
Formulas for Birational R-Matrix Action

Sunita Chepuri, Feiyang Lin*
TA: Emily Tibor

UMN Combinatorics REU 2020

August 7, 2020



The Birational R-Matrix, η

Why we care:

I Relates to networks on a cylinder;

I Describes relations between matrix factorizations;

I Occurs in the study of geometric crystals;

I The tropicalization is the combinatorial R-matrix of affine
crystals;

I Has applications to discrete Painlevé dynamical systems.



The Birational R-Matrix, η

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sets of formal variables,
where n ≥ 1. For 1 ≤ i ≤ n, let

κi (a,b) =
i+n−1∑
j=i

j∏
k=i+1

bk

i+n−1∏
k=j+1

ak ,

where the indices k are taken mod n. Then

η : (a,b) 7→ (b′, a′)

where a′ = (a′1, . . . , a
′
n),b′ = (b′1, . . . , b

′
n), and

a′i =
ai−1κi−1(a,b)

κi (a,b)

b′i =
bi+1κi+1(a,b)

κi (a,b)
.



Example of η

κi (a,b) =
i+n−1∑
j=i

j∏
k=i+1

bk

i+n−1∏
k=j+1

ak ,

a′i =
ai−1κi−1(a,b)

κi (a,b)
.

For example, for n = 4,

a′2 = a1
κ1(a,b)

κ2(a,b)
= a1

a2a3a4 + b2a3a4 + b2b3a4 + b2b3b4
a3a4a1 + b3a4a1 + b3b4a1 + b3b4b1

.



ηi and its properties

Let xi = (x
(1)
i , . . . , x

(n)
i ). Now for 1 ≤ i < m, let

ηi (x1, . . . , xm) = (x1, . . . , xi−1, η(xi , xi+1), xi+2, . . . , xm).

Theorem 1. [Lam–Pylyavskyy, 2008]
The birational R-matrix has the following properties:

I η is an involution: η2 = 1;

I η satisfies the braid relations: for 1 ≤ i < m − 1,

ηiηi+1ηi (x1, . . . , xm) = ηi+1ηiηi+1(x1, . . . , xm).

⇒ Action of Sm on (x1, . . . , xm).



Main Problem

To refer to specific variables after applying a permutation s, we write

s(x
(r)
i ) to denote the r -th variable in the resultant i-th vector. When

indices are in parentheses, they are taken mod n.

Main Problem. For any s ∈ Sm, 1 ≤ i ≤ m and 1 ≤ r ≤ n, we would like

to write s(x
(r)
i ) explicitly as a rational function of the original variables.



Outline

Let j > 1. Write si for the transposition switching i and i + 1.

I s is shifting by 1: s = sj−1sj−2 . . . si and s = si si+1 . . . sj−1;

I s is a transposition: s = si si+1 . . . sj−2sj−1sj−2 . . . si ;

I Combinatorial interpretation of functions that appear.



The τ , σ, σ̄ Functions

Let n be a positive integer, k a nonnegative integer, and let 1 ≤ r ≤ n.

Then τ
(r)
k is defined as follows:

τ
(r)
k (x1, x2, . . . , xm) =

∑
1≤ii≤i2≤···≤ik≤n

x
(r)
i1

x
(r−1)
i2

. . . x
(r−k+1)
ik

where no index appears more than n − 1 times in the sum. The σ and σ̄
functions are defined using τ :

σ
(r)
k (x1, x2, . . . , xm) =

k∑
i=0

x
(r)
1 x

(r−1)
1 . . . x

(r−i+1)
1 τ

(r−i)
k−i (x2, x3, . . . , xm),

σ̄
(r)
k (x1, x2, . . . , xm) =

k∑
i=0

τ
(r)
k−i (x1, x2, . . . , xm−1)x (r−k+i)

m x (r−k+i−1)
m . . . x (r−k)m .



The τ , σ, σ̄ Functions

Let n = 4. Write a = (a1, . . . , a4),b = (b1, . . . , b4), c = (c1, . . . , c4) in
place of x1, x2, x3. Then

τ
(3)
5 (b, c) = b3b2b1c4c3 + b3b2c1c4c3,

σ
(4)
6 (a,b, c) = τ

(4)
6 (b, c) + a4τ

(3)
5 (b, c) + a4a3τ

(2)
4 (b, c) + a4a3a2τ

(1)
3 (b, c)

+ a4a3a2a1τ
(4)
2 (b, c) + a4a3a2a1a4τ

(3)
1 (b, c) + a4a3a2a1a4a3

σ̄
(4)
6 (a,b, c) = τ

(4)
6 (a,b) + τ

(4)
5 (a,b)c3 + τ

(4)
4 (a,b)c4c3 + τ

(4)
3 (a,b)c1c4c3

+ τ
(4)
2 (a,b)c2c1c4c3 + τ

(4)
1 (a,b)c3c2c1c4c3 + c4c3c2c1c4c3



1-Shifts

We call permutations of the form sj−1 . . . si and si . . . sj−1 1-shifts. For
example, when i = 1, j = 4, in cycle notation, s3s2s1 = (4321) and
s1s2s3 = (1234).
Theorem 2 ([Lam–Pylyavskyy, 2010]; [Chepuri–L., 2020+])

sj−1 . . . si (x
(r)
j ) = x

(r−j+i)
i

σ
(r−j+i−1)
(n−1)(j−i)(xi , . . . , xj)

σ
(r−j+i)
(n−1)(j−i)(xi , . . . , xj)

,

and for i ≤ k < j ,

sj−1 . . . si (x
(r)
k ) =

x
(r+1)
k+1 σ

(r−k+i)
(n−1)(k+1−i)(xi , . . . , xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi , . . . , xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi , . . . , xk+1)σ

(r−k+i)
(n−1)(k−i)(xi , . . . , xk)

.



1-Shifts

We call permutations of the form sj−1 . . . si and si . . . sj−1 1-shifts. For
example, when i = 1, j = 4, in cycle notation, s3s2s1 = (4321) and
s1s2s3 = (1234).
Theorem 2 (Dual) [Chepuri–L. 2020+]

si . . . sj−1(x
(r)
i ) = x

(r+j−i)
j

σ̄
(r)
(n−1)(j−i)(xi , . . . , xj)

σ̄
(r−1)
(n−1)(j−i)(xi , . . . , xj)

,

and for i < k ≤ j ,

si . . . sj−1(x
(r)
k ) =

x
(r−1)
k−1 σ̄

(r−2)
(n−1)(j−k+1)(xk−1, . . . , xj)σ̄

(r)
(n−1)(j−k)(xk , . . . , xj)

σ̄
(r−1)
(n−1)(j−k+1)(xk−1, . . . , xj)σ̄

(r−1)
(n−1)(j−k)(xk , . . . , xj)

.



Combinatorial Interpretation of τ Functions

Cylindrical networks N(n,m):

Figure 1: Illustration of N(n,m)



Combinatorial Interpretation of τ Functions

Figure 2: Illustration of N(3, 4)



Combinatorial Interpretation of τ Functions

Highway paths:

Figure 3: A non-example and an example of a highway path



Combinatorial Interpretation of τ Functions
Highway paths and τ

(1)
3 (a,b, c):

Figure 4: All terms in τ
(1)
3 (a,b, c) that use only b and c



Combinatorial Interpretation of σ and σ̄ Functions

σ
(4)
6 (a,b, c) = τ

(4)
6 (b, c) + a4τ

(3)
5 (b, c) + a4a3τ

(2)
4 (b, c) + a4a3a2τ

(1)
3 (b, c)

+ a4a3a2a1τ
(4)
2 (b, c) + a4a3a2a1a4τ

(3)
1 (b, c) + a4a3a2a1a4a3

= (τ
(4)
6 (b, c) + a4τ

(3)
5 (b, c) + a4a3τ

(2)
4 (b, c) + a4a3a2τ

(1)
3 (b, c))

+ a4a3a2a1(τ
(4)
2 (b, c) + a4τ

(3)
1 (b, c) + a4a3)

= τ
(4)
6 (a,b, c) + a4a3a2a1τ

(4)
2 (b, c)



Transpositions

A transposition that switches i and j can be written as
si si+1 . . . sj−1 . . . si+1si . For example (14) = s1s2s3s2s1 = s3s2s1s2s3.



The Ω Functions

For i ≤ k ≤ j − 1, define

(k)Ω
(r)
(n−1)(j−i)(xi , . . . , xj) =

∑n−1
`=0 σ

(r)
(n−1)(k−i)+`(xi , . . . , xk)σ̄

(r+k−i−`)
(n−1)(j−k)−`(xk+1, . . . , xj).

Specializes to σ̄ when k = i and σ when k = j − 1. Example:
j = 4, i = 1, k = 2, n = 4,

(2)Ω
(r)
9 (a, . . . ,d) = σ

(r)
3 (a,b)σ̄

(r+1)
6 (c,d) + σ

(r)
4 (a,b)σ̄

(r)
5 (c,d)

+ σ
(r)
5 (a,b)σ̄

(r−1)
4 (c,d) + σ

(r)
6 (a,b)σ̄

(r−2)
3 (c,d)



Transpositions

Conjecture 1. [Chepuri–L. 2020+] Let s = si . . . sj−2sj−1sj−2 . . . si . For
i < k < j ,

s(x
(r)
k ) = x

(r)
k

(k)Ω
(r−k+i)
(n−1)(j−i)(xi , . . . , xj)

(k−1)Ω
(r−k+i−1)
(n−1)(j−i) (xi , . . . , xj)

(k−1)Ω
(r−k+i)
(n−1)(j−i)(xi , . . . , xj)

(k)Ω
(r−k+i−1)
(n−1)(j−i) (xi , . . . , xj)

.



Identity of Ω Functions

Conjecture 2. [Chepuri–L. 2020+] For i < k ≤ j − 1, the following
identity of (k−1)Ω and (k)Ω holds:[

n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi , . . . , xk)

]
(k−1)Ω

(r−k+i)
(n−1)(j−i)(xi , . . . , xj)

=
n−1∑
s=0

r+s∏
t=r+1

x
(t+j−k)
j

r+n−1∏
t=r+s+1

x
(t+1)
k

s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi , . . . , xk)

(k)Ω
(r−k+i+s)
(n−1)(j−i)(xi , . . . , xj)σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi , . . . , xk−1).

We proved this in the n = 2 case.



Future Directions

I Resolve the conjectures;

I Other permutations;

I Combinatorial interpretation of the Ω functions;

I Is there an easy way of interpreting the identities we are
getting using a graphical calculus of cylindrical networks?
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