Formulas for Birational R-Matrix Action

Sunita Chepuri, Feiyang Lin* TA: Emily Tibor

UMN Combinatorics REU 2020

August 7, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Birational R-Matrix, η

Why we care:

- Relates to networks on a cylinder;
- Describes relations between matrix factorizations;
- Occurs in the study of geometric crystals;
- The tropicalization is the combinatorial R-matrix of affine crystals;
- ► Has applications to discrete Painlevé dynamical systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Birational R-Matrix, η

Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ be two sets of formal variables, where $n \ge 1$. For $1 \le i \le n$, let

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where the indices k are taken mod n. Then

 $\eta : (\mathbf{a}, \mathbf{b}) \mapsto (\mathbf{b}', \mathbf{a}')$ where $\mathbf{a}' = (a'_1, \dots, a'_n), \mathbf{b}' = (b'_1, \dots, b'_n)$, and $a'_i = \frac{a_{i-1}\kappa_{i-1}(\mathbf{a}, \mathbf{b})}{\kappa_i(\mathbf{a}, \mathbf{b})}$ $b'_i = \frac{b_{i+1}\kappa_{i+1}(\mathbf{a}, \mathbf{b})}{\kappa_i(\mathbf{a}, \mathbf{b})}.$

Example of η

$$\kappa_i(\mathbf{a},\mathbf{b}) = \sum_{j=i}^{i+n-1} \prod_{k=i+1}^j b_k \prod_{k=j+1}^{i+n-1} a_k,
onumber \ a_i' = rac{a_{i-1}\kappa_{i-1}(\mathbf{a},\mathbf{b})}{\kappa_i(\mathbf{a},\mathbf{b})}.$$

For example, for n = 4,

$$a_2' = a_1 \frac{\kappa_1(\mathbf{a}, \mathbf{b})}{\kappa_2(\mathbf{a}, \mathbf{b})} = a_1 \frac{a_2 a_3 a_4 + b_2 a_3 a_4 + b_2 b_3 a_4 + b_2 b_3 b_4}{a_3 a_4 a_1 + b_3 a_4 a_1 + b_3 b_4 a_1 + b_3 b_4 b_1}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

η_i and its properties

Let
$$\mathbf{x}_i = (x_i^{(1)}, \dots, x_i^{(n)}).$$
 Now for $1 \leq i < m$, let

$$\eta_i(\mathbf{x}_1,\ldots,\mathbf{x}_m)=(\mathbf{x}_1,\ldots,\mathbf{x}_{i-1},\eta(\mathbf{x}_i,\mathbf{x}_{i+1}),\mathbf{x}_{i+2},\ldots,\mathbf{x}_m).$$

Theorem 1. [Lam–Pylyavskyy, 2008] The birational R-matrix has the following properties:

•
$$\eta$$
 is an involution: $\eta^2 = 1$;

▶ η satisfies the braid relations: for $1 \le i < m - 1$,

$$\eta_i\eta_{i+1}\eta_i(\mathbf{x}_1,\ldots,\mathbf{x}_m)=\eta_{i+1}\eta_i\eta_{i+1}(\mathbf{x}_1,\ldots,\mathbf{x}_m).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \Rightarrow Action of S_m on $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$.

To refer to specific variables after applying a permutation s, we write $s(x_i^{(r)})$ to denote the *r*-th variable in the resultant *i*-th vector. When indices are in parentheses, they are taken mod n.

Main Problem. For any $s \in S_m$, $1 \le i \le m$ and $1 \le r \le n$, we would like to write $s(x_i^{(r)})$ explicitly as a rational function of the original variables.

Outline

Let j > 1. Write s_i for the transposition switching i and i + 1.

▶ s is shifting by 1: $s = s_{j-1}s_{j-2} \dots s_i$ and $s = s_is_{i+1} \dots s_{j-1}$;

- s is a transposition: $s = s_i s_{i+1} \dots s_{j-2} s_{j-1} s_{j-2} \dots s_i$;
- Combinatorial interpretation of functions that appear.

The τ , σ , $\bar{\sigma}$ Functions

Let *n* be a positive integer, *k* a nonnegative integer, and let $1 \le r \le n$. Then $\tau_k^{(r)}$ is defined as follows:

$$\tau_k^{(r)}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} x_{i_1}^{(r)} x_{i_2}^{(r-1)} \dots x_{i_k}^{(r-k+1)}$$

where no index appears more than n-1 times in the sum. The σ and $\bar{\sigma}$ functions are defined using τ :

$$\sigma_k^{(r)}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = \sum_{i=0}^k x_1^{(r)} x_1^{(r-1)} \dots x_1^{(r-i+1)} \tau_{k-i}^{(r-i)}(\mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_m),$$

$$\bar{\sigma}_{k}^{(r)}(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{m}) = \sum_{i=0}^{k} \tau_{k-i}^{(r)}(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{m-1}) x_{m}^{(r-k+i)} x_{m}^{(r-k+i-1)} \ldots x_{m}^{(r-k)}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The τ , σ , $\bar{\sigma}$ Functions

Let n = 4. Write $\mathbf{a} = (a_1, \dots, a_4)$, $\mathbf{b} = (b_1, \dots, b_4)$, $\mathbf{c} = (c_1, \dots, c_4)$ in place of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$. Then

$$\begin{aligned} \tau_{5}^{(3)}(\mathbf{b},\mathbf{c}) &= b_{3}b_{2}b_{1}c_{4}c_{3} + b_{3}b_{2}c_{1}c_{4}c_{3}, \\ \sigma_{6}^{(4)}(\mathbf{a},\mathbf{b},\mathbf{c}) &= \tau_{6}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}\tau_{5}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}\tau_{4}^{(2)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}\tau_{3}^{(1)}(\mathbf{b},\mathbf{c}) \\ &+ a_{4}a_{3}a_{2}a_{1}\tau_{2}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}a_{1}a_{4}\tau_{1}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}a_{1}a_{4}a_{3} \\ \bar{\sigma}_{6}^{(4)}(\mathbf{a},\mathbf{b},\mathbf{c}) &= \tau_{6}^{(4)}(\mathbf{a},\mathbf{b}) + \tau_{5}^{(4)}(\mathbf{a},\mathbf{b})c_{3} + \tau_{4}^{(4)}(\mathbf{a},\mathbf{b})c_{4}c_{3} + \tau_{3}^{(4)}(\mathbf{a},\mathbf{b})c_{1}c_{4}c_{3} \\ &+ \tau_{2}^{(4)}(\mathbf{a},\mathbf{b})c_{2}c_{1}c_{4}c_{3} + \tau_{1}^{(4)}(\mathbf{a},\mathbf{b})c_{3}c_{2}c_{1}c_{4}c_{3} + c_{4}c_{3}c_{2}c_{1}c_{4}c_{3} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1-Shifts

We call permutations of the form $s_{j-1} \dots s_i$ and $s_i \dots s_{j-1}$ 1-shifts. For example, when i = 1, j = 4, in cycle notation, $s_3s_2s_1 = (4321)$ and $s_1s_2s_3 = (1234)$. **Theorem 2** ([Lam–Pylyavskyy, 2010]; [Chepuri–L., 2020+])

$$s_{j-1}\ldots s_i(x_j^{(r)}) = x_i^{(r-j+i)} \frac{\sigma_{(n-1)(j-i)}^{(r-j+i-1)}(\mathbf{x}_i,\ldots,\mathbf{x}_j)}{\sigma_{(n-1)(j-i)}^{(r-j+i)}(\mathbf{x}_i,\ldots,\mathbf{x}_j)},$$

and for $i \leq k < j$,

$$s_{j-1}\ldots s_i(x_k^{(r)}) = \frac{x_{k+1}^{(r+1)}\sigma_{(n-1)(k+1-i)}^{(r-k+i)}(\mathbf{x}_i,\ldots,\mathbf{x}_{k+1})\sigma_{(n-1)(k-i)}^{(r-k+i-1)}(\mathbf{x}_i,\ldots,\mathbf{x}_k)}{\sigma_{(n-1)(k+1-i)}^{(r-k+i-1)}(\mathbf{x}_i,\ldots,\mathbf{x}_{k+1})\sigma_{(n-1)(k-i)}^{(r-k+i)}(\mathbf{x}_i,\ldots,\mathbf{x}_k)}.$$

1-Shifts

We call permutations of the form $s_{j-1} \dots s_i$ and $s_i \dots s_{j-1}$ 1-shifts. For example, when i = 1, j = 4, in cycle notation, $s_3s_2s_1 = (4321)$ and $s_1s_2s_3 = (1234)$. **Theorem 2 (Dual)** [Chepuri–L. 2020+]

$$s_i \dots s_{j-1}(x_i^{(r)}) = x_j^{(r+j-i)} \frac{\bar{\sigma}_{(n-1)(j-i)}^{(r)}(\mathbf{x}_i, \dots, \mathbf{x}_j)}{\bar{\sigma}_{(n-1)(j-i)}^{(r-1)}(\mathbf{x}_i, \dots, \mathbf{x}_j)},$$

and for $i < k \leq j$,

$$s_{i} \dots s_{j-1}(x_{k}^{(r)}) = \frac{x_{k-1}^{(r-1)} \bar{\sigma}_{(n-1)(j-k+1)}^{(r-2)}(\mathbf{x}_{k-1}, \dots, \mathbf{x}_{j}) \bar{\sigma}_{(n-1)(j-k)}^{(r)}(\mathbf{x}_{k}, \dots, \mathbf{x}_{j})}{\bar{\sigma}_{(n-1)(j-k+1)}^{(r-1)}(\mathbf{x}_{k-1}, \dots, \mathbf{x}_{j}) \bar{\sigma}_{(n-1)(j-k)}^{(r-1)}(\mathbf{x}_{k}, \dots, \mathbf{x}_{j})}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Combinatorial Interpretation of τ Functions

Cylindrical networks N(n, m):

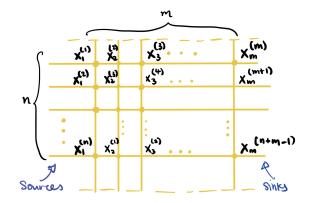


Figure 1: Illustration of N(n, m)

(日) (四) (日) (日) (日)

Combinatorial Interpretation of τ Functions

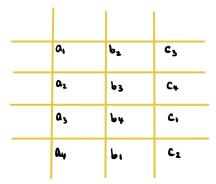


Figure 2: Illustration of N(3, 4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Combinatorial Interpretation of τ Functions

Highway paths:

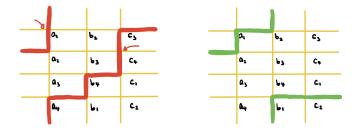


Figure 3: A non-example and an example of a highway path

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combinatorial Interpretation of τ Functions Highway paths and $\tau_3^{(1)}(\mathbf{a}, \mathbf{b}, \mathbf{c})$:

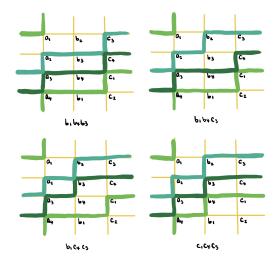


Figure 4: All terms in $\tau_3^{(1)}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ that use only **b** and **c**

ж

Combinatorial Interpretation of σ and $\bar{\sigma}$ Functions

$$\begin{aligned} \sigma_{6}^{(4)}(\mathbf{a},\mathbf{b},\mathbf{c}) &= \tau_{6}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}\tau_{5}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}\tau_{4}^{(2)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}\tau_{3}^{(1)}(\mathbf{b},\mathbf{c}) \\ &+ a_{4}a_{3}a_{2}a_{1}\tau_{2}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}a_{1}a_{4}\tau_{1}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}a_{1}a_{4}a_{3} \\ &= (\tau_{6}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}\tau_{5}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}\tau_{4}^{(2)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}\tau_{3}^{(1)}(\mathbf{b},\mathbf{c})) \\ &+ a_{4}a_{3}a_{2}a_{1}(\tau_{2}^{(4)}(\mathbf{b},\mathbf{c}) + a_{4}\tau_{1}^{(3)}(\mathbf{b},\mathbf{c}) + a_{4}a_{3}) \\ &= \tau_{6}^{(4)}(\mathbf{a},\mathbf{b},\mathbf{c}) + a_{4}a_{3}a_{2}a_{1}\tau_{2}^{(4)}(\mathbf{b},\mathbf{c}) \end{aligned}$$

Transpositions

A transposition that switches *i* and *j* can be written as $s_i s_{i+1} \dots s_{j-1} \dots s_{i+1} s_i$. For example (14) = $s_1 s_2 s_3 s_2 s_1 = s_3 s_2 s_1 s_2 s_3$.

The Ω Functions

For
$$i \le k \le j - 1$$
, define
 ${}^{(k)}\Omega_{(n-1)(j-i)}^{(r)}(\mathbf{x}_i, ..., \mathbf{x}_j) = \sum_{\ell=0}^{n-1} \sigma_{(n-1)(k-i)+\ell}^{(r)}(\mathbf{x}_i, ..., \mathbf{x}_k) \overline{\sigma}_{(n-1)(j-k)-\ell}^{(r+k-i-\ell)}(\mathbf{x}_{k+1}, ..., \mathbf{x}_j).$
Specializes to $\overline{\sigma}$ when $k = i$ and σ when $k = j - 1$. Example:
 $j = 4, i = 1, k = 2, n = 4,$
 ${}^{(2)}\Omega_9^{(r)}(\mathbf{a}, ..., \mathbf{d}) = \sigma_3^{(r)}(\mathbf{a}, \mathbf{b})\overline{\sigma}_6^{(r+1)}(\mathbf{c}, \mathbf{d}) + \sigma_4^{(r)}(\mathbf{a}, \mathbf{b})\overline{\sigma}_3^{(r)}(\mathbf{c}, \mathbf{d}) + \sigma_5^{(r)}(\mathbf{a}, \mathbf{b})\overline{\sigma}_4^{(r-1)}(\mathbf{c}, \mathbf{d}) + \sigma_6^{(r)}(\mathbf{a}, \mathbf{b})\overline{\sigma}_3^{(r-2)}(\mathbf{c}, \mathbf{d})$

Transpositions

Conjecture 1. [Chepuri–L. 2020+] Let $s = s_i \dots s_{j-2}s_{j-1}s_{j-2}\dots s_i$. For i < k < j,

$$s(x_k^{(r)}) = x_k^{(r)} \frac{{}^{(k)}\Omega_{(n-1)(j-i)}^{(r-k+i)}(\mathbf{x}_i,\ldots,\mathbf{x}_j) {}^{(k-1)}\Omega_{(n-1)(j-i)}^{(r-k+i-1)}(\mathbf{x}_i,\ldots,\mathbf{x}_j)}{{}^{(k-1)}\Omega_{(n-1)(j-i)}^{(r-k+i)}(\mathbf{x}_i,\ldots,\mathbf{x}_j) {}^{(k)}\Omega_{(n-1)(j-i)}^{(r-k+i-1)}(\mathbf{x}_i,\ldots,\mathbf{x}_j)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Identity of Ω Functions

Conjecture 2. [Chepuri–L. 2020+] For $i < k \le j - 1$, the following identity of ${}^{(k-1)}\Omega$ and ${}^{(k)}\Omega$ holds:

$$\begin{bmatrix} \prod_{t=1}^{n-1} \sigma_{(n-1)(k-i)}^{(r-k+i+t)}(\mathbf{x}_{i}, \dots, \mathbf{x}_{k}) \end{bmatrix}^{(k-1)} \Omega_{(n-1)(j-i)}^{(r-k+i)}(\mathbf{x}_{i}, \dots, \mathbf{x}_{j})$$

$$= \sum_{s=0}^{n-1} \prod_{t=r+1}^{r+s} x_{j}^{(t+j-k)} \prod_{t=r+s+1}^{r+n-1} x_{k}^{(t+1)} \prod_{t=s+2}^{s+n-1} \sigma_{(n-1)(k-i)}^{(r-k+i+t)}(\mathbf{x}_{i}, \dots, \mathbf{x}_{k})$$

$$\stackrel{(k)}{\longrightarrow} \Omega_{(n-1)(j-i)}^{(r-k+i+s)}(\mathbf{x}_{i}, \dots, \mathbf{x}_{j}) \sigma_{(n-1)(k-i-1)}^{(r-k+i+s+1)}(\mathbf{x}_{i}, \dots, \mathbf{x}_{k-1}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We proved this in the n = 2 case.

Future Directions

- Resolve the conjectures;
- Other permutations;
- Combinatorial interpretation of the Ω functions;
- Is there an easy way of interpreting the identities we are getting using a graphical calculus of cylindrical networks?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Acknowledgements

This research was conducted at the 2020 University of Minnesota Twin Cities REU, which was supported by NSF RTG grant DMS-1745638. We thank Pasha Pylyavskyy for proposing the problem and explaining his paper to us, and our TA Emily Tibor for her support, and her thoughtful and constructive feedback on this report and various presentations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References

Lam, T. and Pylyavskyy, P. (2008). Total positivity in loop groups i: whirls and curls.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lam, T. and Pylyavskyy, P. (2010).

Intrinsic energy is a loop schur function.