Ribbon Lattices and Ribbon Functions

Michael Curran, Calvin Yost-Wolff, Sylvester Zhang, Valerie Zhang

UMN Twin Cities REU Summer 2019

July 24, 2019

Boundary Conditions: For $\lambda=(\lambda_1,\lambda_2,\dots,\lambda_r)$ create a grid with r rows and λ_1+r columns. For example, if $\lambda=(4,2,2,1)$ then r=4 and $\lambda_1+r=8$

Take the path sequence of λ and the empty partition:

Place the path sequence of $\it I$ at the bottom of the grid and the path sequence of \emptyset at the top of the grid

Finally place only right arrows along the horizontal boundary:

Theorem

Denote the partition function with these boundary conditions \mathcal{Z}_{λ} . Then \mathcal{Z}_{λ} is equal to the Schur function s_{λ} for any partition λ .

• Idea of Proof: Construct a weight preserving bijection between semistandard Young tableaux of shape λ and fillings of the lattice with the boudary conditions just described.

Example:

1	2	2	3
2	3		
3	4		
4		,	

Write the tableaux as a sequence of partitions:

Take the path sequence of each partition:

Start with 4 by 8 lattice as before:

Add path sequence of empty partition to the top:

Add path sequence of second partition to the next row:

Continue:

Then there is only one possible admissible state with this choice of up arrows.

Ribbon Tableaux

- - Semistendered n-Hibbon Taldeaux

 Tile a Young diagram with n-nibbons

 then fill each nibbon with numbers like a SSYT

 The part with Same number forms a horizontal

 Strip (define loter)

A horizontal strip is a Collection of ribbons which forms a sked shape, such that

The Upper Right box of each hibbon has to touch the air, is Nothing above it.

Spin *

- · The spin of a ribbon is height -1.
 e.j. spin (F) = 2
- . The Spin of a ribbon Tableau is sum of spin.

Ribbon Function (Lascoux, Leclerc & Thibon)

· Let 1/n be a skew partition tilable by

11-ribbons
$$G_{\gamma_M}^{\alpha}(\underline{x},q) = \sum_{T} q^{Spin(T)} \underline{x}^{W+(T)}$$

e.g.
$$\Rightarrow q^{\delta} \chi_1^2 \chi_2^2 \chi_3$$

(Thun) Ribbon Fins are Symmetric

The neight of Ribbon vertex

weight
$$(v) = \delta \cdot \int_{0}^{\infty} x_{i}$$

if in the ith row

Don't allow changing arrow on strought edge:

E(v)=1 if a left amow entering though bendled edge $\Sigma()=1$ $\Sigma()=0$

$$\mathcal{E}\left(\right) = 0$$

From Ribbon Tableaux to Lattice made).

. Think of Ribbon Tableaux as Sequence of pontitions

. Same boundary condition

· peeling off one n-ribbon (if-

i) numbering the two edge sequences (blue red dots) from 0 to 12

ii) The 12-th • is moved to the 0-th • , everything else stays.

iii) in the Lattice Joff

iv) # intersection = spin

peeling off one horizontal ribbon strip. (if time)

 b/c the top-right box of each ribbon has nothing above it.

we can glue small vibbons up to make the entire stup.

Yang-Baxter Equation (a.K.a Star-triungle equality)

want a new set of vertex ... with continue verget.

Such that

Z(wt(LHS)) = Z(wt(RHS)) for all boundary

Stor-thingle for larger ribbon looks like:

- . We <u>conjecture</u> that our lattice model is solvable is then exist YBEs.
- The YBE for 1,2,3-vibbon lattice is computed via SAGE.

Application of the Lattice model.

. We can device various identities of Ribbon Fin Using our lattice. erg. dual Courby identity

9=1 Hibbon fin is product of Solver fins.

Thank You!