Simple, Seedy Derivations of Generating Functions for Simple Polytopes and $c d$-indices

Jiyang Gao, Vaughan McDonald

University of Minnesota - Twin Cities REU 2018
3 August 2018
(1) Introduction to Polytopes
(2) Coxeter Group and Weight Polytopes
(3) f-polynomials of Simple Weight Polytopes

4 Face Poset of General Weight Polytopes
(5) A glimpse on the $c d$-index of Weight Polytopes
(6) Summary

Section 1

Introduction to Polytopes

What are polytopes?

Definition (Polytope)

A polytope is the convex hull of a finite number of points in \mathbb{R}^{r}.

Examples of polytopes in \mathbb{R}^{3}

Faces of Polytopes

- Polytopes have faces.
- Faces are polytopes themselves.
- Faces have dimensions. It's the minimal integer d such that the face can live in \mathbb{R}^{d}.
- A j-dimensional face is called a j-face.
- A 0 -face is usually called a vertex. A 1-face is usually called an edge. An r-face is the polytope itself.

f-vector and f-polynomial

Definition (f-vector and f-polynomial)

Define the f-vector of a r-dim Polytope P as
$f(P):=\left(f_{0}, \ldots, f_{r}\right)$, where f_{i} is the number of i-dimensional faces of P.
Define its f-polynomial as $f_{P}(t)=\sum_{i=0}^{r} f_{i} t^{i}$.

Example:

A cube has 8 vertices, 12 edges and 6 faces.

$$
\begin{gathered}
f(P)=(8,12,6,1) \\
f_{P}(t)=8+12 t+6 t^{2}+t^{3}
\end{gathered}
$$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the h-polynomial of a r-dim Polytope P as
$h_{P}(t)=f_{P}(t-1)=\sum_{i=0}^{r} f_{i}(t-1)^{i}$.
Assume $h_{P}(t)=\sum_{i=0}^{r} h_{i} t^{i}$, then define its h-vector as
$h(P):=\left(h_{0}, h_{1}, \ldots, h_{r}\right)$.

Example:

A cube has $f_{P}(t)=8+12 t+6 t^{2}+t^{3}$.
Replace t with $t-1$.

$$
\begin{gathered}
h_{P}(t)=f_{P}(t-1)=1+3 t+3 t^{2}+t^{3} \\
h(P)=(1,3,3,1)
\end{gathered}
$$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the h-polynomial of a r-dim Polytope P as
$h_{P}(t)=f_{P}(t-1)=\sum_{i=0}^{r} f_{i}(t-1)^{i}$.
Assume $h_{P}(t)=\sum_{i=0}^{r} h_{i} t^{i}$, then define its h-vector as
$h(P):=\left(h_{0}, h_{1}, \ldots, h_{r}\right)$.

Example:

A cube has $f_{P}(t)=8+12 t+6 t^{2}+t^{3}$.
Replace t with $t-1$.
$h_{P}(t)=f_{P}(t-1)=1+3 t+3 t^{2}+t^{3}$

$$
h(P)=(1,3,3,1)
$$

Is this always symmetric?

Dehn-Somerville Equation

Definition (Simple Polytope)

A r-dimensional polytope is called a simple polytope if and only if each vertex has exactly r incident edges.

For example, a cube is a simple polytope.

Theorem (Dehn-Sommerville equation)

For any simple polytope P, its h-vector is symmetric.

Face Poset

Definition (Face Poset)

The face poset of polytope P is the poset $\{$ faces of $P\}$ ordered by inclusion of faces.

Example:

Polytope
*Note: A Face Poset is graded.

Face Poset

Rank Selected Poset

Definition (Rank Selected Poset)

Let $S \subseteq[r]=\{1,2, \ldots, r\}$. The rank-selected poset P_{S} of P is

$$
P_{S}=\{x \in P \mid \rho(x) \in S\} \cup\{\hat{0}, \hat{1}\},
$$

where ρ is the rank function.

Flag f-vector and Flag h-vector

Definition (Flag f-vector and Flag h-vector)

Define the flag f-vector $\alpha(S)$ as the number of maximal chains in P_{S}. Based on that, define the flag h-vector $\beta(S)$ as:

$$
\beta(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} \alpha(T) \quad \text { or, } \quad \alpha(S)=\sum_{T \subseteq S} \beta(T)
$$

S	$\alpha(S)$	$\beta(S)$
\emptyset	1	1
$\{1\}$	4	3
$\{2\}$	4	3
$\{1,2\}$	8	1

Table of Flag Vectors

Face Poset

Table of Flag Vectors

$$
\beta(S)=\beta(\bar{S})
$$

Definition ($a b$-index)

Define the $a b$-index of Polytope P as a polynomial over non-commutative variables a, b as

$$
\Phi_{P}(a, b)=\sum_{S \subseteq[n]} \beta(S) u_{S}
$$

Here $u_{S}=u_{n} u_{n-1} \cdots u_{1}$, where

$$
u_{i}= \begin{cases}a, & \text { if } i \notin S \\ b, & \text { if } i \in S\end{cases}
$$

Example of $a b$-index

S	$\alpha(S)$	$\beta(S)$	u_{S}
\emptyset	1	1	a^{2}
$\{1\}$	4	3	$a b$
$\{2\}$	4	3	$b a$
$\{1,2\}$	8	1	b^{2}

$\Phi_{P}(a, b)=a^{2}+3 a b+3 b a+b^{2}$.

Table of Flag Vectors

Theorem ($c d$-index)

For any polytope P, there exists a polynomial $\Psi_{P}(c, d)$ in the non-commuting variables c and d such that

$$
\Phi_{P}(a, b)=\Psi_{P}(a+b, a b+b a)
$$

$\Psi_{P}(c, d)$ is also called the cd-index of polytope P.

Example of $c d$-index

S	$\alpha(S)$	$\beta(S)$	u_{S}
\emptyset	1	1	a^{2}
$\{1\}$	4	3	$a b$
$\{2\}$	4	3	$b a$
$\{1,2\}$	8	1	b^{2}

$$
\begin{gathered}
\Phi_{P}(a, b)=a^{2}+3 a b+3 b a+b^{2} \\
\quad=(a+b)^{2}+2(a b+b a) .
\end{gathered}
$$

Replace $a+b \rightarrow c, a b+b a \rightarrow d$.

$$
\Psi_{P}(c, d)=c^{2}+2 d
$$

Table of Flag Vectors

Summary

Methods to describe a polytope:

- f-polynomial/ h-polynomial;
- face poset;
- $c d$-index.

Coxeter Group and Weight Polytopes

Finite Reflection groups

Definition (Finite Reflection Group)

A finite reflection group is a finite subgroup $W \subset \mathrm{GL}_{n}(\mathbb{R})$ generated by reflections, i.e. elements w such that $w^{2}=1$ and they fix a hyperplane H and negate the line perpendicular to H

Example: One example of a finite reflection group is the Dihedral Group $I_{n}=\left\{s, t \mid s^{2}=t^{2}=e,(s t)^{n}=e\right\}$.

Coxeter groups

Definition (Coxeter Group)

A Coxeter Group is a group W of the form

$$
W \cong\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=e,\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle
$$

for some $m_{i j} \in\{2,3,4, \ldots\} \cup\{\infty\}$.
If W is finite, then W is called a Finite Coxeter Group. $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is called the Generating Set of W.

Here is a BIG theorem of Coxeter:
Theorem (Coxeter)
Finite Coxeter groups =
Finite reflection groups.

Coxeter Diagram

Definition (Coxeter Diagram)

Given a Coxeter presentation (W, S), we can encapsulate it in the Coxeter Diagram, denoted $\Gamma(W)$, a graph with $V=S$ and if $m_{i j}=3, s_{i}$ and s_{j} are connected with no label and if $m_{i j}>3$, s_{i} and s_{j} are connected with label $m_{i j}$.

Example: The dihedral group I_{n} has Coxeter diagram

Finite Coxeter Groups

Amazingly, finite Coxeter groups are classified! They come in four infinite families, A_{n}, B_{n}, D_{n}, and I_{n}, as well as a finite collection of exceptional cases. The Coxeter diagrams look as follows:

We will focus our energies on types A_{n}, B_{n}, D_{n}.

Weight Polytopes

Definition (Weight Polytope)

Given finite Coxeter group $W, \lambda \in \mathbb{R}^{n}$, we define the Weight Polytope P_{λ} to be the convex hull of $\{w \cdot \lambda \mid w \in W\}$.

Weight Polytopes

Definition (Stabilizer)

Let $J(\lambda)=\{s \in S \mid s(\lambda)=\lambda\}$ be the stabilizer of λ.

Theorem (Maxwell)

The f-vector and face lattice of a weight polytope P_{λ} is only dependent on W, S and $J(\lambda)$.

Weight Polytope Example 1

Coxeter Group

$W=A_{n}=\operatorname{symmetric}$ group S_{n+1}

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{n \text { zeros }}, 1)
$$

Weight Polytope Example 1

Coxeter Group

$$
\begin{gathered}
W=A_{n}=\text { symmetric group } S_{n+1} \\
(12) \\
(23)
\end{gathered}(34)
$$

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{n \text { zeros }}, 1)
$$

$$
J(\lambda)
$$

Polytope

Name: Simplex

Vertices: Set of vectors with n zeros and 1 one

Weight Polytope Example 2

Coxeter Group
 $W=B_{n}=$ signed permutation group

Vector λ

$$
\lambda=(\underbrace{1,1, \ldots, 1}_{n \text { ones }})
$$

Weight Polytope Example 2

Coxeter Group

$W=B_{n}=$ signed permutation group

Vector λ

Polytope
Name: HyperCube

Vertices: Set of vectors with 1 and -1

Weight Polytope Example 3

Coxeter Group
 $W=B_{n}=$ signed permutation group

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{n-1 \text { zeros }}, 1)
$$

Weight Polytope Example 3

Coxeter Group

$W=B_{n}=$ signed permutation group

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{n-1 \text { zeros }}, 1)
$$

Polytope

Name:
HyperOctahedron

Vertices: Set of vectors with $n-1$ zeros and one ± 1

Weight Polytope Example 4

Coxeter Group
 $W=A_{n}=\operatorname{symmetric}$ group S_{n+1}

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{k \text { zeros }}, \underbrace{1, \ldots, 1}_{n-k+1 \text { ones }})
$$

Weight Polytope Example 4

Coxeter Group

$$
\begin{aligned}
& W=A_{n}=\text { symmetric group } S_{n+1} \\
& (12) \\
& (23)
\end{aligned}(34)
$$

Vector λ

$$
\lambda=(\underbrace{0, \ldots, 0}_{k \text { zeros }}, \underbrace{1, \ldots, 1}_{n-k+1 \text { ones }})
$$

Polytope

Name: HyperSimplex
Vertices: Set of vectors with k zeros and
$n-k+1$ ones

Other Examples

Example 5

Name: Dodecahedron

Coxeter Group: $W=H_{3}$

Example 6

Name: Truncated Cube

Coxeter Group: $W=B_{3}$

Recall Summary

Methods to describe a polytope:

- f-polynomial/h-polynomial;
- face poset;
- cd-index.

Section 3

f-polynomials of Simple Weight Polytopes

Renner's Classfication of Simple Polytopes

Theorem (Renner)

A type A_{n} or B_{n} weight polytope is simple iff its Coxeter diagram has one of the following structures.

Renner's Classfication of Simple Polytopes

Theorem (Renner)

A type A_{n} or B_{n} weight polytope is simple iff its Coxeter diagram has one of the following structures.

What are their f-polynomials?

Case 1

Theorem (Golubitsky)

Denote $F_{n, k}(t)$ as the f-polynomial for the f polytope of

Then,

$$
\sum_{n \geq k \geq 0} F_{n, k}(t) \cdot \frac{x^{n+1} y^{k}}{(n+1)!}=\frac{e^{x y}}{y-1} \cdot\left(y+\frac{e^{t x y}-t-1}{t+1-e^{t x}}\right)-1
$$

Case 2

Theorem

Denote $F_{n, a, b}(t)$ as the f-polynomial for the f polytope of

$$
\text { Then, } \begin{aligned}
& \sum_{a, b \geq 0} \sum_{n>a+b} F_{n, a, b}(t) \cdot \frac{x^{n+1} y^{a} z^{b}}{(n+1)!}=\frac{1}{y^{2}-y}\left(x+\frac{\left(x y-e^{x y}+1\right)\left(x z-e^{x z}\right)}{y}\right. \\
&+\frac{\left(t z+(t+1) e^{x z}-t-e^{(t+1) x z}\right)\left(\frac{t y+(t+1) e^{(x y)}-t-e^{((t+1) x y)}}{\left(t-e^{(t x)}+1\right) y}-e^{(x y)}\right)}{t(y-1) z} \\
&\left.+\frac{e^{(x y+x z)}}{t y}+\frac{\left(z e^{(t x y)}-y e^{(t x z)}\right) e^{(x y+x z)}}{t(y-z) y}\right) .
\end{aligned}
$$

Case 3

Theorem

Denote $F_{n, k}(t)$ as the f-polynomial for the f polytope of

$$
\begin{gathered}
\underbrace{0-\underbrace{4}-\cdots \text { points }}_{n \text { points }} \\
\text { Then, } \sum_{n>k \geq 0} F_{n, k}(t) \cdot \frac{x^{n} y^{k}}{n!}= \\
\frac{1}{y-1}\left(e^{(t+2) x y}+\frac{e^{t x} \cdot\left(e^{2(t+1) x y}-(t+1) e^{2 x y}+t-t y\right)}{\left(t+1-e^{2 t x}\right) y}\right) .
\end{gathered}
$$

Case 4

Theorem

Denote $F_{n, k}(t)$ as the f-polynomial for the f polytope of

Then, $\sum_{n-2>k \geq 0} F_{n, k}(t) \frac{x^{n+1} y^{k}}{(n+1)!}=\frac{1}{y^{2}-y}(x y$
$+\left(y+\frac{(t+1) e^{(2 x y)}}{t}-\frac{e^{(2(t+1) x y)}}{t}-1\right)\left(\frac{(t+1) t x-t e^{(t x)}}{t-e^{(2 t x)}+1}+1\right)$
$\left.-x-\frac{\left((t+1) x y+\frac{1}{t}+1\right) e^{(2 x y)}-\frac{e^{(2(t+1) x y)}}{t}-e^{((t+2) x y)}}{y}\right)$.

Ingredients of the Proof

Definition (J-minimal subset)

For a Coxeter diagram $\Gamma=(W, S)$ and subset $J \subseteq S$, a J-minimal subset is a subset $X \subseteq S$ such that no connected component of X on the Coxeter diagram lies entirely in J.

Example:

All six J-minimal subsets

Not J-minimal

Ingredients of the Proof

Theorem (Renner, Maxwell)

Consider the action of W on $\left\{\right.$ faces of $\left.P_{\lambda}\right\}$, then there is a bijection

$$
f:\{J(\lambda) \text {-minimal sets }\} \rightarrow\{\text { orbits of the action }\} .
$$

If X is $J(\lambda)$-minimal, then all faces in $f(X)$ are called X-type face. All X-type face has dimension $|X|$, and the number of X-type face is

$$
\frac{|W|}{\left|W_{X^{*}}\right|},
$$

where $W_{X^{*}} \subseteq W$ is the subgroup generated by

$$
\{s \in S \mid s \in X \text { or } s \text { and } X \text { are not connected }\} .
$$

Example of Renner/Maxwell

X	Face	$W^{\text {X }}$	$\|W\| /\left\|W_{X^{*}}\right\|$
\emptyset	Vertices	\{3\}	$48 / 2=24$
(0) $0^{4} 0$	Long Edges	\{1, 3\}	$48 / 4=12$
$04^{4} 0$	Triangle Edges	\{2\}	$48 / 2=24$
$0^{4} 00$	Octagons	\{1, 2\}	$48 / 8=6$
$0 \cdot \sqrt[4]{0-(0)}$	Triangles	\{2, 3\}	$48 / 6=8$
$00^{4} 0-(0$	Truncated Cube	$\{1,2,3\}$	$48 / 48=1$

However...

Renner only proved the case where W is a Weyl Group (a special type of Coxeter Group that forms a lattice).

Is this true for general finite Coxeter Group ?

However...

Renner only proved the case where W is a Weyl Group (a special type of Coxeter Group that forms a lattice).

Is this true for general finite Coxeter Group ?

Answer: Yes!

Section 4

Face Poset of General Weight

 Polytopes: Maxwell implies Renner
Maxwell

Theorem (Maxwell)

Given Coxeter System (W, S), and vector λ with stablizer J.

The face poset of polytope P_{λ} is isomorphic to the poset

$$
L(W, J)=\left\{g W_{X} W_{J} \mid g \in W, X \subseteq S \text { is } J \text {-minimal }\right\}
$$

ordered by inclusion.
Here W_{X} is the subgroup generated by elements in X.

What does Maxwell Imply?

Corollary

- All faces are labelled by some J-minimal set X;
- A X face lies inside a Y face if and only if $X \subseteq Y$;
- If $X \subseteq Y$, the number of X face inside a Y face is equal to

$$
\frac{\left|W_{Y}\right|}{\left|W_{X}\right| \cdot\left|W_{Y \cap\left(X^{*} \backslash X\right)}\right|}
$$

Take $Y=S$ the entire set, the number of X-face is

$$
\frac{|W|}{\left|W_{X^{*}}\right|},
$$

the same as Renner.

Section 5

A glimpse on the $c d$-index of Weight Polytopes

$c d$-index for simplices

Theorem (Stanley)

If Ψ_{P} denotes the $c d$-index for a poset P then

$$
\begin{aligned}
2 \Psi_{P}=2 \Psi_{\hat{0} \hat{1}}= & \sum_{\substack{\hat{0}<x<\hat{1} \\
\rho(x, \hat{1})=2 j-1}}\left(c^{2}-2 d\right)^{j-1} c \Psi_{\hat{0} x}-\sum_{\substack{\hat{0}<x<\hat{1} \\
\rho(x, \hat{1})=2 j}}\left(c^{2}-2 d\right)^{j} \Psi_{\hat{0} x} \\
& + \begin{cases}2\left(c^{2}-2 d\right)^{k-1} & \text { if } \rho(\hat{0}, \hat{1})=2 k-1 \\
0 & \text { if } \rho(\hat{0}, \hat{1})=2 k .\end{cases}
\end{aligned}
$$

Corollary (Stanley)

if $\Psi_{n}(c, d)$ is the $c d$-index for the n-simplex then

$$
\left.\sum_{n \geq 1} \frac{\Psi_{n}(c, d) x^{n}}{(n+1)!}=\frac{2 \sinh ((a-b) x)}{a-b} \cdot\left(1-\frac{c \sinh ((a-b) x)}{a-b}+\cosh ((a-b) x)\right)^{-1}\right)
$$

$c d$-index for hypersimplices

Theorem

Denote $\Psi_{n, k}$ as the cd-index for the hypersimplex

$$
\begin{aligned}
& \text { Then, } \quad \sum_{n \geq k \geq 1} \Psi_{n, k}(c, d) \frac{y^{k}}{(n+1)!}=(1-s(y+1) \cdot c+c(y+1))^{-1} \\
& \quad \cdot\left(\frac{c(y+1)-c(y)-c(1)+1}{c^{2}-2 d} \cdot c-s(y+1)+\frac{y+1}{y-1} \cdot(s(y)-s(1))\right)
\end{aligned}
$$

where $c(x)=\cosh ((a-b) x)$ and $s(x)=\sinh ((a-b) x) /(a-b)$

Idea of Proof

Combine Stanley's Method with Renner/Maxwell's formula.

Section 6

Summary

What have we done?

	f-polynomial	Face Poset	$c d$-index
General Weight Polytopes	\checkmark	Maxwell (we rewrote \checkmark)	
Weyl Group Weight Polytopes	\checkmark (some done by Golubitsky)	Renner	
Hypersimplex	\checkmark	Renner	\checkmark
Simplex	Known	Known	Stanley

Acknowledgement

We would like to thank Vic and Andy for their continual guidance and support!

Thank You!

