A Partial Characterization of Virtually Cohen-Macaulay Simplicial Complexes

Nathan Kenshur, Feiyang Lin, Sean McNally, Zixuan Xu, Teresa Yu

UMN REU

July 24, 2019

Outline

1 Preliminaries
2 Property of Virtual Resolutions
3 The Intersection Method
4 Balanced Implies VCM

Stanley-Reisner Theory

Definition

An abstract simplicial complex Δ on vertex set X is a collection of subsets of X such that $A \in \Delta$ whenever $A \subseteq B \in \Delta$.

$$
\begin{aligned}
& X=\{a, b, c, d, e, f\} \\
& \Delta=2\{a, b, d, e\} \cup 2\{b, c, e, f\} \\
& \text { facets: }\{a, b, d, e\},\{b, c, e, f\} \\
& \text { dimension: } 3 \\
& \text { pure? yes } \\
& \text { gallery-connected? no }
\end{aligned}
$$

Stanley-Reisner Theory

Given a simplicial complex Δ on X, the Stanley-Reisner ideal of Δ is the following ideal in $\mathbb{k}[X]$:
$I_{\Delta}=\bigcap_{A \in \Delta}\left(x_{i}: x_{i} \notin A\right)=\left(m_{A}: A \notin \Delta\right)$.

$$
\begin{aligned}
I_{\Delta} & =\langle c, f\rangle \cap\langle a, d\rangle \\
& =\langle a c, a f, c d, d f\rangle .
\end{aligned}
$$

Simplicial Complex in $\mathbb{P}^{p} \vec{n}$

From now on we will be working in the product projective space $\mathbb{P}^{\vec{n}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$ and we use the following notation.

■ $S:=\mathbb{k}\left[x_{i, j}: 1 \leq i \leq r, 0 \leq j \leq n_{i}\right]$
■ $B:=\bigcap_{i=1}^{r}\left\langle x_{i, 0}, x_{i, 1}, \ldots, x_{i, n_{i}}\right\rangle$ is the irrelevant ideal of S. Note that $V(B)=\emptyset$.

- A simplicial complex in $\mathbb{P}^{\vec{n}}$ is a simplicial complex on the vertex set

$$
X_{\vec{n}}=\bigcup_{i=1}^{r}\left\{x_{i, j}: 0 \leq j \leq n_{i}\right\} .
$$

- The Stanley-Reisner ring of Δ is the quotient ring $\mathbb{k}[\Delta]:=S / I_{\Delta}$.

Free Resolutions \& Virtual Resolutions

Definition

A complex of free S-modules,

$$
\mathcal{F} .: 0 \leftarrow F_{0} \stackrel{\phi_{1}}{\leftarrow} F_{1} \stackrel{\phi_{2}}{\longleftarrow} \cdots \stackrel{\phi_{n}}{\leftarrow} F_{n},
$$

is a free resolution of S / I if
$1 \widetilde{H}_{i}\left(\mathcal{F}_{.}\right)=0$ for $i \geq 1$
$2 \widetilde{H}_{0}\left(\mathcal{F}_{.}\right)=F_{0} / \mathrm{im} \phi_{1}=S / I$
It is a virtual resolution of S / I if
1 radann $H_{i} \mathcal{F} . \supseteq B$ for all $i>0$
2 ann $H_{0} \mathcal{F}_{.}: B^{\infty}=I: B^{\infty}$

Cohen-Macaulay \& Virtually Cohen-Macaulay

Definition (Cohen-Macaulay)

A simplicial complex Δ on X is Cohen-Macaulay if there exists a free resolution of $\mathbb{k}[\Delta]$ of length $\operatorname{codim} I_{\Delta}$.

Definition (Virtually Cohen-Macaulay)

A simplicial complex Δ on $X_{\vec{n}}$ is virtually Cohen-Macaulay if there exists a virtual resolution of $\mathbb{k}[\Delta]$ of length $\operatorname{codim} I_{\Delta}$.

Resolutions of Ideals with Same Variety

Lemma

For two ideals $I, J \subset S$ with $V(I)=V(J)$, then any free resolution r of S / J is a virtual resolution of S / I.

Recall that $B=\bigcap_{i=1}^{r}\left\langle x_{i, 0}, x_{i, 1}, \ldots, x_{i, n_{i}}\right\rangle$. Let $B^{\vec{u}}$ be $\bigcap_{i=1}^{r}\left\langle x_{i, 0}, x_{i, 1}, \ldots, x_{i, n_{i}}\right\rangle_{i}$. Since $V\left(I \cap B^{\vec{u}}\right)=V(I) \cup V\left(B^{\vec{u}}\right)=V(I)$, a free resolution of $S /\left(I \cap B^{\vec{u}}\right)$ is a virtual resolution of S / I.

Irrelevant \& Relevant Faces

Since $I_{\Delta}=\bigcap_{A \in \Delta}\left(x_{i}: x_{i} \notin A\right)$, adding a face F to Δ is equivalent to intersecting I_{Δ} with the ideal $I=(x: x \notin F)$.

Definition

A face F of a simplicial complex Δ is relevant if it contains at least one vertex from every color; otherwise it is irrelevant.
$V(I)=\varnothing$ if and only if F is irrelevant.

Virtually Equivalent Simplical Complexes

From the previous observation, we have the following important lemma.

Lemma

Let Δ, Δ^{\prime} be two simplicial complexes in $\mathbb{P}^{\vec{n}}$ such that $\Delta \backslash \Delta^{\prime}$ and $\Delta^{\prime} \backslash \Delta$ contain only irrelevant faces. Then the free resolution of $I_{\Delta^{\prime}}$ is a virtual resolution of I_{Δ}.

We call such Δ and Δ^{\prime} virtually equivalent.

Figure 1: Δ, in $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$

Figure 2: $\Delta^{\prime}=\Delta \cup\{$ Irrelevant Facets $\}$

The Intersection Method

Theorem (Herzog-Takayama-Terai)

Let I be a monomial ideal, then if I is Cohen-Macaulay, $\operatorname{rad}(I)$ is also Cohen-Macaulay.

Lemma

If there exists $\vec{u} \in\{0,1\}^{r}$ such that $I^{\prime}=I \cap B^{\vec{u}}$ is Cohen-Macaulay, then I is virtually Cohen-Macaulay.

Then we obtain the following:

Proposition

Let Δ be a simplicial complex on the product projective space $\mathbb{P}^{\vec{n}}$. If there exists J a monomial ideal with $V(J)=\varnothing$ such that $I_{\Delta} \cap J$ is Cohen-Macaulay, then there exists Δ^{\prime} containing only irrelevant facets such that $\operatorname{rad}(J)=I_{\Delta^{\prime}}$ and $I_{\Delta} \cap I_{\Delta^{\prime}}$ is Cohen-Macaulay. In particular, this implies $\Delta \cup \Delta^{\prime}$ is Cohen-Macaulay and Δ is virtually Cohen-Macaulay.

The Intersection Method

Fact

Cohen-Macaulay complexes are pure and gallery-connected.

Corollary

For a simplicial complex Δ, if there exists $\vec{u} \in \mathbb{Z}^{r}$ such that $I_{\Delta} \cap B^{\vec{u}}$ is Cohen-Macaulay:

- Consider supp $\vec{u} \in\{0,1\}^{r}$, then $(\operatorname{supp} \vec{u})_{i}$ can be 1 only if $\operatorname{dim} \mathbb{P}^{n_{i}}=\operatorname{dim} \Delta$.
- Δ is pure and gallery-connected up to adding irrelevant facets.

Balanced Complexes

Definition

Let Δ be a pure simplicial complex on the product of projective spaces $\mathbb{P}^{\vec{n}}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$. We say that a facet $F \in \Delta$ is balanced if it contains exactly one vertex of every component. We say that a simplicial complex is balanced if all of its facets are balanced.

Theorem

The Stanley-Reisner ring of a pure shellable simplicial complex is Cohen-Macaulay.

Strategy: Add all possible irrelevant facets of same dimension and show the new complex is shellable.

Balanced Complex

Definition (Shellability)

A shelling of Δ is an ordered list $F_{1}, F_{2}, \ldots, F_{m}$ of its facets such that for all $i=2, \ldots, m,\left(\bigcup_{k=1}^{i-1} F_{k}\right) \cap F_{i}$ is pure of codimension 1. If a simplicial complex is pure and has a shelling, then it is shellable.

Definition

Given a vertex set V on the product projective space $\mathbb{P}^{\vec{n}}$. Then the irrelevant complex supported on V is defined to be

$$
\Delta_{i r r}:=\left\{\sigma \in 2^{V}| | \sigma|=n,|\operatorname{col}(\sigma)|<n\} .\right.
$$

Strategy: show that any balanced complex with all the irrelevant facets added in yields a shellable complex.

Balanced Complex

Proposition

Let $\Delta_{\text {irr }}$ be the irrelevant complex supported on V in the product projective \mathbb{P}^{n}. Then there exists a balanced facet R such that $\Delta=\Delta_{i r r} \cup\{R\}$ is shellable.

Observation: Adding more balanced facet still maintains a shelling.

Balanced Complex

Theorem

If Δ is a pure and balanced in the product projective space $\mathbb{P}^{\vec{n}}$, then Δ is virtually Cohen-Macaulay.

Future work

■ Analogue for Reisner's criterion for virtual Cohen-Macaulayness?

Acknowledgements

We would like to thank Christine Berkesch, Greg Michel, Vic Reiner, and Jorin Schug for their patient guidance and inspiring ideas throughout this project.

References

Christine Berkesch Zamaere, Daniel Erman, and Gregory G. Smith. "Virtual Resolutions for a Product of Projective Spaces". In: arXiv e-prints (Mar. 2017). arXiv: 1703.07631 [math.AC].

Anders Björner and ML Wachs. "Shellable nonpure complexes and posets. II". In: Transactions of the American Mathematical Society 349 (Oct. 1997), pp. 3945-3975. DOI: 10.1090/S0002-9947-97-01838-2.

John A. Eagon and Victor Reiner. "Resolutions of Stanley-Reisner rings and Alexander duality". In: J. Pure Appl. Algebra 130.3 (1998), pp. 265-275. ISSN: 0022-4049. DOI: 10.1016/S0022-4049(97)00097-2. URL:
https://doi.org/10.1016/S0022-4049(97)00097-2.
Christopher A. Francisco, Jeffrey Mermin, and Jay Schweig. "A survey of Stanley-Reisner theory". In: Connections between algebra, combinatorics, and geometry. Vol. 76. Springer Proc. Math. Stat. Springer, New York, 2014, pp. 209-234. DOI: 10.1007/978-1-4939-0626-0_5. URL:
https://doi.org/10.1007/978-1-4939-0626-0_5.
Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

Ezra Miller and Bernd Sturmfels. Combinatorial Commutative Algebra. Springer, 2005.

Questions?

Figure 3: confused mudkip.

