# Formulas for Birational R-Matrix Action 

Sunita Chepuri, Feiyang Lin* TA: Emily Tibor<br>UMN Combinatorics REU 2020

August 7, 2020

## The Birational R-Matrix, $\eta$

Why we care:

- Relates to networks on a cylinder;
- Describes relations between matrix factorizations;
- Occurs in the study of geometric crystals;
- The tropicalization is the combinatorial R-matrix of affine crystals;
- Has applications to discrete Painlevé dynamical systems.


## The Birational R-Matrix, $\eta$

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be two sets of formal variables, where $n \geq 1$. For $1 \leq i \leq n$, let

$$
\kappa_{i}(\mathbf{a}, \mathbf{b})=\sum_{j=i}^{i+n-1} \prod_{k=i+1}^{j} b_{k} \prod_{k=j+1}^{i+n-1} a_{k}
$$

where the indices $k$ are taken $\bmod n$. Then

$$
\eta:(\mathbf{a}, \mathbf{b}) \mapsto\left(\mathbf{b}^{\prime}, \mathbf{a}^{\prime}\right)
$$

where $\mathbf{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), \mathbf{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$, and

$$
\begin{aligned}
a_{i}^{\prime} & =\frac{a_{i-1} \kappa_{i-1}(\mathbf{a}, \mathbf{b})}{\kappa_{i}(\mathbf{a}, \mathbf{b})} \\
b_{i}^{\prime} & =\frac{b_{i+1} \kappa_{i+1}(\mathbf{a}, \mathbf{b})}{\kappa_{i}(\mathbf{a}, \mathbf{b})} .
\end{aligned}
$$

## Example of $\eta$

$$
\begin{aligned}
\kappa_{i}(\mathbf{a}, \mathbf{b}) & =\sum_{j=i}^{i+n-1} \prod_{k=i+1}^{j} b_{k} \prod_{k=j+1}^{i+n-1} a_{k} \\
a_{i}^{\prime} & =\frac{a_{i-1} \kappa_{i-1}(\mathbf{a}, \mathbf{b})}{\kappa_{i}(\mathbf{a}, \mathbf{b})}
\end{aligned}
$$

For example, for $n=4$,

$$
a_{2}^{\prime}=a_{1} \frac{\kappa_{1}(\mathbf{a}, \mathbf{b})}{\kappa_{2}(\mathbf{a}, \mathbf{b})}=a_{1} \frac{a_{2} a_{3} a_{4}+b_{2} a_{3} a_{4}+b_{2} b_{3} a_{4}+b_{2} b_{3} b_{4}}{a_{3} a_{4} a_{1}+b_{3} a_{4} a_{1}+b_{3} b_{4} a_{1}+b_{3} b_{4} b_{1}}
$$

## $\eta_{i}$ and its properties

Let $\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots, x_{i}^{(n)}\right)$. Now for $1 \leq i<m$, let

$$
\eta_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \eta\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right), \mathbf{x}_{i+2}, \ldots, \mathbf{x}_{m}\right) .
$$

Theorem 1. [Lam-Pylyavskyy, 2008]
The birational R-matrix has the following properties:

- $\eta$ is an involution: $\eta^{2}=1$;
- $\eta$ satisfies the braid relations: for $1 \leq i<m-1$,

$$
\eta_{i} \eta_{i+1} \eta_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\eta_{i+1} \eta_{i} \eta_{i+1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right) .
$$

$\Rightarrow$ Action of $S_{m}$ on $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$.

## Main Problem

To refer to specific variables after applying a permutation $s$, we write $s\left(x_{i}^{(r)}\right)$ to denote the $r$-th variable in the resultant $i$-th vector. When indices are in parentheses, they are taken mod $n$.

Main Problem. For any $s \in S_{m}, 1 \leq i \leq m$ and $1 \leq r \leq n$, we would like to write $s\left(x_{i}^{(r)}\right)$ explicitly as a rational function of the original variables.

## Outline

Let $j>1$. Write $s_{i}$ for the transposition switching $i$ and $i+1$.
$\checkmark s$ is shifting by $1: s=s_{j-1} s_{j-2} \ldots s_{i}$ and $s=s_{i} s_{i+1} \ldots s_{j-1}$;

- $s$ is a transposition: $s=s_{i} s_{i+1} \ldots s_{j-2} s_{j-1} s_{j-2} \ldots s_{i}$;
- Combinatorial interpretation of functions that appear.


## The $\tau, \sigma, \bar{\sigma}$ Functions

Let $n$ be a positive integer, $k$ a nonnegative integer, and let $1 \leq r \leq n$. Then $\tau_{k}^{(r)}$ is defined as follows:

$$
\tau_{k}^{(r)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right)=\sum_{1 \leq i_{i} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}}^{(r)} x_{i_{2}}^{(r-1)} \ldots x_{i_{k}}^{(r-k+1)}
$$

where no index appears more than $n-1$ times in the sum. The $\sigma$ and $\bar{\sigma}$ functions are defined using $\tau$ :

$$
\begin{aligned}
\sigma_{k}^{(r)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right) & =\sum_{i=0}^{k} x_{1}^{(r)} x_{1}^{(r-1)} \ldots x_{1}^{(r-i+1)} \tau_{k-i}^{(r-i)}\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{m}\right), \\
\bar{\sigma}_{k}^{(r)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right) & =\sum_{i=0}^{k} \tau_{k-i}^{(r)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m-1}\right) x_{m}^{(r-k+i)} x_{m}^{(r-k+i-1)} \ldots x_{m}^{(r-k)} .
\end{aligned}
$$

## The $\tau, \sigma, \bar{\sigma}$ Functions

Let $n=4$. Write $\mathbf{a}=\left(a_{1}, \ldots, a_{4}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{4}\right), \mathbf{c}=\left(c_{1}, \ldots, c_{4}\right)$ in place of $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$. Then

$$
\begin{aligned}
\tau_{5}^{(3)}(\mathbf{b}, \mathbf{c})= & b_{3} b_{2} b_{1} c_{4} c_{3}+b_{3} b_{2} c_{1} c_{4} c_{3}, \\
\sigma_{6}^{(4)}(\mathbf{a}, \mathbf{b}, \mathbf{c})= & \tau_{6}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} \tau_{5}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} \tau_{4}^{(2)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} \tau_{3}^{(1)}(\mathbf{b}, \mathbf{c}) \\
& +a_{4} a_{3} a_{2} a_{1} \tau_{2}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} a_{1} a_{4} \tau_{1}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} a_{1} a_{4} a_{3} \\
\bar{\sigma}_{6}^{(4)}(\mathbf{a}, \mathbf{b}, \mathbf{c})= & \tau_{6}^{(4)}(\mathbf{a}, \mathbf{b})+\tau_{5}^{(4)}(\mathbf{a}, \mathbf{b}) c_{3}+\tau_{4}^{(4)}(\mathbf{a}, \mathbf{b}) c_{4} c_{3}+\tau_{3}^{(4)}(\mathbf{a}, \mathbf{b}) c_{1} c_{4} c_{3} \\
& +\tau_{2}^{(4)}(\mathbf{a}, \mathbf{b}) c_{2} c_{1} c_{4} c_{3}+\tau_{1}^{(4)}(\mathbf{a}, \mathbf{b}) c_{3} c_{2} c_{1} c_{4} c_{3}+c_{4} c_{3} c_{2} c_{1} c_{4} c_{3}
\end{aligned}
$$

## 1-Shifts

We call permutations of the form $s_{j-1} \ldots s_{i}$ and $s_{i} \ldots s_{j-1} 1$-shifts. For example, when $i=1, j=4$, in cycle notation, $s_{3} s_{2} s_{1}=(4321)$ and $s_{1} s_{2} s_{3}=(1234)$.
Theorem 2 ([Lam-Pylyavskyy, 2010]; [Chepuri-L., 2020+])

$$
s_{j-1} \ldots s_{i}\left(x_{j}^{(r)}\right)=x_{i}^{(r-j+i)} \frac{\sigma_{(n-1)(j-i)}^{(r-j+i-1)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)}{\sigma_{(n-1)(j-i)}^{(r-j+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)}
$$

and for $i \leq k<j$,
$s_{j-1} \ldots s_{i}\left(x_{k}^{(r)}\right)=\frac{x_{k+1}^{(r+1)} \sigma_{(n-1)(k+1-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k+1}\right) \sigma_{(n-1)(k-i)}^{(r-k+i-1)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k}\right)}{\sigma_{(n-1)(k+1-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k+1}\right) \sigma_{(n-1)(k-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k}\right)}$.

## 1-Shifts

We call permutations of the form $s_{j-1} \ldots s_{i}$ and $s_{i} \ldots s_{j-1} 1$-shifts. For example, when $i=1, j=4$, in cycle notation, $s_{3} s_{2} s_{1}=(4321)$ and $s_{1} s_{2} s_{3}=(1234)$.
Theorem 2 (Dual) [Chepuri-L. 2020+]

$$
s_{i} \ldots s_{j-1}\left(x_{i}^{(r)}\right)=x_{j}^{(r+j-i)} \frac{\bar{\sigma}_{(n-1)(j-i)}^{(r)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)}{\bar{\sigma}_{(n-1)(j-i)}^{(r-1)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)}
$$

and for $i<k \leq j$,
$s_{i} \ldots s_{j-1}\left(x_{k}^{(r)}\right)=\frac{x_{k-1}^{(r-1)} \bar{\sigma}_{(n-1)(j-k+1)}^{(r-2)}\left(\mathbf{x}_{k-1}, \ldots, \mathbf{x}_{j}\right) \bar{\sigma}_{(n-1)(j-k)}^{(r)}\left(\mathbf{x}_{k}, \ldots, \mathbf{x}_{j}\right)}{\bar{\sigma}_{(n-1)(j-k+1)}^{(r-1)}\left(\mathbf{x}_{k-1}, \ldots, \mathbf{x}_{j}\right) \bar{\sigma}_{(n-1)(j-k)}^{(r-1)}\left(\mathbf{x}_{k}, \ldots, \mathbf{x}_{j}\right)}$.

## Combinatorial Interpretation of $\tau$ Functions

Cylindrical networks $N(n, m)$ :


Figure 1: Illustration of $N(n, m)$

## Combinatorial Interpretation of $\tau$ Functions

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $a_{1}$ | $b_{2}$ | $c_{3}$ |
|  | $a_{2}$ | $b_{3}$ | $c_{4}$ |
|  | $a_{3}$ | $b_{4}$ | $c_{1}$ |
|  | $a_{4}$ | $b_{1}$ | $c_{2}$ |

Figure 2: Illustration of $N(3,4)$

## Combinatorial Interpretation of $\tau$ Functions

Highway paths:


Figure 3: A non-example and an example of a highway path

## Combinatorial Interpretation of $\tau$ Functions

Highway paths and $\tau_{3}^{(1)}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ :


Figure 4: All terms in $\tau_{3}^{(1)}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ that use only $\mathbf{b}$ and $\mathbf{c}$

## Combinatorial Interpretation of $\sigma$ and $\bar{\sigma}$ Functions

$$
\begin{aligned}
\sigma_{6}^{(4)}(\mathbf{a}, \mathbf{b}, \mathbf{c})= & \tau_{6}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} \tau_{5}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} \tau_{4}^{(2)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} \tau_{3}^{(1)}(\mathbf{b}, \mathbf{c}) \\
& +a_{4} a_{3} a_{2} a_{1} \tau_{2}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} a_{1} a_{4} \tau_{1}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} a_{1} a_{4} a_{3} \\
= & \left(\tau_{6}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} \tau_{5}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} \tau_{4}^{(2)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} \tau_{3}^{(1)}(\mathbf{b}, \mathbf{c})\right) \\
& +a_{4} a_{3} a_{2} a_{1}\left(\tau_{2}^{(4)}(\mathbf{b}, \mathbf{c})+a_{4} \tau_{1}^{(3)}(\mathbf{b}, \mathbf{c})+a_{4} a_{3}\right) \\
= & \tau_{6}^{(4)}(\mathbf{a}, \mathbf{b}, \mathbf{c})+a_{4} a_{3} a_{2} a_{1} \tau_{2}^{(4)}(\mathbf{b}, \mathbf{c})
\end{aligned}
$$

## Transpositions

A transposition that switches $i$ and $j$ can be written as $s_{i} s_{i+1} \ldots s_{j-1} \ldots s_{i+1} s_{i}$. For example (14) $=s_{1} s_{2} s_{3} s_{2} s_{1}=s_{3} s_{2} s_{1} s_{2} s_{3}$.

## The $\Omega$ Functions

For $i \leq k \leq j-1$, define
${ }^{(k)} \Omega_{(n-1)(-i)}^{(r)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)=\sum_{\ell=0}^{n-1} \sigma_{(n-1)(k-i)+\ell}^{(r)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k}\right) \bar{\sigma}_{(n-1)(j-k)-\ell}^{(r+k-i-\ell)}\left(\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{j}\right)$.
Specializes to $\bar{\sigma}$ when $k=i$ and $\sigma$ when $k=j-1$. Example: $j=4, i=1, k=2, n=4$,

$$
\begin{aligned}
{ }^{(2)} \Omega_{9}^{(r)}(\mathbf{a}, \ldots, \mathbf{d}) & =\sigma_{3}^{(r)}(\mathbf{a}, \mathbf{b}) \bar{\sigma}_{6}^{(r+1)}(\mathbf{c}, \mathbf{d})+\sigma_{4}^{(r)}(\mathbf{a}, \mathbf{b}) \bar{\sigma}_{5}^{(r)}(\mathbf{c}, \mathbf{d}) \\
& +\sigma_{5}^{(r)}(\mathbf{a}, \mathbf{b}) \bar{\sigma}_{4}^{(r-1)}(\mathbf{c}, \mathbf{d})+\sigma_{6}^{(r)}(\mathbf{a}, \mathbf{b}) \bar{\sigma}_{3}^{(r-2)}(\mathbf{c}, \mathbf{d})
\end{aligned}
$$

## Transpositions

Conjecture 1. [Chepuri-L. 2020+] Let $s=s_{i} \ldots s_{j-2} s_{j-1} s_{j-2} \ldots s_{i}$. For $i<k<j$,

$$
s\left(x_{k}^{(r)}\right)=x_{k}^{(r)} \frac{(k) \Omega_{(n-1)(j-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)^{(k-1)} \Omega_{(n-1)(j-i)}^{(r-k+i-1)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)}{\left.(k-1) \Omega_{(n-1)(j-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)^{(k) \Omega_{(n-1)(j-i)}^{(r-k+i)}} \mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right)} .
$$

## Identity of $\Omega$ Functions

Conjecture 2. [Chepuri-L. 2020+] For $i<k \leq j-1$, the following identity of ${ }^{(k-1)} \Omega$ and ${ }^{(k)} \Omega$ holds:

$$
\begin{aligned}
& {\left[\prod_{t=1}^{n-1} \sigma_{(n-1)(k-i)}^{(r-k+i+t)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k}\right)\right]{ }^{(k-1)} \Omega_{(n-1)(j-i)}^{(r-k+i)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right) } \\
= & \sum_{s=0}^{n-1} \prod_{t=r+1}^{r+s} x_{j}^{(t+j-k)} \prod_{t=r+s+1}^{r+n-1} x_{k}^{(t+1)} \prod_{t=s+2}^{s+n-1} \sigma_{(n-1)(k-i)}^{(r-k+i+t)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k}\right) \\
& \quad(k) \Omega_{(n-1)(j-i)}^{(r-k+i+s)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{j}\right) \sigma_{(n-1)(k-i-1)}^{(r-k+i+s+1)}\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{k-1}\right)
\end{aligned}
$$

We proved this in the $n=2$ case.

## Future Directions

- Resolve the conjectures;
- Other permutations;
- Combinatorial interpretation of the $\Omega$ functions;
- Is there an easy way of interpreting the identities we are getting using a graphical calculus of cylindrical networks?


## Acknowledgements

This research was conducted at the 2020 University of Minnesota Twin Cities REU, which was supported by NSF RTG grant DMS-1745638. We thank Pasha Pylyavskyy for proposing the problem and explaining his paper to us, and our TA Emily Tibor for her support, and her thoughtful and constructive feedback on this report and various presentations.

## References

Re Lam, T. and Pylyavskyy, P. (2008).
Total positivity in loop groups i: whirls and curls.
目 Lam, T. and Pylyavskyy, P. (2010).
Intrinsic energy is a loop schur function.

