Extended Nestohedra and their Face Numbers

Quang Dao, Christina Meng, Julian Wellman, Zixuan Xu, Calvin Yost-Wolff, Teresa Yu

UMN REU

July 24, 2019

Introduction

■ Nestohedra are a well-understood class of convex polytopes

- Generalized by Lam-Pylyavskyy '15 and Devadoss-Heath-Vipismakul '11 independently
- LP-algebras
- Moduli space of a Riemann surface

What is known so far

	Non-extended	Extended ($\square)$
When flag	Y	
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?		

Goal: fill in the column!

Building Sets

Definition

A (connected) building set \mathcal{B} on $[n]:=\{1, \ldots, n\}$ is a collection of subsets of $[n]$ such that
$1 \mathcal{B}$ contains all singletons $\{i\}$ and the whole set $[n]$
2 if $I, J \in \mathcal{B}$ with $I \cap J \neq \varnothing$, then $I \cup J \in \mathcal{B}$.

Definition

For an undirected graph G, its corresponding graphical building set \mathcal{B}_{G} is

$$
\mathcal{B}_{G}=\{I \subseteq V(G) \mid G[I] \text { is connected }\}
$$

Examples of Building Sets

Complete graph K_{n}

- all subsets of $[n]$
- $\mathcal{B}_{K_{4}}=$
$\{1,2,3,4,12,13,14,23,24,34,123,234,124,134,1234\}$
Path graph P_{n}

- all interval subsets of [n]

- $\mathcal{B}_{P_{3}}=\{1,2,3,12,23,123\}$

Star graph $K_{1, n}$

- All singletons and all subsets of $[n+1]$ that contain

■ $\mathcal{B}_{K_{1,3}}=\{1,2,3,4,14,24,34,124,134,234,1234\}$

Nested Collections

Definition

For a building set \mathcal{B}, a nested collection N of \mathcal{B} is a collection of elements $\left\{I_{1}, \ldots, I_{m}\right\}$ of $\mathcal{B} \backslash\{[n]\}$ such that

1 for any $i \neq j, I_{i}$ and I_{j} are either nested or disjoint
2 for any $I_{i_{1}}, \ldots, l_{i_{k}}$ pairwise disjoint, their union is not an element of \mathcal{B}
Consider $\mathcal{B}=\mathcal{B}_{P_{4}}=\{1,2,3,4,12,23,34,123,234,1234\}$.

- $\{1,3,34\}$ is a nested collection
- $\{1,2,23\}$ is not a nested collection since $\{1\} \cup\{2\} \in \mathcal{B}$.

Nested Complexes

Definition

For a connected building set \mathcal{B} on $[n]$, the nested set complex $\mathcal{N}(\mathcal{B})$ is the simplicial complex with

- vertices $\{I \mid I \in \mathcal{B} \backslash[n]\}$
- faces $\left\{I_{1}, \ldots, I_{m}\right\}$ that are nested collections of \mathcal{B}

Definition

The nestohedron $\mathcal{P}(\mathcal{B})$ is the polytope dual to the nested set complex $\mathcal{N}(\mathcal{B})$.

In the literature, $\mathcal{P}\left(\mathcal{B}_{P_{n}}\right)$ is known as the associahedron, and $\mathcal{P}\left(\mathcal{B}_{K_{n}}\right)$ is known as the permutohedron.

Extended Nested Collections

Definition

For a building set \mathcal{B} on [n], an extended nested collection N^{\square} of \mathcal{B} is a collection of elements $\left\{I_{1}, \ldots, I_{m}, x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ such that
$1 I_{k} \in \mathcal{B}$ for all k, and $\left\{I_{1}, \ldots, I_{m}\right\}$ form a nested collection of \mathcal{B}
$2 i_{j} \in[n]$ for all j, and $i_{j} \notin I_{k}$ for all $1 \leq k \leq m$
$\mathcal{B}=\mathcal{B}_{P_{4}}$

- $\left\{1,3,34, x_{2}\right\}$ is an extended nested collection
- $\left\{1,3,34, x_{4}\right\}$ is not an extended nested collection

Extended Nested Complexes and Nestohedra

Definition

For a building set \mathcal{B} on [n], the extended nested set complex $\mathcal{N}^{\square}(\mathcal{B})$ is the simplicial complex with

■ vertices $\{I \mid I \in \mathcal{B}\} \cup\left\{x_{i} \mid i \in[n]\right\}$

- faces $\left\{I_{1}, \ldots, I_{m}, x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ that are extended nested collections of \mathcal{B}

$$
\mathcal{B}=\{1,2,3,12,23,123\}
$$

Extended Nested Complexes and Nestohedra

Definition

For a building set \mathcal{B} on [n], the extended nested set complex $\mathcal{N}^{\square}(\mathcal{B})$ is the simplicial complex with

- vertices $\{I \mid I \in \mathcal{B}\} \cup\left\{x_{i} \mid i \in[n]\right\}$
- faces $\left\{I_{1}, \ldots, I_{m}, x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ that are extended nested collections of \mathcal{B}

Definition

The extended nestohedron $\mathcal{P}^{\square}(\mathcal{B})$ is the polytope dual to the extended nested set complex

What is known so far

	Non-extended	Extended (■)
When flag	Y	
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes	

When is $\mathcal{N} \square(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$?

Theorem (Manneville - Pilaud '17)
Let G, G^{\prime} be undirected graphs such that $\mathcal{N}^{\square}\left(\mathcal{B}_{G}\right) \simeq \mathcal{N}\left(\mathcal{B}_{G^{\prime}}\right)$. Then G is a spider and G^{\prime} is the corresponding octopus.

When is $\mathcal{N} \square(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$?

Theorem (Manneville-Pilaud '17)

Let G, G^{\prime} be undirected graphs such that $\mathcal{N}^{\square}\left(\mathcal{B}_{G}\right) \simeq \mathcal{N}\left(\mathcal{B}_{G^{\prime}}\right)$. Then G is a spider and G^{\prime} is the octopus.

When is $\mathcal{N} \square(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$?

Corollary (Manneville-Pilaud '17)

- $\mathcal{N} \square\left(\mathcal{B}_{K_{n}}\right) \simeq \mathcal{N}\left(\mathcal{B}_{K_{1, n}}\right)$ is the dual of the stellohedron.
$\square \mathcal{N}^{\square}\left(\mathcal{B}_{P_{n}}\right) \simeq \mathcal{N}\left(\mathcal{B}_{P_{n+1}}\right)$ is the dual of the $(n-2)$-associahedron.

Remark (REU '19)

When $G=C_{4}$, we do not have $\mathcal{N}^{\square}\left(\mathcal{B}_{G}\right) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ for any other building set \mathcal{B}^{\prime}.

Theorem (REU '19)

If \mathcal{B} is a building set on $[n]$ such that all elements $l \in \mathcal{B}$ are intervals, then there exists \mathcal{B}^{\prime} such that $\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$.

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes	

When is $\mathcal{N}^{\square}(\mathcal{B})$ flag?

Definition

A simplicial complex Δ is flag if Δ has no minimal non-faces of degree greater than 2. In other words, Δ is determined by its 1 -skeleton.

Proposition (REU '19)

$\mathcal{N}(\mathcal{B})$ is flag if and only if $\mathcal{N}^{\square}(\mathcal{B})$ is flag.
For a graphical building set $\mathcal{B}=\mathcal{B}_{G}$, it was shown in (PRW '08) that $\mathcal{N}(\mathcal{B})$ is a flag simplicial complex.

Corollary (REU '19)

If G is an undirected graph, then $\mathcal{N}^{\square}\left(\mathcal{B}_{G}\right)$ is flag.

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes	

Link Decompositions of $\mathcal{N}(\mathcal{B})$ and $\mathcal{N}^{\square}(\mathcal{B})$

Theorem (Zelevinsky '06)

Let \mathcal{B} be a building set on S. Then the link of $C \in \mathcal{B}$ in $\mathcal{N}(\mathcal{B})$

$$
\mathcal{N}(\mathcal{B})_{C} \simeq \mathcal{N}\left(\left.\mathcal{B}\right|_{C}\right) * \mathcal{N}(\mathcal{B} / C)
$$

Theorem (REU '19)

For the extended nested complex $\mathcal{N}^{\square}(\mathcal{B})$, we have:

$$
\mathcal{N}^{\square}(\mathcal{B})_{x_{i}} \simeq \mathcal{N}^{\square}\left(\mathcal{B}_{1}\right) * \cdots * \mathcal{N}^{\square}\left(\mathcal{B}_{k}\right)
$$

where $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ are the connected components of $\left.\mathcal{B}\right|_{[n] \backslash\{i\}}$, and

$$
\mathcal{N}^{\square}(\mathcal{B})_{C} \simeq \mathcal{N}\left(\left.\mathcal{B}\right|_{C}\right) * \mathcal{N}^{\square}(\mathcal{B} / C)
$$

for $C \in \mathcal{B}$.

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes	

Polytopality

Theorem (REU '19)

For any building set $B, \mathcal{N}^{\square}(\mathcal{B})$ can be realized as the boundary of a polytope $\mathcal{N}_{\mathcal{B}}$.

Polytopality

- Consider \mathbb{R}^{n} with standard basis vectors e_{1}, \ldots, e_{n}. Start with cross polytope in \mathbb{R}^{n} with vertices e_{i} labeled $\{i\} \in \mathcal{B}$ and vertices $-e_{i}$ labeled x_{i} for all $i \in[n]$.

$$
\mathcal{B}=\{1,2,3,12,123\}
$$

Polytopality

- Consider \mathbb{R}^{n} with standard basis vectors e_{1}, \ldots, e_{n}. Start with cross polytope in \mathbb{R}^{n} with vertices e_{i} labeled $\{i\} \in \mathcal{B}$ and vertices $-e_{i}$ labeled x_{i} for all $i \in[n]$.
■ Order the non-singletons of \mathcal{B} by decreasing cardinality, then for each $I \in \mathcal{B}$ a non-singleton, perform stellar subdivision on the face $\mathcal{I}=\{\{i\} \mid i \in I\}$, with the new added vertex labeled I.

$$
\mathcal{B}=\{1,2,3,12,123\}
$$

Polytopality

■ Consider \mathbb{R}^{n} with standard basis vectors e_{1}, \ldots, e_{n}. Start with cross polytope in \mathbb{R}^{n} with vertices e_{i} labeled $\{i\} \in \mathcal{B}$ and vertices $-e_{i}$ labeled x_{i} for all $i \in[n]$.

- Order the non-singletons of \mathcal{B} by decreasing cardinality, then for each $I \in \mathcal{B}$ a non-singleton, perform stellar subdivision on the face $\mathcal{I}=\{\{i\} \mid i \in I\}$, with the new added vertex labeled $/$.
- The boundary of the resulting polytope $\mathcal{N}_{\mathcal{B}}$ will be isomorphic to $\mathcal{N}^{\square}(\mathcal{B})$.

$$
\mathcal{B}=\{1,2,3,12,123\}
$$

Polytopality

We also obtain a polytopal realization of $\mathcal{P}^{\square}(\mathcal{B})$ as a Minkowski sum.

Theorem (REU '19)

Let B a building set on $[n]$, and consider \mathbb{R}^{n} with standard basis vectors e_{1}, \ldots, e_{n}. Then $\mathcal{P}^{\square}(\mathcal{B})$ is isomorphic to the boundary of the polytope:

$$
\mathcal{P}:=\sum_{i \in[n]} \operatorname{Conv}\left(0, e_{i}\right)+\sum_{I \in B} \operatorname{Conv}\left(\left\{e_{S} \mid S \subsetneq I\right\}\right),
$$

where the coordinates of e_{S} are given by the indicator function on S i.e. $\left(e_{S}\right)_{i}=1$ if and only if $i \in S$.

Intuitively, the first sum is the n-dimensional cube \mathcal{C}^{n}, while each term of the next sum corresponds to shaving a face $I \in \mathcal{B}$ from the cube.

What is known so far

	Non-extended	Extended (\square)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes, through f - and h-vectors	

f, h, γ-vectors for $\mathcal{P}^{\square}(\mathcal{B})$

Definition

For a polytope \mathcal{P}, let f_{k} be the number of k-dimensional faces of \mathcal{P}. The f-vector of \mathcal{P} is defined to be $f=\left(f_{-1}, \ldots, f_{d-1}\right)$.

Definition

The h-vector $h=\left(h_{0}, \ldots, h_{d}\right)$ of \mathcal{P} is defined by

$$
\sum_{i=0}^{d} h_{i} t^{i}=\sum_{i=0}^{d} f_{i-1}(t-1)^{i-1}
$$

If \mathcal{P} is a simple polytope, then we have $h_{i}=h_{d-i}$ for all $i=0, \ldots,\left\lfloor\frac{d}{2}\right\rfloor$.

f, h, γ-vectors for $\mathcal{P}^{\square}(\mathcal{B})$

Proposition (REU '19)

$$
f_{\mathcal{P} \square(\mathcal{B})}(t)=\sum_{S \subseteq[n]}(t+1)^{n-|S|} f_{\mathcal{P}(\mathcal{B} \mid S)}(t)
$$

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N} \square$ through f - and n-vectors	

Gal's Conjecture for Flag $\mathcal{P}^{\square}(\mathcal{B})$

Definition

The γ-vector for a simple polytope \mathcal{P} is given by

$$
\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} t^{i}(t+1)^{d-2 i}=\sum_{j=0}^{d} h_{j} t^{j} .
$$

Gal's Conjecture (2005)

The γ-vector of any flag simple polytope is nonnegative.

■ Shown true for $\mathcal{P}(\mathcal{B})$ by Volodin '10

Gal's Conjecture for Flag $\mathcal{P}^{\square}(\mathcal{B})$

Theorem (REU '19)

Gal's conjecture is true for flag extended nestohedra $\mathcal{P}^{\square}(\mathcal{B})$.

- Start with flag building set \mathcal{B}
- There exists minimal flag building set $\mathcal{B}_{\text {min }} \subseteq \mathcal{B}$, and $\mathcal{P}^{\square}\left(\mathcal{B}_{\text {min }}\right)$ has nonnegative γ-vector
- Add back in elements $\mathcal{B} \backslash \mathcal{B}_{\text {min }}$
- Corresponds to shaving a codimension 2 face

■ Use link decomposition to show that γ-vector remains nonnegative

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	chordal \mathcal{B}
Shellings	$\mathcal{B}_{K_{n}}$	
Cluster/LP algebras	Y	
How are they related?	$\left.\begin{array}{l}\mathcal{N} \square \\ \hline\end{array} \mathrm{B}\right) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes,	
through f - and h-vectors		

Gal's Conjecture for Flag $\mathcal{P}^{\square}(\mathcal{B})$

■ Chordal: nice class of building sets, includes $\mathcal{B}_{K_{n}}, \mathcal{B}_{P_{n}}, \mathcal{P}_{K_{1, n}}$

- $\widehat{\mathfrak{S}}_{n}(\mathcal{B})=\{\mathcal{B}$-permutations with no double or final descents $\}$

Theorem (Postnikov-Reiner-Williams '08)

For chordal \mathcal{B} on $[n], \quad \gamma_{\mathcal{P}(\mathcal{B})}(t)=\sum_{w \in \widehat{\mathfrak{S}}_{n}(\mathcal{B})} t^{\operatorname{des}(w)}$.
■ $\widehat{\mathfrak{S}}_{n+1}=\{$ extended \mathcal{B}-permutations with no double or final descents $\}$

Theorem (REU '19)

For chordal \mathcal{B} on $[n], \quad \gamma_{\mathcal{P} \square(\mathcal{B})}(t)=\sum_{w \in \widehat{\mathfrak{S}}_{n+1}^{\square}(\mathcal{B})} t^{\operatorname{des}(w)}$.

What is known so far

	Non-extended	Extended (ロ)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	chordal \mathcal{B}
Shellings	$\mathcal{B}_{K_{n}}$	$\mathcal{B}_{K_{n}}$
Cluster/LP algebras	Y	
How are they related?	$\left.\begin{array}{l}\mathcal{N} \square \\ \hline\end{array} \mathrm{B}\right) \simeq \mathcal{N}\left(\mathcal{B}^{\prime}\right)$ sometimes,	
through f - and h-vectors		

Weak Bruhat Order

■ $w=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right) \in \mathfrak{S}_{n}$

- Transpositions $s_{i}=\left(\begin{array}{ll}i & i+1\end{array}\right)$

■ $\ell(w):=\left|\left\{1 \leq i<j \leq n \mid a_{i}>a_{j}\right\}\right|$, i.e. the minimum number of transpositions

Definition

The weak Bruhat order on \mathfrak{S}_{n} is defined by the following:

$$
\pi \lessdot \sigma \text { if and only if } \ell(\sigma)=\ell(\pi)+1 \text { and } \sigma=\pi \cdot s_{i}
$$

Weak Bruhat Order

Partial Permutations

Definition

Define the set of partial permutations on [n], denoted \mathfrak{P}_{n}, to be set of permutations $w \in \mathfrak{S}_{s}$ for some $S \subseteq[n]$.

$$
\mathfrak{P}_{2}: \underbrace{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 1
\end{array}\right)}_{S=\{1,2\}}, \underbrace{(1)}_{S=\{1\}}, \underbrace{(2)}_{S=\{2\}}, \underbrace{()}_{S=\varnothing}
$$

Remark

- \mathfrak{S}_{n} is in bijection with facets of $\mathcal{N}\left(\mathcal{B}_{K_{n}}\right)$
- \mathfrak{P}_{n} is in bijection with the facets of $\mathcal{N}^{\square}\left(\mathcal{B}_{K_{n}}\right)$

Partial Order on \mathfrak{P}_{n}

Definition (REU '19)

Define map $\varphi: \mathfrak{P}_{n} \rightarrow \mathfrak{S}_{n+1}$ as follows.

- Consider partial permutation $w \in \mathfrak{S}_{S}, S \subseteq[n]$
- Append numbers in $[n+1] \backslash S$ to end of w in descending order
- Resulting permutation $\varphi(w) \in \mathfrak{S}_{n+1}$

$$
w=\left(\begin{array}{lll}
2 & 4 & 1
\end{array}\right) \in \mathfrak{P}_{5} \Longrightarrow \varphi(w)=\left(\begin{array}{llllll}
2 & 4 & 1 & 6 & 5 & 3
\end{array}\right)
$$

Definition (REU '19)

The partial order on \mathfrak{P}_{n} defined by the following:
$\pi<\sigma$ if and only if $\varphi(\pi)<\varphi(\sigma)$ in the weak Bruhat order on \mathfrak{S}_{n+1}

Partial Order on \mathfrak{P}_{n}

Partial Order on \mathfrak{P}_{n}

Definition

A congruence on a lattice L is an equivalence relation Θ on elements of L which respects joins and meets, i.e. if $a_{1} \equiv a_{2}$ and $b_{1} \equiv b_{2}$, then

$$
a_{1} \wedge b_{1} \equiv a_{2} \wedge b_{2}, \quad a_{1} \vee b_{1} \equiv a_{2} \vee b_{2}
$$

A lattice quotient L / Θ is a partial order on the equivalence classes under Θ :

$$
[a]_{\Theta} \leq[b]_{\Theta} \Leftrightarrow x \leq_{L} y \text { for some } x \in[a], y \in[b] .
$$

Proposition (REU '19)

The defined partial order on \mathfrak{P}_{n} is a lattice quotient of the weak Bruhat order on \mathfrak{S}_{n+1}.

Partial Order on \mathfrak{P}_{n}

Corollary (McConville '16, Reading '02)

- Every interval of \mathfrak{P}_{n} is contractible or homotopy equivalent to a sphere

■ If $x=\vee^{\mathfrak{P}_{n}} Y$ for some $Y \subseteq \mathfrak{P}_{n}$, then $x=\vee^{\mathfrak{S}_{n+1}} Y$
■ Möbius function $\mu(u, v)$ only takes on values $0, \pm 1$

Shellings of $\mathcal{N}\left(\mathcal{B}_{K_{n}}\right), \mathcal{N} \square\left(\mathcal{B}_{K_{n}}\right)$

■ Shellings: nice way to build up a simplicial complex facet by facet

Theorem (Björner '84)

Label facets of $\mathcal{N}\left(\mathcal{B}_{K_{n}}\right)$ by permutations $w \in \mathfrak{S}_{n}$. If $\pi_{1}<\cdots<\pi_{k}$ is a linear extension of the weak Bruhat order on \mathfrak{S}_{n}, then $F_{\pi_{1}}, \ldots, F_{\pi_{k}}$ gives a shelling of $\mathcal{N}\left(\mathcal{B}_{K_{n}}\right)$.

Theorem (REU '19)

Label facets of $\mathcal{N} \square\left(\mathcal{B}_{K_{n}}\right)$ by partial permutations $w \in \mathfrak{P}_{n}$. If $\pi_{1}<\cdots<\pi_{k}$ is a linear extension of the partial order on \mathfrak{P}_{n}, then $F_{\pi_{1}}, \ldots, F_{\pi_{k}}$ gives a shelling of $\mathcal{N} \square\left(\mathcal{B}_{K_{n}}\right)$.

What is known so far

	Non-extended	Extended ($\square)$
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ-vector	chordal \mathcal{B}	chordal \mathcal{B}
Shellings	$\mathcal{B}_{K_{n}}$	$\mathcal{B}_{K_{n}}$
Cluster/LP algebras	Y	$?$
How are they related?	$\mathcal{N} \square$ through f - and h-vectors, ...?	

Future Work

- Is there a combinatorial interpretation for the γ-vector of $\mathcal{P}(\mathcal{B}), \mathcal{P}^{\square}(\mathcal{B})$ of arbitrary flag building sets?
- When does a total ordering on (extended) \mathcal{B}-permutations give a shelling of the (extended) nested complexes?
■ Can $\mathcal{N}^{\square}(\mathcal{B})$ provide a combinatorial interpretation of the exchange polynomials of LP-algebras? (Lam-Pylyavskyy)

Conjecture

Let G be a forest and $L(G)$ be the line graph of G. Then

$$
f_{\mathcal{P}\left(\mathcal{B}_{G}\right)}(t)=f_{\mathcal{P}_{\square}\left(\mathcal{B}_{L(G)}\right)}(t) .
$$

Acknowledgements and References

- Thank you to Vic Reiner and Sarah Brauner for all of their support and guidance!
- See our REU report for a complete set of references

Questions?

