Extended Nestohedra and their Face Numbers

Quang Dao, Christina Meng, Julian Wellman, Zixuan Xu, Calvin Yost-Wolff, Teresa Yu

UMN REU

July 24, 2019

- Nestohedra are a well-understood class of convex polytopes
- Generalized by Lam–Pylyavskyy '15 and Devadoss–Heath–Vipismakul '11 independently
 - LP-algebras
 - Moduli space of a Riemann surface

	Non-extended	Extended (\Box)
When flag	Y	
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?		·

Goal: fill in the column!

A (connected) building set \mathcal{B} on $[n] := \{1, ..., n\}$ is a collection of subsets of [n] such that

1 \mathcal{B} contains all singletons $\{i\}$ and the whole set [n]

2 if $I, J \in \mathcal{B}$ with $I \cap J \neq \emptyset$, then $I \cup J \in \mathcal{B}$.

Definition

For an undirected graph G, its corresponding graphical building set \mathcal{B}_G is

 $\mathcal{B}_G = \{I \subseteq V(G) \mid G[I] \text{ is connected}\}.$

Complete graph K_n

all subsets of [n]

 $\square \mathcal{B}_{K_4} =$

 $\{1,2,3,4,12,13,14,23,24,34,123,234,124,134,1234\}$

Path graph P_n

all interval subsets of [n]

$$B_{P_3} = \{1, 2, 3, 12, 23, 123\}$$

Star graph $K_{1,n}$

- All singletons and all subsets of [n + 1] that contain n + 1
- $\blacksquare \ \mathcal{B}_{K_{1,3}} = \{1, 2, 3, 4, 14, 24, 34, 124, 134, 234, 1234\}$

For a building set \mathcal{B} , a **nested collection** N of \mathcal{B} is a collection of elements $\{I_1, \ldots, I_m\}$ of $\mathcal{B} \setminus \{[n]\}$ such that

1 for any $i \neq j$, I_i and I_j are either nested or disjoint

2 for any I_{i_1}, \ldots, I_{i_k} pairwise disjoint, their union is not an element of \mathcal{B}

Consider $\mathcal{B} = \mathcal{B}_{P_4} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}.$

- $\{1, 3, 34\}$ is a nested collection
- $\{1, 2, 23\}$ is not a nested collection since $\{1\} \cup \{2\} \in \mathcal{B}$.

For a connected building set \mathcal{B} on [n], the **nested set complex** $\mathcal{N}(\mathcal{B})$ is the simplicial complex with

• vertices
$$\{I \mid I \in \mathcal{B} \setminus [n]\}$$

• faces $\{I_1, \ldots, I_m\}$ that are nested collections of $\mathcal B$

Definition

The **nestohedron** $\mathcal{P}(\mathcal{B})$ is the polytope dual to the nested set complex $\mathcal{N}(\mathcal{B})$.

In the literature, $\mathcal{P}(\mathcal{B}_{P_n})$ is known as the **associahedron**, and $\mathcal{P}(\mathcal{B}_{K_n})$ is known as the **permutohedron**.

For a building set \mathcal{B} on [n], an **extended nested collection** N^{\Box} of \mathcal{B} is a collection of elements $\{I_1, \ldots, I_m, x_{i_1}, \ldots, x_{i_r}\}$ such that

- **1** $I_k \in \mathcal{B}$ for all k, and $\{I_1, \ldots, I_m\}$ form a nested collection of \mathcal{B}
- 2 $i_j \in [n]$ for all j, and $i_j \notin I_k$ for all $1 \le k \le m$

 $\mathcal{B} = \mathcal{B}_{P_4}$

- $\{1, 3, 34, x_2\}$ is an extended nested collection
- $\{1, 3, 34, x_4\}$ is not an extended nested collection

For a building set \mathcal{B} on [n], the extended nested set complex $\mathcal{N}^{\Box}(\mathcal{B})$ is the simplicial complex with

• vertices $\{I \mid I \in \mathcal{B}\} \cup \{x_i \mid i \in [n]\}$

• faces $\{I_1, \ldots, I_m, x_{i_1}, \ldots, x_{i_r}\}$ that are extended nested collections of \mathcal{B}

 $\mathcal{B} = \{1, 2, 3, 12, 23, 123\}$

For a building set \mathcal{B} on [n], the extended nested set complex $\mathcal{N}^{\Box}(\mathcal{B})$ is the simplicial complex with

• vertices
$$\{I \mid I \in \mathcal{B}\} \cup \{x_i \mid i \in [n]\}$$

• faces $\{I_1, \ldots, I_m, x_{i_1}, \ldots, x_{i_r}\}$ that are extended nested collections of $\mathcal B$

Definition

The extended nestohedron $\mathcal{P}^{\Box}(\mathcal{B})$ is the polytope dual to the extended nested set complex

	Non-extended	Extended (\Box)
When flag	Y	
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	3') sometimes

When is $\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}(\mathcal{B}')$?

Theorem (Manneville – Pilaud '17)

Let G, G' be undirected graphs such that $\mathcal{N}^{\square}(\mathcal{B}_G) \simeq \mathcal{N}(\mathcal{B}_{G'})$. Then G is a spider and G' is the corresponding octopus.

When is $\mathcal{N}^{\square}(\mathcal{B}) \simeq \mathcal{N}(\mathcal{B}')$?

Theorem (Manneville–Pilaud '17)

Let G, G' be undirected graphs such that $\mathcal{N}^{\square}(\mathcal{B}_G) \simeq \mathcal{N}(\mathcal{B}_{G'})$. Then G is a spider and G' is the octopus.

July 24, 2019

11 / 41

Corollary (Manneville–Pilaud '17)

• $\mathcal{N}^{\square}(\mathcal{B}_{\mathcal{K}_n}) \simeq \mathcal{N}(\mathcal{B}_{\mathcal{K}_{1,n}})$ is the dual of the **stellohedron**.

• $\mathcal{N}^{\square}(\mathcal{B}_{P_n}) \simeq \mathcal{N}(\mathcal{B}_{P_{n+1}})$ is the dual of the (n-2)-associahedron.

Remark (REU '19)

When $G = C_4$, we do not have $\mathcal{N}^{\square}(\mathcal{B}_G) \simeq \mathcal{N}(\mathcal{B}')$ for any other building set \mathcal{B}' .

Theorem (REU '19)

If \mathcal{B} is a building set on [n] such that all elements $I \in \mathcal{B}$ are intervals, then there exists \mathcal{B}' such that $\mathcal{N}^{\Box}(\mathcal{B}) \simeq \mathcal{N}(\mathcal{B}')$.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	') sometimes

A simplicial complex Δ is **flag** if Δ has no minimal non-faces of degree greater than 2. In other words, Δ is determined by its 1-skeleton.

Proposition (REU '19)

 $\mathcal{N}(\mathcal{B})$ is flag if and only if $\mathcal{N}^{\square}(\mathcal{B})$ is flag.

For a graphical building set $\mathcal{B} = \mathcal{B}_G$, it was shown in (PRW '08) that $\mathcal{N}(\mathcal{B})$ is a flag simplicial complex.

Corollary (REU '19)

If G is an undirected graph, then $\mathcal{N}^{\square}(\mathcal{B}_G)$ is flag.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$?') sometimes

Link Decompositions of $\mathcal{N}(\mathcal{B})$ and $\mathcal{N}^{\square}(\mathcal{B})$

Theorem (Zelevinsky '06)

Let \mathcal{B} be a building set on S. Then the link of $C \in \mathcal{B}$ in $\mathcal{N}(\mathcal{B})$

$$\mathcal{N}(\mathcal{B})_{\mathcal{C}} \simeq \mathcal{N}(\mathcal{B}|_{\mathcal{C}}) * \mathcal{N}(\mathcal{B}/\mathcal{C}).$$

Theorem (REU '19)

For the extended nested complex $\mathcal{N}^{\square}(\mathcal{B})$, we have:

$$\mathcal{N}^{\square}(\mathcal{B})_{x_i}\simeq\mathcal{N}^{\square}(\mathcal{B}_1)*\cdots*\mathcal{N}^{\square}(\mathcal{B}_k)$$

where $\mathcal{B}_1,\ldots,\mathcal{B}_k$ are the connected components of $\mathcal{B}|_{[n]\setminus\{i\}}$, and

$$\mathcal{N}^{\square}(\mathcal{B})_{\mathcal{C}}\simeq\mathcal{N}(\mathcal{B}|_{\mathcal{C}})*\mathcal{N}^{\square}(\mathcal{B}/\mathcal{C})$$

for $C \in \mathcal{B}$.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	") sometimes

Theorem (REU '19)

For any building set B, $\mathcal{N}^{\Box}(\mathcal{B})$ can be realized as the boundary of a polytope $\mathcal{N}_{\mathcal{B}}$.

Polytopality

• Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $\{i\} \in \mathcal{B}$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.

Polytopality

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $\{i\} \in \mathcal{B}$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.

Polytopality

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $\{i\} \in \mathcal{B}$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.
- The boundary of the resulting polytope N_B will be isomorphic to N[□](B).

We also obtain a polytopal realization of $\mathcal{P}^{\Box}(\mathcal{B})$ as a Minkowski sum.

Theorem (REU '19)

Let *B* a building set on [*n*], and consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Then $\mathcal{P}^{\square}(\mathcal{B})$ is isomorphic to the boundary of the polytope:

$$\mathcal{P} := \sum_{i \in [n]} \operatorname{Conv}(0, e_i) + \sum_{I \in B} \operatorname{Conv}(\{e_S | S \subsetneq I\}),$$

where the coordinates of e_S are given by the indicator function on S i.e. $(e_S)_i = 1$ if and only if $i \in S$.

Intuitively, the first sum is the *n*-dimensional cube C^n , while each term of the next sum corresponds to shaving a face $I \in \mathcal{B}$ from the cube.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	") sometimes,
	through <i>f</i> - and	<i>h</i> -vectors

For a polytope \mathcal{P} , let f_k be the number of k-dimensional faces of \mathcal{P} . The f-vector of \mathcal{P} is defined to be $f = (f_{-1}, \ldots, f_{d-1})$.

Definition

The *h*-vector $h = (h_0, \ldots, h_d)$ of \mathcal{P} is defined by

$$\sum_{i=0}^d h_i t^i = \sum_{i=0}^d f_{i-1} (t-1)^{i-1}$$

If \mathcal{P} is a simple polytope, then we have $h_i = h_{d-i}$ for all $i = 0, \dots, \lfloor \frac{d}{2} \rfloor$.

Proposition (REU '19)

$$f_{\mathcal{P}^{\square}(\mathcal{B})}(t) = \sum_{S \subseteq [n]} (t+1)^{n-|S|} f_{\mathcal{P}(\mathcal{B}|S)}(t)$$

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	
	through <i>f</i> - and	<i>h</i> -vectors

The γ -vector for a simple polytope \mathcal{P} is given by

$$\sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} \gamma_i t^i (t+1)^{d-2i} = \sum_{j=0}^d h_j t^j.$$

Gal's Conjecture (2005)

The γ -vector of any flag simple polytope is nonnegative.

Shown true for $\mathcal{P}(\mathcal{B})$ by Volodin '10

Theorem (REU '19)

Gal's conjecture is true for flag extended nestohedra $\mathcal{P}^{\Box}(\mathcal{B})$.

- Start with flag building set \mathcal{B}
- There exists minimal flag building set $\mathcal{B}_{\min} \subseteq \mathcal{B}$, and $\mathcal{P}^{\Box}(\mathcal{B}_{\min})$ has nonnegative γ -vector
- Add back in elements $\mathcal{B} \setminus \mathcal{B}_{min}$
 - Corresponds to shaving a codimension 2 face
- \blacksquare Use link decomposition to show that $\gamma\text{-vector remains nonnegative}$

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	chordal ${\cal B}$
Shellings	\mathcal{B}_{K_n}	
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B})$	") sometimes,
	through <i>f</i> - and <i>h</i> -vectors	

Gal's Conjecture for Flag $\mathcal{P}^{\square}(\mathcal{B})$

- Chordal: nice class of building sets, includes $\mathcal{B}_{\mathcal{K}_n}, \mathcal{B}_{\mathcal{P}_n}, \mathcal{P}_{\mathcal{K}_{1,n}}$
- $\widehat{\mathfrak{S}}_n(\mathcal{B}) = \{\mathcal{B}\text{-permutations with no double or final descents}\}$

Theorem (Postnikov-Reiner-Williams '08)

For chordal
$$\mathcal{B}$$
 on $[n]$, $\gamma_{\mathcal{P}(\mathcal{B})}(t) = \sum_{w \in \widehat{\mathfrak{S}}_n(\mathcal{B})} t^{\mathsf{des}(w)}$.

• $\widehat{\mathfrak{S}}_{n+1}^{\square} = \{ \text{extended } \mathcal{B} \text{-permutations with no double or final descents} \}$

Theorem (REU '19) For chordal \mathcal{B} on [n], $\gamma_{\mathcal{P}^{\square}(\mathcal{B})}(t) = \sum_{w \in \widehat{\mathfrak{S}}_{n+1}^{\square}(\mathcal{B})} t^{\mathsf{des}(w)}$.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	chordal ${\cal B}$
Shellings	\mathcal{B}_{K_n}	$\mathcal{B}_{\mathcal{K}_n}$
Cluster/LP algebras	Y	
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B}')$ sometimes,	
	through <i>f</i> - and <i>h</i> -vectors	

•
$$w = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \in \mathfrak{S}_n$$

• Transpositions $s_i = \begin{pmatrix} i & i+1 \end{pmatrix}$

■ $\ell(w) := |\{1 \le i < j \le n \mid a_i > a_j\}|$, i.e. the minimum number of transpositions

Definition

The weak Bruhat order on \mathfrak{S}_n is defined by the following:

 $\pi \lessdot \sigma$ if and only if $\ell(\sigma) = \ell(\pi) + 1$ and $\sigma = \pi \cdot s_i$

Weak Bruhat Order

weak Bruhat order on \mathfrak{S}_3

inversion sets

Define the set of **partial permutations** on [n], denoted \mathfrak{P}_n , to be set of permutations $w \in \mathfrak{S}_S$ for some $S \subseteq [n]$.

$$\mathfrak{P}_{2}: \quad \underbrace{\begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \end{pmatrix}}_{S=\{1,2\}}, \underbrace{\begin{pmatrix} 1 \end{pmatrix}}_{S=\{1\}}, \underbrace{\begin{pmatrix} 2 \end{pmatrix}}_{S=\{2\}}, \underbrace{\begin{pmatrix}) \\ S=\varnothing \end{pmatrix}}$$

Remark

- \mathfrak{S}_n is in bijection with facets of $\mathcal{N}(\mathcal{B}_{K_n})$
- \mathfrak{P}_n is in bijection with the facets of $\mathcal{N}^{\square}(\mathcal{B}_{\mathcal{K}_n})$

Definition (REU '19)

Define map $\varphi : \mathfrak{P}_n \to \mathfrak{S}_{n+1}$ as follows.

- Consider partial permutation $w \in \mathfrak{S}_{\mathcal{S}}$, $\mathcal{S} \subseteq [n]$
- Append numbers in $[n+1] \setminus S$ to end of w in descending order
- Resulting permutation $\varphi(w) \in \mathfrak{S}_{n+1}$

$$w = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix} \in \mathfrak{P}_5 \implies \varphi(w) = \begin{pmatrix} 2 & 4 & 1 & 6 & 5 & 3 \end{pmatrix}$$

Definition (REU '19)

The **partial order** on \mathfrak{P}_n defined by the following:

 $\pi < \sigma$ if and only if $arphi(\pi) < arphi(\sigma)$ in the weak Bruhat order on \mathfrak{S}_{n+1}

Partial Order on \mathfrak{P}_n

 \mathfrak{P}_2 weak Bruhat order on $\varphi(\mathfrak{P}_2)$

A congruence on a lattice *L* is an equivalence relation Θ on elements of *L* which respects joins and meets, i.e. if $a_1 \equiv a_2$ and $b_1 \equiv b_2$, then

$$a_1 \wedge b_1 \equiv a_2 \wedge b_2, \qquad a_1 \vee b_1 \equiv a_2 \vee b_2.$$

A lattice quotient L/Θ is a partial order on the equivalence classes under Θ :

 $[a]_{\Theta} \leq [b]_{\Theta} \Leftrightarrow x \leq_L y \text{ for some } x \in [a], y \in [b].$

Proposition (REU '19)

The defined partial order on \mathfrak{P}_n is a lattice quotient of the weak Bruhat order on \mathfrak{S}_{n+1} .

Corollary (McConville '16, Reading '02)

- Every interval of \mathfrak{P}_n is contractible or homotopy equivalent to a sphere
- If $x = \bigvee^{\mathfrak{P}_n} Y$ for some $Y \subseteq \mathfrak{P}_n$, then $x = \bigvee^{\mathfrak{S}_{n+1}} Y$
- Möbius function $\mu(u, v)$ only takes on values $0, \pm 1$

Shellings: nice way to build up a simplicial complex facet by facet

Theorem (Björner '84)

Label facets of $\mathcal{N}(\mathcal{B}_{K_n})$ by permutations $w \in \mathfrak{S}_n$. If $\pi_1 < \cdots < \pi_k$ is a linear extension of the weak Bruhat order on \mathfrak{S}_n , then $F_{\pi_1}, \ldots, F_{\pi_k}$ gives a shelling of $\mathcal{N}(\mathcal{B}_{K_n})$.

Theorem (REU '19)

Label facets of $\mathcal{N}^{\square}(\mathcal{B}_{K_n})$ by partial permutations $w \in \mathfrak{P}_n$. If $\pi_1 < \cdots < \pi_k$ is a linear extension of the partial order on \mathfrak{P}_n , then $F_{\pi_1}, \ldots, F_{\pi_k}$ gives a shelling of $\mathcal{N}^{\square}(\mathcal{B}_{K_n})$.

	Non-extended	Extended (\Box)
When flag	Y	Y
Link decomposition	Y	Y
Polytopality	Y	Y
Gal's conjecture	Y	Y
Combinatorial interpretation for γ -vector	chordal ${\cal B}$	chordal ${\cal B}$
Shellings	\mathcal{B}_{K_n}	\mathcal{B}_{K_n}
Cluster/LP algebras	Y	?
How are they related?	$\mathcal{N}^{\square}(\mathcal{B})\simeq\mathcal{N}(\mathcal{B}')$ sometimes,	
	through <i>f</i> - and <i>h</i> -vectors,?	

Future Work

- Is there a combinatorial interpretation for the γ-vector of P(B), P[□](B) of arbitrary flag building sets?
- When does a total ordering on (extended) B-permutations give a shelling of the (extended) nested complexes?
- Can N[□](B) provide a combinatorial interpretation of the exchange polynomials of LP-algebras? (Lam–Pylyavskyy)

Conjecture

Let G be a forest and L(G) be the line graph of G. Then

$$f_{\mathcal{P}(\mathcal{B}_G)}(t) = f_{\mathcal{P}^{\square}(\mathcal{B}_{L(G)})}(t).$$

- Thank you to Vic Reiner and Sarah Brauner for all of their support and guidance!
- See our REU report for a complete set of references

Questions?

