \sum_{i=0}^r f_i(t-1)^i$. Assume $h_P(t) = \sum_{i=0}^r h_i t^i$, then define its *h*-vector as $h(P) := (h_0, h_1, \dots, h_r)$.

Example:

A cube has $f_P(t) = 8+12t+6t^2+t^3$. Replace t with t-1.

$$h_P(t) = f_P(t-1) = 1 + 3t + 3t^2 + t^3$$

 $h(P) = (1, 3, 3, 1)$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the *h*-polynomial of a *r*-dim Polytope *P* as $h_P(t) = f_P(t-1) = \sum_{i=0}^r f_i(t-1)^i$. Assume $h_P(t) = \sum_{i=0}^r h_i t^i$, then define its *h*-vector as $h(P) := (h_0, h_1, \dots, h_r)$.

Example:

A cube has $f_P(t) = 8+12t+6t^2+t^3$. Replace t with t-1.

$$h_P(t) = f_P(t-1) = 1 + 3t + 3t^2 + t^3$$

 $h(P) = (1, 3, 3, 1)$

Is this always symmetric?

Dehn-Somerville Equation

Definition (Simple Polytope)

A r-dimensional polytope is called a *simple polytope* if and only if each vertex has exactly r incident edges.

For example, a cube is a simple polytope.

Theorem (Dehn-Sommerville equation)

For any simple polytope P, its h-vector is symmetric.

Face Poset

Definition (Face Poset)

The *face poset* of polytope P is the poset {faces of P} ordered by inclusion of faces.

Rank Selected Poset

Definition (Rank Selected Poset)

Let $S \subseteq [r] = \{1, 2, ..., r\}$. The rank-selected poset P_S of P is

$$P_S = \{ x \in P | \rho(x) \in S \} \cup \{ \hat{0}, \hat{1} \},\$$

where ρ is the rank function.

Flag f-vector and Flag h-vector

Definition (Flag f-vector and Flag h-vector)

Define the flag f-vector $\alpha(S)$ as the number of maximal chains in P_S . Based on that, define the flag h-vector $\beta(S)$ as:

$$\beta(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha(T) \quad \text{or,} \quad \alpha(S) = \sum_{T \subseteq S} \beta(T).$$

Example of Flag Vectors

Face Poset

S	$\alpha(S)$	$\beta(S)$
Ø	1	1
$\{1\}$	4	3
$\{2\}$	4	3
$\{1, 2\}$	8	1

Table of Flag Vectors

Example of Flag Vectors

Face Poset

S	$\alpha(S)$	$\beta(S)$
Ø	1	1
$\{1\}$	4	3
$\{2\}$	4	3
$\{1, 2\}$	8	1

Table of Flag Vectors

 $\beta(S) = \beta(\bar{S})$

э.

ab-index

Definition (ab-index)

Define the ab-index of Polytope P as a polynomial over non-commutative variables a, b as

$$\Phi_P(a,b) = \sum_{S \subseteq [n]} \beta(S) u_S.$$

Here $u_S = u_n u_{n-1} \cdots u_1$, where

$$u_i = \begin{cases} a, & \text{if } i \notin S \\ b, & \text{if } i \in S. \end{cases}$$

Gao, McDonald

크

▶ 《토▶ 《토▶ …

Polytopes

f-vectors and *cd*-index of Weight Polytopes

Example of ab-index

S	$\alpha(S)$	$\beta(S)$	u_S
Ø	1	1	a^2
{1}	4	3	ab
$\{2\}$	4	3	ba
$\{1, 2\}$	8	1	b^2

$$\Phi_P(a,b) = a^2 + 3ab + 3ba + b^2.$$

Table of Flag Vectors

cd-index

Theorem (cd-index)

For any polytope P, there exists a polynomial $\Psi_P(c,d)$ in the non-commuting variables c and d such that

$$\Phi_P(a,b) = \Psi_P(a+b,ab+ba).$$

 $\Psi_P(c,d)$ is also called the **cd-index** of polytope *P*.

E

Polytopes

f-vectors and cd-index of Weight Polytopes

Example of cd-index

S	$\alpha(S)$	$\beta(S)$	u_S
Ø	1	1	a^2
$\{1\}$	4	3	ab
$\{2\}$	4	3	ba
$\{1, 2\}$	8	1	b^2

Table of Flag Vectors

$$\Phi_P(a,b) = a^2 + 3ab + 3ba + b^2$$
$$= (a+b)^2 + 2(ab+ba).$$

Replace $a + b \rightarrow c, ab + ba \rightarrow d$.

$$\Psi_P(c,d) = c^2 + 2d.$$

▶ ▲ 토 ▶ ▲ 토 ▶

Gao, McDonald

Methods to describe a polytope:

- *f*-polynomial/*h*-polynomial;
- face poset;
- cd-index.

f-vectors and cd-index of Weight Polytopes

Section 2

Coxeter Group and Weight Polytopes

Gao, McDonald

Finite Reflection groups

Definition (Finite Reflection Group)

A finite reflection group is a finite subgroup $W \subset \operatorname{GL}_n(\mathbb{R})$ generated by reflections, i.e. elements w such that $w^2 = 1$ and they fix a hyperplane H and negate the line perpendicular to H

Example: One example of a finite reflection group is the Dihedral Group $I_n = \{s, t \mid s^2 = t^2 = e, (st)^n = e\}.$

Coxeter groups

Definition (Coxeter Group)

A Coxeter Group is a group W of the form

$$W \cong \langle s_1, \dots, s_n \mid s_i^2 = e, (s_i s_j)^{m_{ij}} = e \rangle$$

for some $m_{ij} \in \{2, 3, 4, ...\} \cup \{\infty\}$. If W is finite, then W is called a Finite Coxeter Group. $S = \{s_1, s_2, ..., s_n\}$ is called the Generating Set of W.

f-vectors and cd-index of Weight Polytopes

Finite Coxeter Groups = Finite Reflection Groups

Here is a BIG theorem of Coxeter:

Theorem (Coxeter)

Finite Coxeter groups = Finite reflection groups.

Gao, McDonald

Coxeter Diagram

Definition (Coxeter Diagram)

Given a Coxeter presentation (W, S), we can encapsulate it in the *Coxeter Diagram*, denoted $\Gamma(W)$, a graph with V = S and if $m_{ij} = 3$, s_i and s_j are connected with no label and if $m_{ij} > 3$, s_i and s_j are connected with label m_{ij} .

Example: The dihedral group I_n has Coxeter diagram

Amazingly, finite Coxeter groups are classified! They come in four infinite families, A_n , B_n , D_n , and I_n , as well as a finite collection of exceptional cases. The Coxeter diagrams look as follows:

We will focus our energies on types A_n, B_n, D_n .

f-vectors and cd-index of Weight Polytopes

Weight Polytopes

Definition (Weight Polytope)

Given finite Coxeter group $W, \lambda \in \mathbb{R}^n$, we define the Weight Polytope P_{λ} to be the convex hull of $\{w \cdot \lambda \mid w \in W\}$.

▶ 《 문 ▶ 《 문 ▶ .

Weight Polytopes

Definition (Stabilizer)

Let $J(\lambda) = \{s \in S \mid s(\lambda) = \lambda\}$ be the *stabilizer* of λ .

Theorem (Maxwell)

The f-vector and face lattice of a weight polytope P_{λ} is only dependent on W, S and $J(\lambda)$.

Weight Polytope Example 1

Coxeter Group

 $W = A_n =$ symmetric group S_{n+1}

Vector λ

$$\lambda = (\underbrace{0, \dots, 0}_{}, 1)$$

n zeros

E

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 1

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 2

Coxeter Group

 $W = B_n =$ signed permutation group

Vector λ

$$\lambda = (\underbrace{1, 1, \dots, 1})$$

n ones

Gao, McDonald

E

★ 문 ► ★ 문 ►

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 2

Coxeter Group

 $W = B_n$ = signed permutation group

$$\bigcirc \frac{4}{(-1)} \bigcirc \cdots \bigcirc (12) (23) (34) (n-1,n)$$

Vector λ

$$\lambda = (\underbrace{1, 1, \dots, 1})$$

n ones

$$\begin{array}{c|c} & J(\lambda) \\ \circ & \bullet & \circ & \circ \\ \hline 1 & 2 & 3 & 4 & n \end{array}$$

Polytope

Vertices: Set of vectors with 1 and -1

- * 医 * - * 医 * - - -

E

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 3

Coxeter Group

 $W = B_n$ = signed permutation group

Vector λ

$$\lambda = (\underbrace{0, \dots, 0}_{1 \text{ or } 1}, 1)$$

n-1 zeros

E

- * 医 * - * 医 * - - -

Weight Polytope Example 3

Coxeter Group

 $W = B_n$ = signed permutation group

$$\underbrace{\bigcirc}_{(-1)}^{4} \underbrace{\bigcirc}_{(23)}^{(23)} \underbrace{\bigcirc}_{(34)}^{(n-1,n)}$$

Vector λ

$$\lambda = (\underbrace{0, \dots, 0}_{n-1 \text{ zeros}}, 1)$$

Polytope

Name: HyperOctahedron

Vertices: Set of vectors with n-1 zeros and one ± 1

▶ ★ 国 ▶ ★ 国 ▶ …

1

Weight Polytope Example 4

Coxeter Group

$W = A_n =$	symmetric	group	S_{n+1}
-------------	-----------	-------	-----------

Vector λ $\lambda = (\underbrace{0, \dots, 0}_{k \text{ zeros}}, \underbrace{1, \dots, 1}_{n-k+1 \text{ ones}})$

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 4

Coxeter Group

$$W = A_n =$$
 symmetric group S_{n+1}

$$\bigcirc - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (12) (23) (34) (45) (n, n+1)$$

Polytope

Name: **HyperSimplex** Vertices: Set of vectors with k zeros and n - k + 1 ones

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わえぐ

Gao, McDonald

Other Examples

E

Recall Summary

Methods to describe a polytope:

- f-polynomial/h-polynomial;
- face poset;
- cd-index.

f-polynomial

f-vectors and cd-index of Weight Polytopes

Section 3

f-polynomials of Simple Weight Polytopes

Gao, McDonald

32 / 51

Renner's Classification of Simple Polytopes

Theorem (Renner)

A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

- < E ≻ < E ≻ -

Renner's Classification of Simple Polytopes

Theorem (Renner)

A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

What are their f-polynomials?

Theorem (Golubitsky)

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of

$$\sum_{n \ge k \ge 0} F_{n,k}(t) \cdot \frac{x^{n+1}y^k}{(n+1)!} = \frac{e^{xy}}{y-1} \cdot \left(y + \frac{e^{txy} - t - 1}{t+1 - e^{tx}}\right) - 1.$$

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー のへで

Theorem

7

Denote $F_{n,a,b}(t)$ as the f-polynomial for the f polytope of

$$\begin{array}{c} a \ points & b \ points \\ \hline \bigcirc \cdots & \bigcirc & & \bigcirc \cdots & \bigcirc & & & \bigcirc \\ n \ points \end{array}$$
Then,
$$\sum_{a,b \ge 0} \sum_{n > a+b} F_{n,a,b}(t) \cdot \frac{x^{n+1}y^a z^b}{(n+1)!} = \frac{1}{y^2 - y} \left(x + \frac{(xy - e^{xy} + 1)(xz - e^{xz})}{y} \right) \\ + \frac{\left(tz + (t+1)e^{xz} - t - e^{(t+1)xz}\right) \left(\frac{ty + (t+1)e^{(xy)} - t - e^{((t+1)xy)}}{(t - e^{(tx)} + 1)y} - e^{(xy)}\right)}{t(y - 1)z} \\ + \frac{e^{(xy + xz)}}{ty} + \frac{\left(ze^{(txy)} - ye^{(txz)}\right)e^{(xy + xz)}}{t(y - z)y}\right).$$

Gao, McDonald

Theorem

Denote $F_{n,k}(t)$ as the *f*-polynomial for the *f* polytope of

$$\underbrace{\bigcirc}_{n \text{ points}}^{k \text{ points}}$$

$$\underbrace{\bigcirc}_{n \text{ points}}^{k \text{ points}}$$
Then,
$$\sum_{n>k\geq 0} F_{n,k}(t) \cdot \frac{x^n y^k}{n!} =$$

$$\frac{1}{y-1} \left(e^{(t+2)xy} + \frac{e^{tx} \cdot \left(e^{2(t+1)xy} - (t+1)e^{2xy} + t - ty\right)}{(t+1-e^{2tx})y} \right).$$

- ∢ 厘 ► . ∢ 厘 ►

Theorem

Denote $F_{n,k}(t)$ as the *f*-polynomial for the *f* polytope of

$$\underbrace{\bigcirc 4}_{n-2>k\geq 0} F_{n,k}(t) \frac{x^{n+1}y^k}{(n+1)!} = \frac{1}{y^2 - y} \left(xy + \left(y + \frac{(t+1)e^{(2\,xy)}}{t} - \frac{e^{(2\,(t+1)xy)}}{t} - 1 \right) \left(\frac{(t+1)tx - te^{(tx)}}{t - e^{(2\,tx)} + 1} + 1 \right) - x - \frac{((t+1)xy + \frac{1}{t} + 1)e^{(2\,xy)} - \frac{e^{(2\,(t+1)xy)}}{t} - e^{((t+2)xy)}}{y} \right).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�(

Gao, McDonald

Ingredients of the Proof

Definition (J-minimal subset)

For a Coxeter diagram $\Gamma = (W, S)$ and subset $J \subseteq S$, a *J-minimal subset* is a subset $X \subseteq S$ such that no connected component of X on the Coxeter diagram lies entirely in J.

Example:

Ingredients of the Proof

Theorem (Renner, Maxwell)

Consider the action of W on {faces of P_{λ} }, then there is a bijection

 $f: \{J(\lambda)\text{-minimal sets}\} \rightarrow \{\text{orbits of the action}\}.$

If X is $J(\lambda)$ -minimal, then all faces in f(X) are called X-type face. All X-type face has dimension |X|, and the number of X-type face is

$$\frac{|W|}{|W_{X^*}|},$$

where $W_{X^*} \subseteq W$ is the subgroup generated by

 $\{s \in S | s \in X \text{ or } s \text{ and } X \text{ are not connected}\}.$

Example of Renner/Maxwell

X	Face	W_{X^*}	$ W / W_{X^*} $
Ø	Vertices	$\{3\}$	48/2 = 24
	Long Edges	$\{1, 3\}$	48/4 = 12
	Triangle Edges	$\{2\}$	48/2 = 24
	Octagons	$\{1, 2\}$	48/8 = 6
	Triangles	$\{2,3\}$	48/6 = 8
	Truncated Cube	$\{1, 2, 3\}$	48/48 = 1

Renner only proved the case where W is a Weyl Group (a special type of Coxeter Group that forms a lattice).

Is this true for general finite Coxeter Group ?

Renner only proved the case where W is a Weyl Group (a special type of Coxeter Group that forms a lattice).

Is this true for general finite Coxeter Group ?

Answer: Yes!

Section 4

Face Poset of General Weight Polytopes: Maxwell implies Renner

Gao, McDonald

Maxwell

Theorem (Maxwell)

Given Coxeter System (W, S), and vector λ with stablizer J.

The face poset of polytope P_{λ} is isomorphic to the poset

 $L(W,J) = \{gW_XW_J | g \in W, X \subseteq S \text{ is } J\text{-minimal}\}$

ordered by inclusion.

Here W_X is the subgroup generated by elements in X.

What does Maxwell Imply?

Corollary

- All faces are labelled by some J-minimal set X;
- A X face lies inside a Y face if and only if $X \subseteq Y$;
- If $X \subseteq Y$, the number of X face inside a Y face is equal to

$$\frac{|W_Y|}{|W_X| \cdot |W_{Y \cap (X^* \setminus X)}|}$$

Take Y = S the entire set, the number of X-face is

$$\frac{|W|}{|W_{X^*}|},$$

the same as Renner.

cd-index

Section 5

A glimpse on the cd-index of Weight Polytopes

Gao, McDonald

45 / 51

cd-index for simplices

Theorem (Stanley)

If Ψ_P denotes the cd-index for a poset P then

$$\begin{aligned} 2\Psi_P &= 2\Psi_{\hat{0}\hat{1}} = \sum_{\substack{\hat{0} < x < \hat{1}\\\rho(x,\hat{1}) = 2j-1}} (c^2 - 2d)^{j-1} c\Psi_{\hat{0}x} - \sum_{\substack{\hat{0} < x < \hat{1}\\\rho(x,\hat{1}) = 2j}} (c^2 - 2d)^j \Psi_{\hat{0}x} \\ &+ \begin{cases} 2(c^2 - 2d)^{k-1} & \text{if } \rho(\hat{0},\hat{1}) = 2k-1\\ 0 & \text{if } \rho(\hat{0},\hat{1}) = 2k. \end{cases} \end{aligned}$$

Corollary (Stanley)

if $\Psi_n(c,d)$ is the cd-index for the n-simplex then

$$\sum_{n\geq 1} \frac{\Psi_n(c,d)x^n}{(n+1)!} = \frac{2\sinh((a-b)x)}{a-b} \cdot \left(1 - \frac{c\sinh((a-b)x)}{a-b} + \cosh((a-b)x)\right)^{-1}\right)$$

cd-index for hypersimplices

Theorem

Denote $\Psi_{n,k}$ as the cd-index for the hypersimplex

Idea of Proof

11

Combine Stanley's Method with Renner/Maxwell's formula.

Gao, McDonald

Summary

f-vectors and *cd*-index of Weight Polytopes

- < ≣ ≻ - <

≣⊳

Section 6

Summary

Gao, McDonald

୬ < ୍ର 48 / 51

What have we done?

	f-polynomial	Face Poset	cd-index
General	\checkmark	Maxwell	
Weight Polytopes		(we rewrote \checkmark)	
Weyl Group	\checkmark	Renner	
Weight Polytopes	(some done by		
	Golubitsky)		
Hypersimplex	\checkmark	Renner	\checkmark
Simplex	Known	Known	Stanley

æ

▶ ★ 문 ► ★ 문 ►

Summary

f-vectors and cd-index of Weight Polytopes

Acknowledgement

We would like to thank Vic and Andy for their continual guidance and support!

Gao, McDonald

50 / 51

Summary

Thank You!

Gao, McDonald

51 / 51