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Minors

Definition

Let M be an n × n matrix. A minor of M is ∆(M)I ,J := det(MI ,J) where
MI ,J is the submatrix of all entries of M in a row indexed by I and a
column indexed by J.

Example:

M =

2 2 0
6 12 9
0 0 2


∆(M){1,3},{1,2} = det

[
2 2
0 0

]
= 0.
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Total Positivity

Definition

A matrix is totally positive if det(MI ,J) > 0 for any I , J of the same size.
A matrix is totally nonnegative if det(MI ,J) ≥ 0 for any I , J of the same
size.

Example:

M =

2 2 0
6 12 9
0 0 2


M is not totally positive, as ∆(M){1},{3} = 0.

We can see all the entries of M are nonnegative.

∆(M){1,3},{1,2} = 0.

∆(M){1,2,3},{1,2,3} = det(M) = 24.

We could continue checking and see that M is totally nonnegative.
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Motivation

Why is this interesting?

Have variation diminishing property

Nice eigenvalues

Can be used in functional analysis, ODE’s, probability, statistics

Relates combinatorially to networks

Led to development of cluster algebras
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Planar Networks

We will be considering planar, directed, acyclic, edge-weighted graphs with
n sources and n sinks, where the sources and sinks are separated. We will
call these planar networks.
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Path Matrix

Definition

For any directed path from a source to a sink, the weight of the path is
the product of weights of the edges.

The path matrix is the matrix M = (mi ,j) where

mi ,j =
∑

paths P:si→tj

wt(P).

s1
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s3

t1

t2

t3

M =

2 2 0
6 12 9
0 0 2

1 2

3
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3
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Lindström’s Lemma

Theorem (Lindström’s Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In
particular,

det(MI ,J) =
∑

families of nonintersecting
paths from sources indexed
by I to sinks indexed by J

 ∏
all paths P
in a family

wt(P)

 .

s1

s2

s3

t1

t2

t3

M =

2 2 0
6 12 9
0 0 2


det(M{1,2},{1,2}) = 12
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Lindström’s Lemma

The converse is also true...

Theorem (Brenti, 1995)

Every nonnegative matrix is the weight matrix of a planar network.

For elements of GLn(R), one way to prove this is by considering
factorizations of totally nonnegative matrices.
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Loewner-Whitney Theorem

Loewner-Whitney Theorem

Any invertible totally nonnegative matrix is a product of elementary Jacobi
matrices with nonnegative matrix entries.

Elementary Jacobi Matrices:

ei (a) is the identity but with a in the i , i + 1 entry.

fi (a) is the identity but with a in the i + 1, i entry (fi (a) = ei (a)T ).

hi (a) is the identity but with a in the i , i entry.

Example: n = 3

e1(a) =

1 a 0
0 1 0
0 0 1

 f2(a) =

1 0 0
0 1 0
0 a 1

 h3(a) =

1 0 0
0 1 0
0 0 a


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Networks for Elementary Jacobi Matrices

s1

s2

s3

t1

t2

t3

e1(a) =

1 a 0
0 1 0
0 0 1


1

1 1

1 1

a

s1

s2

s3

t1

t2

t3

f2(a) =

1 0 0
0 1 0
0 a 1



1

1 1

1 1

a

s1

s2

s3

t1

t2

t3

h3(a) =

1 0 0
0 1 0
0 0 a



1

a

1

Concatenation of networks is multiplication of matrices.

This proves that every element of GLn(R)≥0 is the weight matrix of a
planar network.
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Totally nonnegative matrices

Planar networks

Factorization of TNN matrices

Cylindric networks

Factorization of U≥0 \ U>0

Birational R-matrix
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Cylindric Planar Networks

Let’s loosen the planarity condition of our planar networks by embedding
them in a cylinder.

s1

s2

t1

t2

1 1 1

12

2

3

We’ll have a chord h from the left boundary component to the right, n
sources on the left labeled from top to bottom, and n sinks on the right
labeled from top to bottom.
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Cylindric Planar Networks

We want our network to be acyclic in the sense that there are no cycles in
the network when drawn on the universal cover of the cylinder.

s1

s2

t1

t2

1 1 1

12

2

3

s1

s2

t1

t2

1 1 1

122 3

s1

s2

t1

t2

2

2 3

s1

s2

t1

t2

2

2 3

s1

s2

t1

t2
2

2

3

...

...
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Weight Matrix for Cylindric Network

s1

s2

t1

t2

1 1 1

12

2

3

[
1 + 6t + 36t2 + ... 3 + 18t + 108t2

4t + 24t2 + ... 2 + 12t + 72t2 + ...

]
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Unfolding

Given a matrix where the entries are formal series in t, t−1, we can define
the unfolding of the matrix.

[
1 + 6t + 36t2 + ... 3 + 18t + 108t2

4t + 24t2 + ... 2 + 12t + 72t2 + ...

]


. . .
...

1 3 6 18 36 108
0 2 4 12 24 72
0 0 1 3 6 18
0 0 0 2 4 12

...
. . .


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Cylindric Lindström’s Lemma

Cylindric Lindström Lemma, Lam–Pylyavskyy 2008

The unfolding of weight matrix of a cylindric network N is totally
nonnegative. In particular,

det(MI ,J) =
∑

families of nonintersecting
paths from sources indexed
by I to sinks indexed by J
in the universal cover of N

 ∏
all paths P
in a family

wt(P)

 .
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REU Exercise

Consider the following cylindric network N:

s1

s2

s3

t1

t2

t3

1 1 1

2 1 2

1 3 1

4

1

1 1

REU Exercise 2.1
a Compute the weight matrix of N.

b Compute the unfolding of the path matrix of N.

c Check that the Cylindric Lindström Lemma holds for N.
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Restriction to U≥0 \ U>0

In general, we can’t go the other direction. One barrier - a totally
nonnegative infinite periodic matrix might require an infinite network to
construct it.

Definition

Let GLn(R((t))) be the set of n × n matrices with entries that are formal
Laurent series in t and that have a nonzero determinant. Let
U ⊆ GLn(R((t))) be the elements of GLn(R((t))) with upper unitriangular
unfoldings.
Define U≥0 ⊆ U as the elements of U with totally nonnegative unfoldings
and U>0 ⊆ U as the elements of U with totally positive unfoldings in the
sense that all minors that are not forced to be 0 are positive.
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Restriction to U≥0 \ U>0

Theorem, Lam–Pylyavskyy 2008

Every element of U≥0 \ U>0 is the weight matrix of a cylindric network.

Again, we can prove this by factorizations.
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Outline

Totally nonnegative matrices

Planar networks

Factorization of TNN matrices

Cylindric networks

Factorization of U≥0 \ U>0

Birational R-matrix
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Whirls and Curls

Whirls: M(a1, a2, a3) =

 1 a1 0
0 1 a2
a3t 0 1



Curls: N(a1, a2, a3) =
(∑∞

k=0(a1a2a3t)k
) 1 a1 a1a2

a2a3t 1 a2
a3t a1a3t 1


Theorem, Lam–Pylyavskyy 2008

Any element of U≥0 \ U>0 is a product of whirls and curls with
nonnegative parameters.
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Networks for Whirls

s1

s2

s3

t1

t2

t3

1

1

1

a1

a2

a3

M(a1, a2, a3) =

 1 a1 0
0 1 a2
a3t 0 1


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Network for Curls

s1

s2

s3

t1

t2

t3

1

1

1

1

1

1

a1

a2

a3

N(a1, a2, a3) =
(∑∞

k=0(a1a2a3t)k
) 1 a1 a1a2

a2a3t 1 a2
a3t a1a3t 1



Since concatenation of networks is multiplication of matrices, this proves
that every element of U≥0 \ U>0 is the weight matrix of a cylindric
network.
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Inverse Problems

Inverse Problems: Given the boundary measurements of a system, can we
recover its interior parameters?

In our case: Given an element of GLn(R) or U≥0 \U>0 and a factorization,
can we recover the parameters of the factorization?
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Example for GLn(R)

We will restrict to the set of upper unitriangular matrices if GLn(R).

Let M be a totally nonnegative upper unitriangular element of GLn(R).
Then M can be factored into a product of ei ’s.

Given a shortest factorization, there is a unique way to determine the
parameters (Berenstein–Fomin–Zelevinsky 1996).

Example: 1 7 2
0 1 1
0 0 1

 = e1(2)e2(1)e1(5)

= e2

(
5

7

)
e1(7)e2

(
2

7

)
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Birational R-Matrix

Again, things aren’t as nice in our other case.

Example:  1 3 1
4t 1 3
3t 2t 1

 = M(1, 2, 1)M(2, 1, 2)

= M

(
7

5
,

16

7
,

5

4

)
M

(
8

5
,

5

7
,

7

4

)
 6t + 1 2t + 3 8

5t 3t + 1 4t + 3
8t2 + 3t 7t 12t + 1

 = N(2, 1, 2)N(1, 2, 1)

= N

(
8

5
,

5

7
,

7

4

)
N

(
7

5
,

16

7
,

5

4

)
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Birational R-Matrix

Definition

Let a = (a1, ..., an),b = (b1, ..., bn) ∈ Rn
≥0. Let

κi (a,b) =
i+n−1∑
j=i

j∏
k=i+1

bk

i+n−1∏
k=j+1

ak .

Define η as the map that sends (a,b) to (b′, a′) where

b′i =
bi+1κi+1(a,b)

κi (a,b)
a′i =

ai−1κi−1(a,b)

κi (a,b)
.

Example: a = (1, 2, 1),b = (2, 1, 2).

κ1(a,b) = a2a3 + b2a3 + b2b3 = 2 + 1 + 2 = 5

κ2(a,b) = a1a3 + a1b3 + b1b3 = 1 + 2 + 4 = 7

b1 = b2κ2(a,b)
κ1(a,b)

= 7
5
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Example: a = (1, 2, 1),b = (2, 1, 2).

κ1(a,b) = a2a3 + b2a3 + b2b3 = 2 + 1 + 2 = 5

κ2(a,b) = a1a3 + a1b3 + b1b3 = 1 + 2 + 4 = 7

b1 = b2κ2(a,b)
κ1(a,b)

= 7
5
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Birational R-Matrix

Theorem, Lam–Pylyavskyy 2008

The birational R-matrix has the following properties:

1 M(a)M(b) = M(b′)M(a′) and N(b)N(a) = N(a′)N(b′).

2 η is an involution (η2 = 1).

3 For 1 ≤ i < k ,
ηi ◦ ηi+1 ◦ ηi (a(1), a(2), ..., a(k)) = ηi+1 ◦ ηi ◦ ηi+1(a(1), a(2), ..., a(k))

Note that the last two properties implies that η gives an action of the
symmetric group on whirls/curls in a matrix factorization.
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REU Exercises

REU Exercise 2.2
a Compute η(a,b) when a = (1, 2, 3) and b = (2, 3, 4).

b Verify that (1) from the previous slide holds in this case.

REU Exercise 2.3

Verify that all three properties hold when n = 2.
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REU Problem

REU Problem 2

The birational R-matrix formula is a formula for how transpositions act on
factorizations. Find a (combinatorial) formula for how the other elements
of the symmetric group act.

Example: A = M(a)M(b)M(c)

If η(a,b) = (a′,b′), then A = M(b′)M(a′)M(c) (think of this as the
action of (12)).

If η(a′, c) = (a′′, c′′), then A = M(b′)M(c′′)M(a′′) (think of this as the
action of (132)).

What are the formulas for a′′ and c′′ in terms of a,b, c?
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Exercise

REU Exercise 2.4

For n = 2 and n = 3, compute formulas for the actions of (123), (132),
and (13).

Note: This might best be done using software.
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