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Arborescence Definitions

Let Γ = (V ,E ) be a directed, edge-weighted graph.

An arborescence T of Γ rooted at v ∈ V is a spanning tree directed
towards v . The weight of an arborescence wt(T) is the the product of the
weights of its edges. We denote by Av (Γ) the sum of the weights of all
arborescences of Γ rooted at v :

Av (Γ) =
∑

T an arborescence

wt(T )

CJ Dowd, Sylvester Zhang, Valerie Zhang (UMN REU 2019)Arborescences of Derived Graphs July 25, 2019 2 / 23



Arborescence Definitions

Let Γ = (V ,E ) be a directed, edge-weighted graph.

An arborescence T of Γ rooted at v ∈ V is a spanning tree directed
towards v . The weight of an arborescence wt(T) is the the product of the
weights of its edges.

We denote by Av (Γ) the sum of the weights of all
arborescences of Γ rooted at v :

Av (Γ) =
∑

T an arborescence

wt(T )

CJ Dowd, Sylvester Zhang, Valerie Zhang (UMN REU 2019)Arborescences of Derived Graphs July 25, 2019 2 / 23



Arborescence Definitions

Let Γ = (V ,E ) be a directed, edge-weighted graph.

An arborescence T of Γ rooted at v ∈ V is a spanning tree directed
towards v . The weight of an arborescence wt(T) is the the product of the
weights of its edges. We denote by Av (Γ) the sum of the weights of all
arborescences of Γ rooted at v :

Av (Γ) =
∑

T an arborescence

wt(T )

CJ Dowd, Sylvester Zhang, Valerie Zhang (UMN REU 2019)Arborescences of Derived Graphs July 25, 2019 2 / 23



Arborescence Example
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A2(Γ) = bd + be
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The Laplacian Matrix

Laplacian Matrix: L(Γ) = D(Γ)− A(Γ)

Weighted degree matrix:

dii =
∑

e=(vi ,vj )∈E

wt(e).

Adjacency matrix:

aij =
∑

e=(vi ,vj )∈E

wt(e),
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Laplacian Example

1

23

bd
e

c

L(Γ) =

b 0 0
0 c 0
0 0 d + e

−
0 b 0

0 0 c
d e 0


=

 b −b 0
0 c −c
−d −e d + e


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Matrix Tree Theorem

Theorem (Kirchoff)

Given the Laplacian matrix of a graph Γ, Av (Γ) is the determinant of the
matrix resulting from deleting its corresponding row and column of v.
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Matrix Tree Theorem Example
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L(Γ) =

 b −b 0
0 c −c
−d −e d + e



∣∣∣∣ b 0
−d d + e

∣∣∣∣ = bd + be
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Voltage Graphs and Derived Graphs

A weighted G-voltage graph Γ = (V ,E ,wt, ν) is a directed, edge-weighted
graph such that each edge e is also labeled by an element ν(e) of a finite
group G . This labeling is called a voltage of Γ with respect to G .

Given a G -voltage graph Γ, we can construct the derived graph Γ̃ = (Ṽ , Ẽ )
where

Ṽ := V × G ,

Ẽ := {[v × x ,w × (gx)] : x ∈ G , [v ,w ] ∈ E} .
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Ṽ := V × G ,
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Z/3Z Derived Graph Example
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Invariance of Arborescence Ratio

Theorem (Galashin–Pylyavskyy, 2017)

If G is simple and strongly connected, then the ratio

Aṽ (Γ̃)

Av (Γ)

is well-defined and independent of the choice of vertex v and its lift ṽ .
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The Voltage Laplacian

Voltage Laplacian: L(Γ) = D(Γ)−A(Γ)

Weighted degree matrix:

dii =
∑

e=(vi ,vj )∈E

wt(e).

Voltage adjacency matrix:

aij =
∑

e=(vi ,vj )∈E

ν(e)wt(e),
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Voltage Laplacian Example

1

23

(b, 1)(d , g2)
(e, 1)

(c , g2)

L(Γ) =

b 0 0
0 c 0
0 0 d + e

−
 0 b 0

0 0 ζ2
3c

ζ2
3d e 0


=

 b −b 0
0 c −ζ2

3c
−ζ2

3d −e d + e


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Our Conjecture

Conjecture (REU 2019)

Let G be a cyclic prime group of order p. Take any vertex v in Γ, and any
lift of it in Γ̃, say ṽ , then the following is true:

Aṽ (Γ̃)

Av (Γ)
=

1

p

p−1∏
i=1

detL(Γ, ζ ip)

where L(Γ, ζi ) is the voltage Laplacian of Γ evaluated at certain powers of
ζp.
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Conjecture Example
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(b, 1)(d , g2)
(e, 1)

(c , g2)

1

3

3−1∏
i=1

detL(Γ, ζ i3) =
1

3
∗

∣∣∣∣∣∣
b −b 0
0 c −ζ2

3c
−ζ2

3d −e d + e

∣∣∣∣∣∣ ∗
∣∣∣∣∣∣

b −b 0
0 c −ζ3c
−ζ3d −e d + e

∣∣∣∣∣∣
= b2c2d2 + b2c2e2 + b2c2ef
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Z/2Z case

Theorem (REU 2019)

Aṽ (Γ̃)

Av (Γ)
=

1

2
detL(Γ)

We’ve proven the special case of the general conjecture when p = 2:

Aṽ (Γ̃)

Av (Γ)
=

1

p

p−1∏
i=1

det L(Γ, ζ ip)

Easier to work with as a product identity:

2Aṽ (Γ̃) = Av (Γ) detL(Γ)
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Z/2Z proof by induction sketch

1

23

+−
−

+

1−

2−3−

1+

2+3+

Pick root to have ≥ 2 outgoing edges, then partition arborescences of
cover into two classes (this step prevents generalization to k > 2, however)

1−

2−3−

1+

2+3+

1−

2−3−

1+

2+3+
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Z/2Z proof by induction sketch

Remove other lift of edge as well, since it does not affect aborescences (its
initial vertex is the root):

1−

2−3−

1+

2+3+

1−

2−3−

1+

2+3+

We end up with the derived graph of a signed graph with fewer edges:

1

23

+
−

+

CJ Dowd, Sylvester Zhang, Valerie Zhang (UMN REU 2019)Arborescences of Derived Graphs July 25, 2019 17 / 23



Z/2Z proof by induction sketch

Remove other lift of edge as well, since it does not affect aborescences (its
initial vertex is the root):

1−

2−3−

1+

2+3+

1−

2−3−

1+

2+3+

We end up with the derived graph of a signed graph with fewer edges:

1

23

+
−

+

CJ Dowd, Sylvester Zhang, Valerie Zhang (UMN REU 2019)Arborescences of Derived Graphs July 25, 2019 17 / 23



Higher covers: progress towards Z/pZ

Previous approach does not work; attempt linear algebraic approach by
using Matrix Tree Theorem on cover

1−

2−3−

1+

2+3+ L(Γ̃) =


a −a 0 0 0 0
0 b −b 0 0 0
0 0 c + d −c −d 0
0 0 0 a −a 0
0 0 0 0 b −b
−c −d 0 0 0 c + d



det L3+

3+
= A3+(Γ̃) = a2b2c + a2b2d
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Higher covers: progress towards Z/pZ
Lemma (REU 2019)

Under suitable change of basis, L(Γ̃) may be written in block matrix form[
L(Γ) ∗

0 [L(Γ)]Q

]
where L(Γ) is the ordinary Laplacian matrix of Γ and [L(Γ)]Q is the voltage
Laplacian of Γ written as a matrix with entries in Q (restriction of scalars).

We know det[L(Γ)]Q is equal to the norm of detL(Γ), so this is very close
to giving us the product formula we want:

Av (Γ)NQ(ζp):Q(L(Γ)) = pLṽ (Γ̃)

However, we don’t quite know how to account for taking minors, since
change of basis and taking minors do not commute (and we need a factor
of p somewhere).
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Higher covers: arbitrary abelian groups

Can always build derived graph by iteratively taking p-fold covers.

G = Z/4Z = {1, g , g2, g3}: take two 2-fold covers

g

g2

−
−+

−
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Higher covers: arbitrary abelian groups

Resulting formula isn’t particularly nice, but (conditioning on our the
conjecture for prime cyclic G ) we can say

Conjecture (REU 2019)

If Γ is G-volted with G abelian, then the ratio Aṽ(Γ̃)
Av (Γ) is a polynomial in the

edge weights of Γ, and it has positive integer coefficients.
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