Ribbon Lattices and Ribbon Functions

Michael Curran, Calvin Yost-Wolff, Sylvester Zhang, Valerie Zhang

UMN Twin Cities REU Summer 2019

July 24, 2019

Boundary Conditions: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ create a grid with r rows and $\lambda_{1}+r$ columns. For example, if $\lambda=(4,2,2,1)$ then $r=4$ and $\lambda_{1}+r=8$

Take the path sequence of λ and the empty partition:

Place the path sequence of I at the bottom of the grid and the path sequence of \emptyset at the top of the grid

Finally place only right arrows along the horizontal boundary:

Theorem
Denote the partition function with these boundary conditions \mathcal{Z}_{λ}. Then \mathcal{Z}_{λ} is equal to the Schur function s_{λ} for any partition λ.

- Idea of Proof: Construct a weight preserving bijection between semistandard Young tableaux of shape λ and fillings of the lattice with the boudary conditions just described.

Example:

Write the tableaux as a sequence of partitions:

Take the path sequence of each partition:

Start with 4 by 8 lattice as before:

Add path sequence of empty partition to the top:

Add path sequence of second partition to the next row:

Continue:

Then there is only one possible admissible state with this choice of up arrows.

Ribbon Tableaux

- n-ribbon:= some skew-shape containing n "unit boxes" without 2×2 square. egg. 3-ribbon \square

$$
4 \text {-ribbon }
$$

- Semistenderd n-ribbon Tableaux

Tile a Young diagram with n-ribbons then fill each ribbon with numbers like a SSYT * The part with same number forms a horizontal strip (define later)

Eg. $\sqrt[1]{\sqrt[1]{2}} \frac{2}{4} T_{3}^{4}(\lambda) \lambda=5,4,4,1,1$
E有: $\frac{1 \frac{1}{2}^{\frac{1}{2}}}{\frac{1}{2}}$, $\frac{1}{2 r^{2}}$ is not a Young diagram.
Intact, NO RT for this diagram.
 is not a horizontal Strip.

A horizontal strip is a collection of ribbons which forms a skat shape, such that

- The Upper Right box of each ribbon has to touch the air, is Nothing above it.

Egg.

$S_{\text {pin }}$

- The spin of a ribbon is height -1 .

$$
\text { e.g. } \operatorname{spin}(\boxminus)=2
$$

- The spin of a ribbon Tableau is sum of spin.

$$
\operatorname{eg} \operatorname{spin}(\Pi)=1+1+2=4
$$

Ribbon Function (Lasconx, Leclerc \& Thibon)

- Let λ / μ be a skew partition tillable by n-ribbons.

$$
G_{\lambda / \mu}^{n}(\underline{x} \cdot q)=\sum_{T} q^{\sin (T)} \underline{x}^{w t(T)}
$$

eng.

$$
\sqrt{\frac{12}{2 \frac{1}{2}}} \sqrt[3]{ } \Rightarrow q^{6} x_{1}^{2} x_{2}^{2} x_{3}
$$

(The) Ribber Fins ave Symmetric

Ribbon Lattice Models. for n-ribbon $f^{\prime} n$.

, with ($n+1$) in-anow (out-anou)

Think of the vertex as:
... then

The weight of Ribbon vertex

$$
\text { weight }(v)=\delta \cdot q^{\delta(v)} x_{i}^{\varepsilon(v)}
$$

is in the it row
(1) Don't allow changing arrow on straight edge:
e.g $\delta=1$ if

$$
\delta=0 \text { if }
$$

(2) $\Sigma(v)=1$ if a left anow entering though bended edge $\varepsilon(>)=1$

(3) The spin *
i)

$$
\sigma(v)=\# \text { of }<\text { in }
$$

From Ribbon Tableaux to Lattice mode).

- Think of Ribbon Tableaux as Sequence of partitions.

- Same boundary condition

- peeling off one n-ribbon (iftime)

i) numbering the two edge sequence (blue red dots) from 0 to Ω
ii) The n-th is moved to the 0 -th e everything else stays.
iii) in the Lattice
iv) $\#$ intersection $=$ spin
peeling off one horizontal ribbon strip. (i ftime)
- b/c the top-right box of each ribbon has nothing above it.
we can glue small ribbons up to make the entire stop.

Yang-Baxter Equation (a.K.a Star-triangle equality) want a new set of cortex
 with corban veight.
Such that

$\sum(w t(L H S))=\sum(w t(R H S))$ for all bander
Stor-triagle for larger ribbon looks like:

- We conjecture that our lattice model is solvable re there exist $Y B E$ s.
- The YBE for 1,2,3-ribbon lattice is computed via SAGE.

Application of the Lattice model.

- We con le vive various identities of Ribum Fin Using our lattice.
eng- dual Cauchy identity
pere rule
$q=1$ ribbon f_{n}^{\prime} is product of Solver floc.

Thank You!

