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What is a Lattice Model?

@ Origins in statistical mechanics, studied by Baxter [1].
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What is a Lattice Model?

@ Origins in statistical mechanics, studied by Baxter [1].
o Grid with labeled edges.
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What is a Lattice Model?

@ Origins in statistical mechanics, studied by Baxter [1].
o Grid with labeled edges.

@ Labelings around a vertex locally satisfy some property.
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Six-Vertex Model

@ Observation: A state

@
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is admissible iff

fijo1— fij = giv1j— &, (mod 3).
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Differential Forms

fije1— fij = &iv1j— &, (mod 3)
< Dy f = Dyg
& fdx + gdy is closed.

@ f and g are functions on a rectangular grid, take values in F3.
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Differential Forms

fije1— fij = &iv1j— &, (mod 3)
< Dy f = Dyg
& fdx + gdy is closed.

@ f and g are functions on a rectangular grid, take values in F3.

@ Admissible 1-form fdx + gdy: f and g only equal 0 and 1.
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Differential Forms

fije1— fij = &iv1j— &, (mod 3)
< Dy f = Dyg
& fdx + gdy is closed.

@ f and g are functions on a rectangular grid, take values in F3.
@ Admissible 1-form fdx + gdy: f and g only equal 0 and 1.

@ So admissible states <+ closed admissible 1-forms.
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Differential Forms

@ Exterior derivative: for h: Z x Z — F3,

dh := (Dyh)dx + (D, h)dy.
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Differential Forms

@ Exterior derivative: for h: Z x Z — F3,

dh := (Dyh)dx + (D, h)dy.

@ A 1-form « is exact if &« = dh for some function h: Z x Z — Fj.
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Differential Forms

@ Exterior derivative: for h: Z x Z — F3,

dh := (Dyh)dx + (D, h)dy.

@ A 1-form « is exact if &« = dh for some function h: Z x Z — Fj.

@ ldea: Every closed 1-form on an open ball is exact, so same should be
true for a discrete grid.
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Differential Forms

@ Exterior derivative: for h: Z x Z — F3,

dh := (Dyh)dx + (D, h)dy.

@ A 1-form « is exact if &« = dh for some function h: Z x Z — Fj.

@ ldea: Every closed 1-form on an open ball is exact, so same should be
true for a discrete grid.

Every closed 1-form on {1,2,--- ,m} x {1,2,--- , n} is exact.
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3-Colorings

@ We have a correspondence
{Closed 1-forms} <> {Functions} x {Initial condition}

given by
h < (dh, ho).
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3-Colorings

@ We have a correspondence
{Closed 1-forms} <> {Functions} x {Initial condition}
given by
h < (dh, ho).

@ Using this correspondence, we can prove

We have a one-to-one correspondence

{Admissible states} <+ {3-colorings of a rectangular grid} x F3.
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Toroidal Boundary Conditions

@ Same treatment as before - discrete differential forms.
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Toroidal Boundary Conditions

@ Same treatment as before - discrete differential forms.

@ Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional
with intuition from St x S?.
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Toroidal Boundary Conditions

@ Same treatment as before - discrete differential forms.

@ Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional
with intuition from St x S?.

Every closed 1-form on the discrete torus can be written uniquely in the
form

rdx + sdy + w,

where r,s € F3 and w is exact.
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Toroidal Boundary Conditions

@ 3-colorings of a rectangular grid <> functions h such that
Dxh,Dyh # 0, and h;; = 0.
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Toroidal Boundary Conditions

@ 3-colorings of a rectangular grid <> functions h such that
Dxh,Dyh # 0, and h;; = 0.

o Call h sparse if neither Dyh nor D, h are surjective, and h;; = 0.
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Toroidal Boundary Conditions

@ 3-colorings of a rectangular grid <> functions h such that
Dxh,D,h # 0, and hy 1 = 0.

o Call h sparse if neither Dyh nor D, h are surjective, and h;; = 0.

@ No nice correspondence with 3-colorings in toroidal case, but we have

There is a one-to-one correspondence between sparse functions and
admissible states of the six-vertex model with toroidal boundary conditions.
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Eight-Vertex Model

@ Observation: A state

@
@)
©

is admissible iff

fijo1— fij = giv1j— &, (mod 2).
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Eight-Vertex Model

@ We could use differential calculus again, but there is an easier
approach.
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Eight-Vertex Model

@ We could use differential calculus again, but there is an easier
approach.

@ Set of admissible states is a vector space over Fs.
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Eight-Vertex Model

@ We could use differential calculus again, but there is an easier
approach.

@ Set of admissible states is a vector space over Fs.

@ Everything is a linear condition.
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Eight-Vertex Model

@ We could use differential calculus again, but there is an easier
approach.

@ Set of admissible states is a vector space over Fs.
@ Everything is a linear condition.

@ Easy to count the number of admissible states.

The number of admissible states of the eight-vertex model is 2M+n+mn, l

29 /44



Eight-Vertex Boundary Conditions

@ Question: Given a set of boundary conditions, how many admissible
states do they have?
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Eight-Vertex Boundary Conditions

@ Question: Given a set of boundary conditions, how many admissible
states do they have?

@ By linear algebra, this essentially does not depend on what the
boundary conditions are.
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Eight-Vertex Boundary Conditions

@ Question: Given a set of boundary conditions, how many admissible
states do they have?

@ By linear algebra, this essentially does not depend on what the
boundary conditions are.

@ Admissible states of “homogeneous lattice” <> Admissible states of
lattice with given boundary conditions.

Lob—>LB—|—Lo

32/44



Eight-Vertex Boundary Conditions

@ New question: when does a set of boundary conditions have an
admissible state?
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Eight-Vertex Boundary Conditions

@ New question: when does a set of boundary conditions have an
admissible state?

@ Answer: when the boundary values sum to 0.

Let B be a set of boundary values that sum to 0. Then the number of
admissible states with boundary conditions B is 2(m=1)(n—1)
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Adding Weights
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Yang-Baxter Equation



Yang-Baxter Equation

@ Question: Given S and T, when does there exist (nontrivial) R such
that YBE holds?
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Yang-Baxter Equation

@ Question: Given S and T, when does there exist (nontrivial) R such
that YBE holds?

o Galleas and Martins [2] answered this question in the case ¢; = c_3
and di = d_;.
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Yang-Baxter Equation

@ Question: Given S and T, when does there exist (nontrivial) R such
that YBE holds?

o Galleas and Martins [2] answered this question in the case ¢; = c_3
and d; = d_;.
@ YBE can be expressed as a matrix equation

R12513 T2z — T23513R12 = 0.
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Necessary Conditions

Necessary conditions for a solution with c_1(R), c1(R), d-1(R), di(R)
nonzero include

ai(T)bi(T)F(S) = a-1(T)b-1(T)F(S)
a1(S)b1(S)F(T) = a-1(S)b-1(S)F(T)
G(T)d_i(T) .. 2 1, _ . 2
< (e G1S TV = [(TE(TIF(S) — a1(S)b(S)F(T)
C1(T)C_1(5) _ dl(T)d_l(S)
C_1(T)C1(5) d_1(T)d1(5).
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