REL 2019 Day 2 6/4/2019
B. Bubaker (offices VinH 352, Lind 412)

Lattice Models and
Combinatorial Representation Theory
TA's: Claire Frechette Katy Weber
Lattice models are inspired by statistical mechanics
Slogan: use loalbehavior to infer globe properties

Example: Square lattice Assign a rows to every edge in lattice, having pre-assigned boundary edges

Game: How many ways can Infill this lattice with distinct edge assignments with every vertex having 2 edges in, 2 edges out.

This means every vertex hos adjacent edges in one of $\binom{4}{2}=6$ configurations ("6-vertex model")
How many fillings?
A hard question; not hard to see it's equivalent to the alternating signmatixx conjecture proven by zeilberger/Kuperberg
Lets describe a method for attaching a weight to each filining...

Example:
weight

$\stackrel{N}{n}$ SE: Z_{i} (i fin row)
$\xrightarrow[\sim]{\uparrow} s w: 0<2_{\text {really a }}$
$\stackrel{\Psi}{\leftarrow}$ NE: z_{i} five vertex five vertex
model!
$\stackrel{\psi}{4} N S: z_{i}$
Hi EW: 1

Then the weightof a filling admissible state $S=\prod_{v \in S} u(t)$

Finally define the a lattice model partition function (LMPF)

$$
\begin{aligned}
& P(z):=\sum_{\substack{\text { admissible } \\
\text { situs }}} \omega t(S) \\
& \\
& z=\left(z, z_{2}, \cdots, z_{r}\right)
\end{aligned}
$$

New Question:
How to find closed form expressions for $P(\underline{z}$) given various weight schemes?
A: In general, impossible.
REN Exercise 3
Compute $P\left(z_{1}, \ldots, z_{n}\right)$ for $n \times n$ square lattice with the above weights. (i.e. for all n; its sactudly do able!)

Let's generalize the lattice, depending on $\mu=\left(\mu, \ldots, \mu_{r}\right) \in \mathbb{Z}^{r}$ with $\mu_{i}>\mu_{i+1}$ (and we often take $\mu_{r}=0$ for simplicity).
The lattice will have r vows and $\mu_{1}+1$ columns.
E.g. $\mu=(3,1,0)$

Top arrows
go up on parts

Q: What is $P_{\mu}(z)$?
A: The most famous symmetric functions of all!
Q: What tools do we use to evaluate $P(z)$?
A: The Yomg-Baxter-Equation
We want a new set of 6 vertices, i.e weights for rotated vertices

... the following mini partition functions are equal.

with arbitrary boundary conditions

$$
\alpha, \beta, \gamma, \delta, \in, \phi \in\{\rightarrow, \leftrightarrow, \psi, \jmath\}
$$

Example:

unique
adohissible configuration on left

vs. two admissible configurations on right
(check this!)

Amazing idea to prove $P_{\mu}\left(z_{2}, \ldots, z\right)$ symmetric in the variables $z_{1}, z_{2}, \ldots, z_{r}$
Andyze

$$
=\omega t(\nmid X X) P_{\mu}(\underline{z})
$$

On the other hand, by YBE
 $\cdot P_{\mu}\left(z_{2}, z_{1}, z_{3}\right)$

REU Exercise 4
(1) Find a solution to the Yang Baxter equation with our weights as above.
(2) Read about how to encode it as a matin in B.-Bump-Friedberg, and to the translation into matrix multiplication.

Q: When is a solution to the YBE possible?
Baxter and $B-B-F$ give sufficient conditions on the weights to satisfy YBE

$$
\frac{(2 \text { degree two equations in weights) }}{\text { Let } z-\left(z_{1}, \ldots, z_{r}\right) \operatorname{in} P_{\mu}(z)}
$$

and let $\rho:=(r-1, r-2, \ldots, 2,1,0)$
Then $\lambda:=\mu-\rho$ has $\lambda_{i} \geq \lambda_{i+1}$
ie. λ is a (conbimatorialist's) partition of $n=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{r}$

Then, effing $\underline{z}^{\rho}=z_{1}^{r} z_{2}^{r-2} \cdots z_{r_{2}}^{2} z_{r_{1}}$ one has

$$
P_{\mu}(z) \stackrel{(*)}{=} z^{\rho} S_{\lambda}(z)
$$

where $S_{\lambda}(z):=$ Sohur polynomial for λ

$$
s_{\lambda}(z)=\sum z^{\omega t(T)}
$$

TESSYT(λ)
semistandard Young bableanxT ot shape λ andenbines $\leq r$

Young diagram for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$

$\leftarrow \lambda_{r}$ boxes
SSYT = samistondand Young tableaux is a filling T of the Young diagram with alphabet $\{1,2, \ldots, r\}$ so that

- really increasing along rows
- strictly increasing down columns

$$
z^{w l t}:=z_{1}^{\# 1 / \sin T} \cdots z_{r}^{\# r} \operatorname{rin} T
$$

REUExercise 5:
(a) Compute $S_{(4,2, j)}\left(z_{1}, z_{2}, z_{3}\right)$
(b) Show (*) by establishing a bijection befween SSMT (λ) and $\underset{\substack{11}}{\mu+\rho}$
(c) Use (b) to give a mefor how to expand

RELP Prodem\#2
Find conditions under which purtition functions of μ-lattice models satisfy nice identities like the Schurpolynomials.

- branching wees

Cauchy identities
Littlewbod-Richordson mes
(-insert your favaite mile here-)
which of these identities (for Schur polynomials) can be expressed as lattice model partition functions computed in two ways?

