Birational *R*-matrix Formulas

Sunita Chepuri

University of Minnesota Combinatorics and Algebra REU

June 16, 2020

Sunita Chepuri (University of Minnesota Com Birational *R*-matrix Formulas

• Totally nonnegative matrices

- Totally nonnegative matrices
- Planar networks

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

Let *M* be an $n \times n$ matrix. A *minor* of *M* is $\Delta(M)_{I,J} := \det(M_{I,J})$ where $M_{I,J}$ is the submatrix of all entries of *M* in a row indexed by *I* and a column indexed by *J*.

Let *M* be an $n \times n$ matrix. A *minor* of *M* is $\Delta(M)_{I,J} := \det(M_{I,J})$ where $M_{I,J}$ is the submatrix of all entries of *M* in a row indexed by *I* and a column indexed by *J*.

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

Let *M* be an $n \times n$ matrix. A *minor* of *M* is $\Delta(M)_{I,J} := \det(M_{I,J})$ where $M_{I,J}$ is the submatrix of all entries of *M* in a row indexed by *I* and a column indexed by *J*.

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\Delta(M)_{\{1,3\},\{1,2\}} =$$

Let *M* be an $n \times n$ matrix. A *minor* of *M* is $\Delta(M)_{I,J} := \det(M_{I,J})$ where $M_{I,J}$ is the submatrix of all entries of *M* in a row indexed by *I* and a column indexed by *J*.

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\Delta(M)_{\{1,3\},\{1,2\}} = \det \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} = 0.$$

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

Example:

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

M is not totally positive, as $\Delta(M)_{\{1\},\{3\}} = 0$.

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

Example:

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

M is not totally positive, as $\Delta(M)_{\{1\},\{3\}} = 0.$

We can see all the entries of M are nonnegative.

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

Example:

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

M is not totally positive, as $\Delta(M)_{\{1\},\{3\}} = 0.$

We can see all the entries of M are nonnegative.

$$\Delta(M)_{\{1,3\},\{1,2\}}=0$$

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

Example:

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

M is not totally positive, as $\Delta(M)_{\{1\},\{3\}} = 0.$

We can see all the entries of M are nonnegative.

$$\Delta(M)_{\{1,3\},\{1,2\}} = 0.$$

 $\Delta(M)_{\{1,2,3\},\{1,2,3\}} = \det(M) = 24.$

A matrix is *totally positive* if $det(M_{I,J}) > 0$ for any I, J of the same size. A matrix is *totally nonnegative* if $det(M_{I,J}) \ge 0$ for any I, J of the same size.

Example:

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$

M is not totally positive, as $\Delta(M)_{\{1\},\{3\}} = 0.$

We can see all the entries of M are nonnegative.

$$\Delta(M)_{\{1,3\},\{1,2\}} = 0.$$

 $\Delta(M)_{\{1,2,3\},\{1,2,3\}} = \det(M) = 24.$

We could continue checking and see that M is totally nonnegative.

• Have variation diminishing property

- Have variation diminishing property
- Nice eigenvalues

- Have variation diminishing property
- Nice eigenvalues
- Can be used in functional analysis, ODE's, probability, statistics

- Have variation diminishing property
- Nice eigenvalues
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks

- Have variation diminishing property
- Nice eigenvalues
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks
- Led to development of cluster algebras

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

We will be considering planar, directed, acyclic, edge-weighted graphs with n sources and n sinks, where the sources and sinks are separated. We will call these *planar networks*.

We will be considering planar, directed, acyclic, edge-weighted graphs with n sources and n sinks, where the sources and sinks are separated. We will call these *planar networks*.

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

$$m_{i,j} = \sum_{\text{paths } P: s_i \to t_i} wt(P).$$

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

$$m_{i,j} = \sum_{\text{paths } P: s_i \to t_j} wt(P).$$

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

$$m_{i,j} = \sum_{\text{paths } P: s_i \to t_j} wt(P).$$

$$M = \begin{bmatrix} 2 & 2 & 0 \\ 6 & 12 & 9 \\ 0 & 0 & 2 \end{bmatrix}$$
$$m_{11} = (1)(2)$$

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

$$m_{i,j} = \sum_{\text{paths } P: s_i \to t_j} wt(P).$$

Definition

For any directed path from a source to a sink, the *weight* of the path is the product of weights of the edges.

The *path matrix* is the matrix $M = (m_{i,j})$ where

$$m_{i,j} = \sum_{\text{paths } P: s_i \to t_j} wt(P).$$

Sunita Chepuri (University of Minnesota Corr

Lindström's Lemma

Theorem (Lindström's Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\paths from sources indexed\\by I to sinks indexed by J}} \left(\prod_{\substack{\text{all paths } P\\in \text{ a family}}} wt(P)\right).$$

Lindström's Lemma

Theorem (Lindström's Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\paths from sources indexed\\by I to sinks indexed by J}} \left(\prod_{\substack{\text{all paths } P\\in \ a \ family}} wt(P)\right).$$

Sunita Chepuri (University of Minnesota Corr
Lindström's Lemma

Theorem (Lindström's Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\paths from sources indexed\\by I to sinks indexed by J}} \left(\prod_{\substack{\text{all paths } P\\in \ a \ family}} wt(P)\right).$$

Sunita Chepuri (University of Minnesota Corr

Lindström's Lemma

Theorem (Lindström's Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\paths from sources indexed\\by I to sinks indexed by J}} \left(\prod_{\substack{\text{all paths } P\\in \ a \ family}} wt(P)\right).$$

Sunita Chepuri (University of Minnesota Corr

Lindström's Lemma

Theorem (Lindström's Lemma, 1973)

The weight matrix of a planar network is a totally nonnegative matrix. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\ \text{paths from sources indexed}\\ \text{by I to sinks indexed by J}} \left(\prod_{\substack{\text{all paths } P\\ \text{in a family}}} wt(P)\right).$$

Sunita Chepuri (University of Minnesota Corr

The converse is also true...

э

The converse is also true...

Theorem (Brenti, 1995)

Every nonnegative matrix is the weight matrix of a planar network.

The converse is also true...

Theorem (Brenti, 1995)

Every nonnegative matrix is the weight matrix of a planar network.

For elements of $GL_n(\mathbb{R})$, one way to prove this is by considering factorizations of totally nonnegative matrices.

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

Any invertible totally nonnegative matrix is a product of elementary Jacobi matrices with nonnegative matrix entries.

Any invertible totally nonnegative matrix is a product of elementary Jacobi matrices with nonnegative matrix entries.

Elementary Jacobi Matrices:

Any invertible totally nonnegative matrix is a product of elementary Jacobi matrices with nonnegative matrix entries.

Elementary Jacobi Matrices:

• $e_i(a)$ is the identity but with a in the i, i + 1 entry.

Any invertible totally nonnegative matrix is a product of elementary Jacobi matrices with nonnegative matrix entries.

Elementary Jacobi Matrices:

- $e_i(a)$ is the identity but with a in the i, i + 1 entry.
- $f_i(a)$ is the identity but with a in the i + 1, i entry $(f_i(a) = e_i(a)^T)$.

Any invertible totally nonnegative matrix is a product of elementary Jacobi matrices with nonnegative matrix entries.

Elementary Jacobi Matrices:

- $e_i(a)$ is the identity but with a in the i, i + 1 entry.
- $f_i(a)$ is the identity but with a in the i + 1, i entry $(f_i(a) = e_i(a)^T)$.
- $h_i(a)$ is the identity but with a in the *i*, *i* entry.

Example:
$$n = 3$$

 $e_1(a) = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $f_2(a) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$
 $h_3(a) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{bmatrix}$

Concatenation of networks is multiplication of matrices.

Concatenation of networks is multiplication of matrices.

This proves that every element of $GL_n(\mathbb{R})_{\geq 0}$ is the weight matrix of a planar network.

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

Let's loosen the planarity condition of our planar networks by embedding them in a cylinder.

Let's loosen the planarity condition of our planar networks by embedding them in a cylinder.

Let's loosen the planarity condition of our planar networks by embedding them in a cylinder.

We'll have a *chord* \mathfrak{h} from the left boundary component to the right, *n* sources on the left labeled from top to bottom, and *n* sinks on the right labeled from top to bottom.

Cylindric Planar Networks

We want our network to be acyclic in the sense that there are no cycles in the network when drawn on the universal cover of the cylinder.

Cylindric Planar Networks

We want our network to be acyclic in the sense that there are no cycles in the network when drawn on the universal cover of the cylinder.

Cylindric Planar Networks

We want our network to be acyclic in the sense that there are no cycles in the network when drawn on the universal cover of the cylinder.

Weight Matrix for Cylindric Network

Given a matrix where the entries are formal series in t, t^{-1} , we can define the *unfolding* of the matrix.

Image: Image:

Given a matrix where the entries are formal series in t, t^{-1} , we can define the *unfolding* of the matrix.

$$\begin{bmatrix} 1+6t+36t^2+\dots & 3+18t+108t^2\\ 4t+24t^2+\dots & 2+12t+72t^2+\dots \end{bmatrix}$$

Image: Image:

Given a matrix where the entries are formal series in t, t^{-1} , we can define the unfolding of the matrix.

$$\begin{bmatrix} 1+6t+36t^2+\dots & 3+18t+108t^2\\ 4t+24t^2+\dots & 2+12t+72t^2+\dots \end{bmatrix}$$
$$\begin{bmatrix} \ddots & & \ddots\\ 1 & 3 & 6 & 18 & 36 & 108\\ 0 & 2 & 4 & 12 & 24 & 72\\ 0 & 0 & 1 & 3 & 6 & 18\\ 0 & 0 & 0 & 2 & 4 & 12\\ \vdots & & & \ddots \end{bmatrix}$$

э

Cylindric Lindström Lemma, Lam-Pylyavskyy 2008

The unfolding of weight matrix of a cylindric network N is totally nonnegative. In particular,

$$det(M_{I,J}) = \sum_{\substack{\text{families of nonintersecting}\\ \text{paths from sources indexed}\\ \text{by } I \text{ to sinks indexed by } J\\ \text{in the universal cover of } N} \left(\prod_{\substack{\text{all paths } P\\ \text{in a family}}} wt(P)\right).$$

Consider the following cylindric network N:

э

Consider the following cylindric network N:

REU Exercise 2.1

Occupie the weight matrix of N.

Sunita Chepuri (University of Minnesota Com

Birational R-matrix Formulas

June 16, 2020 27 / 42

Consider the following cylindric network N:

REU Exercise 2.1

- Ompute the weight matrix of N.
- Compute the unfolding of the path matrix of N.

Sunita Chepuri (University of Minnesota Com

Birational *R*-matrix Formulas

Consider the following cylindric network N:

REU Exercise 2.1

- Compute the weight matrix of N.
- Sompute the unfolding of the path matrix of N.
- Scheck that the Cylindric Lindström Lemma holds for N.

Sunita Chepuri (University of Minnesota Com

Birational *R*-matrix Formulas

Definition

Let $GL_n(\mathbb{R}((t)))$ be the set of $n \times n$ matrices with entries that are formal Laurent series in t and that have a nonzero determinant.

Definition

Let $GL_n(\mathbb{R}((t)))$ be the set of $n \times n$ matrices with entries that are formal Laurent series in t and that have a nonzero determinant. Let $U \subseteq GL_n(\mathbb{R}((t)))$ be the elements of $GL_n(\mathbb{R}((t)))$ with upper unitriangular unfoldings.

Definition

Let $GL_n(\mathbb{R}((t)))$ be the set of $n \times n$ matrices with entries that are formal Laurent series in t and that have a nonzero determinant. Let $U \subseteq GL_n(\mathbb{R}((t)))$ be the elements of $GL_n(\mathbb{R}((t)))$ with upper unitriangular unfoldings.

Define $U_{\geq 0} \subseteq U$ as the elements of U with totally nonnegative unfoldings and $U_{>0} \subseteq U$ as the elements of U with totally positive unfoldings in the sense that all minors that are not forced to be 0 are positive.
Theorem, Lam-Pylyavskyy 2008

Every element of $U_{\geq 0} \setminus U_{>0}$ is the weight matrix of a cylindric network.

Theorem, Lam-Pylyavskyy 2008

Every element of $U_{\geq 0} \setminus U_{>0}$ is the weight matrix of a cylindric network.

Again, we can prove this by factorizations.

- Totally nonnegative matrices
- Planar networks
- Factorization of TNN matrices
- Cylindric networks
- Factorization of $U_{\geq 0} \setminus U_{>0}$
- Birational *R*-matrix

Whirls:
$$M(a_1, a_2, a_3) = \begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3t & 0 & 1 \end{bmatrix}$$

• • • • • • • •

Whirls:
$$M(a_1, a_2, a_3) = \begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3t & 0 & 1 \end{bmatrix}$$

Curls: $N(a_1, a_2, a_3) = \left(\sum_{k=0}^{\infty} (a_1a_2a_3t)^k\right) \begin{bmatrix} 1 & a_1 & a_1a_2 \\ a_2a_3t & 1 & a_2 \\ a_3t & a_1a_3t & 1 \end{bmatrix}$

• • • • • • • •

Whirls:
$$M(a_1, a_2, a_3) = \begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3t & 0 & 1 \end{bmatrix}$$

Curls: $N(a_1, a_2, a_3) = \left(\sum_{k=0}^{\infty} (a_1 a_2 a_3 t)^k\right) \begin{bmatrix} 1 & a_1 & a_1 a_2 \\ a_2 a_3 t & 1 & a_2 \\ a_3 t & a_1 a_3 t & 1 \end{bmatrix}$

Theorem, Lam-Pylyavskyy 2008

Any element of $U_{\geq 0} \setminus U_{\geq 0}$ is a product of whirls and curls with nonnegative parameters.

Networks for Whirls

Network for Curls

Network for Curls

Since concatenation of networks is multiplication of matrices, this proves that every element of $U_{\geq 0} \setminus U_{>0}$ is the weight matrix of a cylindric network.

Inverse Problems: Given the boundary measurements of a system, can we recover its interior parameters?

- Inverse Problems: Given the boundary measurements of a system, can we recover its interior parameters?
- In our case: Given an element of $GL_n(\mathbb{R})$ or $U_{\geq 0} \setminus U_{>0}$ and a factorization, can we recover the parameters of the factorization?

We will restrict to the set of upper unitriangular matrices if $GL_n(\mathbb{R})$.

э

We will restrict to the set of upper unitriangular matrices if $GL_n(\mathbb{R})$. Let M be a totally nonnegative upper unitriangular element of $GL_n(\mathbb{R})$. Then M can be factored into a product of e_i 's. We will restrict to the set of upper unitriangular matrices if $GL_n(\mathbb{R})$.

Let *M* be a totally nonnegative upper unitriangular element of $GL_n(\mathbb{R})$. Then *M* can be factored into a product of e_i 's.

Given a shortest factorization, there is a unique way to determine the parameters (Berenstein–Fomin–Zelevinsky 1996).

We will restrict to the set of upper unitriangular matrices if $GL_n(\mathbb{R})$.

Let *M* be a totally nonnegative upper unitriangular element of $GL_n(\mathbb{R})$. Then *M* can be factored into a product of e_i 's.

Given a shortest factorization, there is a unique way to determine the parameters (Berenstein–Fomin–Zelevinsky 1996).

Example:

$$\begin{bmatrix} 1 & 7 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = e_1(2)e_2(1)e_1(5)$$
$$= e_2\left(\frac{5}{7}\right)e_1(7)e_2\left(\frac{2}{7}\right)$$

Again, things aren't as nice in our other case.

Again, things aren't as nice in our other case. Example:

$$\begin{bmatrix} 1 & 3 & 1 \\ 4t & 1 & 3 \\ 3t & 2t & 1 \end{bmatrix} = M(1,2,1)M(2,1,2)$$
$$= M\left(\frac{7}{5},\frac{16}{7},\frac{5}{4}\right)M\left(\frac{8}{5},\frac{5}{7},\frac{7}{4}\right)$$
$$\begin{bmatrix} 6t+1 & 2t+3 & 8 \\ 5t & 3t+1 & 4t+3 \\ 8t^2+3t & 7t & 12t+1 \end{bmatrix} = N(2,1,2)N(1,2,1)$$
$$= N\left(\frac{8}{5},\frac{5}{7},\frac{7}{4}\right)N\left(\frac{7}{5},\frac{16}{7},\frac{5}{4}\right)$$

Definition

Let
$$\mathbf{a} = (a_1, ..., a_n), \mathbf{b} = (b_1, ..., b_n) \in \mathbb{R}^n_{\geq 0}$$
. Let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k.$$

Define η as the map that sends (\mathbf{a}, \mathbf{b}) to $(\mathbf{b}', \mathbf{a}')$ where

$$b_i' = rac{b_{i+1}\kappa_{i+1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$$
 $a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}.$

Definition

Let
$$\mathbf{a} = (a_1, ..., a_n), \mathbf{b} = (b_1, ..., b_n) \in \mathbb{R}^n_{\geq 0}$$
. Let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k.$$

Define η as the map that sends (\mathbf{a}, \mathbf{b}) to $(\mathbf{b}', \mathbf{a}')$ where

$$b_i' = rac{b_{i+1}\kappa_{i+1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$$
 $a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$

Example: $\mathbf{a} = (1, 2, 1), \mathbf{b} = (2, 1, 2).$

Definition

Let
$$\mathbf{a} = (a_1, ..., a_n), \mathbf{b} = (b_1, ..., b_n) \in \mathbb{R}^n_{\geq 0}$$
. Let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k.$$

Define η as the map that sends (\mathbf{a}, \mathbf{b}) to $(\mathbf{b}', \mathbf{a}')$ where

$$b_i' = rac{b_{i+1}\kappa_{i+1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})} \qquad a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}.$$

Example: $\mathbf{a} = (1, 2, 1), \mathbf{b} = (2, 1, 2).$ $\kappa_1(\mathbf{a}, \mathbf{b}) = a_2 a_3 + b_2 a_3 + b_2 b_3 = 2 + 1 + 2 = 5$

Definition

Let
$$\mathbf{a} = (a_1, ..., a_n), \mathbf{b} = (b_1, ..., b_n) \in \mathbb{R}^n_{\geq 0}$$
. Let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k.$$

Define η as the map that sends (\mathbf{a}, \mathbf{b}) to $(\mathbf{b}', \mathbf{a}')$ where

$$b_i' = rac{b_{i+1}\kappa_{i+1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$$
 $a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}.$

Example:
$$\mathbf{a} = (1, 2, 1), \mathbf{b} = (2, 1, 2).$$

 $\kappa_1(\mathbf{a}, \mathbf{b}) = a_2 a_3 + b_2 a_3 + b_2 b_3 = 2 + 1 + 2 = 5$
 $\kappa_2(\mathbf{a}, \mathbf{b}) = a_1 a_3 + a_1 b_3 + b_1 b_3 = 1 + 2 + 4 = 7$

Definition

Let
$$\mathbf{a} = (a_1, ..., a_n), \mathbf{b} = (b_1, ..., b_n) \in \mathbb{R}^n_{\geq 0}$$
. Let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k.$$

Define η as the map that sends (\mathbf{a}, \mathbf{b}) to $(\mathbf{b}', \mathbf{a}')$ where

$$b_i' = rac{b_{i+1}\kappa_{i+1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$$
 $a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}$

Example:
$$\mathbf{a} = (1, 2, 1), \mathbf{b} = (2, 1, 2).$$

 $\kappa_1(\mathbf{a}, \mathbf{b}) = a_2 a_3 + b_2 a_3 + b_2 b_3 = 2 + 1 + 2 = 5$
 $\kappa_2(\mathbf{a}, \mathbf{b}) = a_1 a_3 + a_1 b_3 + b_1 b_3 = 1 + 2 + 4 = 7$
 $b_1 = \frac{b_2 \kappa_2(\mathbf{a}, \mathbf{b})}{\kappa_1(\mathbf{a}, \mathbf{b})} = \frac{7}{5}$

Sunita Chepuri (University of Minnesota Com

Theorem, Lam-Pylyavskyy 2008

The birational *R*-matrix has the following properties:

Theorem, Lam-Pylyavskyy 2008

The birational *R*-matrix has the following properties:

• $M(\mathbf{a})M(\mathbf{b}) = M(\mathbf{b}')M(\mathbf{a}')$ and $N(\mathbf{b})N(\mathbf{a}) = N(\mathbf{a}')N(\mathbf{b}')$.

Theorem, Lam–Pylyavskyy 2008

The birational *R*-matrix has the following properties:

- $M(\mathbf{a})M(\mathbf{b}) = M(\mathbf{b}')M(\mathbf{a}')$ and $N(\mathbf{b})N(\mathbf{a}) = N(\mathbf{a}')N(\mathbf{b}')$.
- 2 η is an involution $(\eta^2 = 1)$.

Theorem, Lam–Pylyavskyy 2008

The birational *R*-matrix has the following properties:

- $M(\mathbf{a})M(\mathbf{b}) = M(\mathbf{b}')M(\mathbf{a}')$ and $N(\mathbf{b})N(\mathbf{a}) = N(\mathbf{a}')N(\mathbf{b}')$.
- 2 η is an involution $(\eta^2 = 1)$.
- For $1 \le i < k$, $\eta_i \circ \eta_{i+1} \circ \eta_i(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, ..., \mathbf{a}^{(k)}) = \eta_{i+1} \circ \eta_i \circ \eta_{i+1}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, ..., \mathbf{a}^{(k)})$

Theorem, Lam–Pylyavskyy 2008

The birational *R*-matrix has the following properties:

- $M(\mathbf{a})M(\mathbf{b}) = M(\mathbf{b}')M(\mathbf{a}')$ and $N(\mathbf{b})N(\mathbf{a}) = N(\mathbf{a}')N(\mathbf{b}')$.
- 2 η is an involution $(\eta^2 = 1)$.
- For $1 \le i < k$, $\eta_i \circ \eta_{i+1} \circ \eta_i(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, ..., \mathbf{a}^{(k)}) = \eta_{i+1} \circ \eta_i \circ \eta_{i+1}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, ..., \mathbf{a}^{(k)})$

Note that the last two properties implies that η gives an action of the symmetric group on whirls/curls in a matrix factorization.

Outputs Outputs $\eta(\mathbf{a}, \mathbf{b})$ when $\mathbf{a} = (1, 2, 3)$ and $\mathbf{b} = (2, 3, 4)$.

► < ∃ ►</p>

- **Outputs** Outputs $\eta(\mathbf{a}, \mathbf{b})$ when $\mathbf{a} = (1, 2, 3)$ and $\mathbf{b} = (2, 3, 4)$.
- Verify that (1) from the previous slide holds in this case.

Outputs Outputs $\eta(\mathbf{a}, \mathbf{b})$ when $\mathbf{a} = (1, 2, 3)$ and $\mathbf{b} = (2, 3, 4)$.

• Verify that (1) from the previous slide holds in this case.

REU Exercise 2.3

Verify that all three properties hold when n = 2.

The birational *R*-matrix formula is a formula for how transpositions act on factorizations. Find a (combinatorial) formula for how the other elements of the symmetric group act.

The birational *R*-matrix formula is a formula for how transpositions act on factorizations. Find a (combinatorial) formula for how the other elements of the symmetric group act.

Example: $A = M(\mathbf{a})M(\mathbf{b})M(\mathbf{c})$

The birational *R*-matrix formula is a formula for how transpositions act on factorizations. Find a (combinatorial) formula for how the other elements of the symmetric group act.

Example: $A = M(\mathbf{a})M(\mathbf{b})M(\mathbf{c})$ If $\eta(\mathbf{a}, \mathbf{b}) = (\mathbf{a}', \mathbf{b}')$, then $A = M(\mathbf{b}')M(\mathbf{a}')M(\mathbf{c})$ (think of this as the action of (12)).

The birational *R*-matrix formula is a formula for how transpositions act on factorizations. Find a (combinatorial) formula for how the other elements of the symmetric group act.

Example: $A = M(\mathbf{a})M(\mathbf{b})M(\mathbf{c})$ If $\eta(\mathbf{a}, \mathbf{b}) = (\mathbf{a}', \mathbf{b}')$, then $A = M(\mathbf{b}')M(\mathbf{a}')M(\mathbf{c})$ (think of this as the action of (12)). If $\eta(\mathbf{a}',\mathbf{c}) = (\mathbf{a}'',\mathbf{c}'')$, then $A = M(\mathbf{b}')M(\mathbf{c}'')M(\mathbf{a}'')$ (think of this as the action of (132)).

The birational *R*-matrix formula is a formula for how transpositions act on factorizations. Find a (combinatorial) formula for how the other elements of the symmetric group act.

Example: $A = M(\mathbf{a})M(\mathbf{b})M(\mathbf{c})$ If $\eta(\mathbf{a}, \mathbf{b}) = (\mathbf{a}', \mathbf{b}')$, then $A = M(\mathbf{b}')M(\mathbf{a}')M(\mathbf{c})$ (think of this as the action of (12)). If $\eta(\mathbf{a}', \mathbf{c}) = (\mathbf{a}'', \mathbf{c}'')$, then $A = M(\mathbf{b}')M(\mathbf{c}'')M(\mathbf{a}'')$ (think of this as the action of (132)).

What are the formulas for \mathbf{a}'' and \mathbf{c}'' in terms of $\mathbf{a}, \mathbf{b}, \mathbf{c}$?

For n = 2 and n = 3, compute formulas for the actions of (123), (132), and (13).
REU Exercise 2.4

For n = 2 and n = 3, compute formulas for the actions of (123), (132), and (13).

Note: This might best be done using software.

- T. Lam and P. Pylyavskyy, *Total positivity in loop groups, I: Whirls and curls*, Advances in Mathematics, **230** (2012), no. 3, 1222–1271.
- T. Lam, Loop symmetric functions and factorizing matrix polynomials, Fifth International Congress of Chinese Mathematicians, 1 (2012), no. 2, 609–627.
- T. Lam and P. Pylyavskyy, *Crystals and total positivity on orientable surfaces*, Selecta Mathematica, **19** (2013), no. 1, 173–235.
- T. Lam and P. Pylyavskyy, *Intrinsic energy is a loop Schur function*, (2010), arXiv:1003.3948.
- A. Berenstein, S. Fomin, and A. Zelevinsky, *Parametrizations of Canonical Bases and Totally Positive Matrices*, Advances in Mathematics, **122** (1996), no. 1, 49–149.