REU Problem 3: Questions on Generating Functions via Cluster Algebras

Gregg Musiker (University of Minnesota)

TA: Elizabeth Kelley

Cluster Algebra Group also includes
Esther Banaian, Nick Ovenhouse, and Libby Farrell

June 17, 2020

Thanks to NSF Grant DMS-1745638 and the University of Minnesota REU in Algebra and Combinatorics

Introduction to Cluster Algebras

In the late 1990's: Fomin and Zelevinsky were studying total positivity and canonical bases of algebraic groups. They noticed recurring combinatorial and algebraic structures.

Introduction to Cluster Algebras

In the late 1990's: Fomin and Zelevinsky were studying total positivity and canonical bases of algebraic groups. They noticed recurring combinatorial and algebraic structures.

Led them to define cluster algebras, which have now been linked to quiver representations, Poisson geometry Teichmüller theory, tilting theory, mathematical physics, discrete integrable systems, and other topics.

Introduction to Cluster Algebras

In the late 1990's: Fomin and Zelevinsky were studying total positivity and canonical bases of algebraic groups. They noticed recurring combinatorial and algebraic structures.

Led them to define cluster algebras, which have now been linked to quiver representations, Poisson geometry Teichmüller theory, tilting theory, mathematical physics, discrete integrable systems, and other topics.

Cluster algebras are a certain class of commutative rings which have a distinguished set of generators that are grouped into overlapping subsets, called clusters, each having the same cardinality.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.
Construct the rest via Binomial Exchange Relations:

$$
x_{\alpha} x_{\alpha}^{\prime}=\prod x_{\gamma_{i}}^{d_{i}^{+}}+\prod x_{\gamma_{i}}^{d_{i}^{-}} .
$$

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.
Construct the rest via Binomial Exchange Relations:

$$
x_{\alpha} x_{\alpha}^{\prime}=\prod x_{\gamma_{i}}^{d_{i}^{+}}+\prod x_{\gamma_{i}}^{d_{i}^{-}} .
$$

The set of all such generators are known as Cluster Variables, and the initial pattern of exchange relations determines the Seed.
Relations:
Induced by the Binomial Exchange Relations.

Binomial Exchange Relations via Quivers (Directed Graphs)

Given a quiver Q, we encode binomial exchange relations as

$$
x_{j} x_{j}^{\prime}=\prod_{i \rightarrow j \in Q} x_{i}+\prod_{j \rightarrow k \in Q} x_{k} .
$$

Binomial Exchange Relations via Quivers (Directed Graphs)

Given a quiver Q, we encode binomial exchange relations as

$$
x_{j} x_{j}^{\prime}=\prod_{i \rightarrow j \in Q} x_{i}+\prod_{j \rightarrow k \in Q} x_{k} .
$$

For example, if $Q=1 \Rightarrow 2 \leftarrow 3<4$, then

$$
\begin{array}{ll}
x_{1} x_{1}^{\prime}=1+x_{2}^{2} & x_{2} x_{2}^{\prime}=x_{1}^{2} x_{3}+x_{4} \\
x_{3} x_{3}^{\prime}=x_{4}+x_{2} & x_{4} x_{4}^{\prime}=x_{2}+x_{3} .
\end{array}
$$

Binomial Exchange Relations via Quivers (Directed Graphs)

Given a quiver Q, we encode binomial exchange relations as

$$
x_{j} x_{j}^{\prime}=\prod_{i \rightarrow j \in Q} x_{i}+\prod_{j \rightarrow k \in Q} x_{k} .
$$

For example, if $Q=1 \Rightarrow 2 \leftarrow 3<4$, then

$$
\begin{array}{ll}
x_{1} x_{1}^{\prime}=1+x_{2}^{2} & x_{2} x_{2}^{\prime}=x_{1}^{2} x_{3}+x_{4} \\
x_{3} x_{3}^{\prime}=x_{4}+x_{2} & x_{4} x_{4}^{\prime}=x_{2}+x_{3} .
\end{array}
$$

If Q has n vertices, we obtain n new seeds (startng from the initial seed) by mutating in n directions: e.g.

$$
\begin{gathered}
\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\
\left\{x_{1}^{\prime}, x_{2}, x_{3}, x_{4}\right\} \quad\left\{x_{1}, x_{2}^{\prime}, x_{3}, x_{4}\right\} \quad\left\{x_{1}, x_{2}, x_{3}^{\prime}, x_{4}\right\} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}^{\prime}\right\}
\end{gathered}
$$

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, k.

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow $i{ }_{j} k$.
2) Reverse the direction of all arrows incident to j.

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, k.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i{ }_{j} k$ created from the above two steps.

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow $i{ }_{j} k$.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i{ }_{j} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, j.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i{ }_{j} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then

$$
\mu_{1} Q=1 \Leftarrow 2 \leftarrow 3 \leftarrow 4,
$$

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, k.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i^{i} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then

$$
\mu_{1} Q=1 \Leftarrow 2 \leftarrow 3<4,
$$

$$
\mu_{2} Q=1<2 \rightarrow 3
$$

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, k.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i^{{ }_{j}^{\prime}} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then

$$
\begin{aligned}
& \mu_{1} Q=1 \leftarrow 2 \leftarrow 3 \leftarrow 4, \\
& \mu_{3} Q=1 \Rightarrow 2 \rightarrow 3 \rightarrow 4,
\end{aligned}
$$

Exchange Patterns for New Seeds via Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, j.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i{ }_{j} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then

$$
\begin{array}{ll}
\mu_{1} Q=1 \leftarrow 2 \leftarrow 3 \leftarrow 4, & \mu_{2} Q=1 \Leftarrow 2 \rightarrow 3 \\
\mu_{3} Q=1 \Rightarrow 2 \rightarrow 3 \rightarrow 4, & \mu_{4} Q=1 \Rightarrow 2
\end{array}
$$

Note: Mutation is an involution, meaning that $\mu_{j}^{2} Q=Q$ for any vertex j.

Exchange Matrices Representing Quivers (Directed Graphs)

Given a quiver Q (i.e. a directed graph) with n vertices, we build an n-by- n skew-symmetric matrix $B_{Q}=\left[b_{i j}\right]_{i=1, j=1}^{n}$ whose entries are

$$
b_{i j}=(\# \text { arrows from } i \text { to } j)-(\# \text { arrows from } j \text { to } i)
$$

Exchange Matrices Representing Quivers (Directed Graphs)

Given a quiver Q (i.e. a directed graph) with n vertices, we build an n-by- n skew-symmetric matrix $B_{Q}=\left[b_{i j}\right]_{i=1, j=1}^{n}$ whose entries are

$$
b_{i j}=(\# \text { arrows from } i \text { to } j)-(\# \text { arrows from } j \text { to } i)
$$

Note: More generally, we can let B_{Q} be skew-symmetrizable, meaning there exists a diagonal matrix D with positive integer entries such that $D B_{Q}$ is skew-symmetric, i.e. satisfies $\left(D B_{Q}\right)^{T}=-D B_{Q}$.

Exchange Matrices Representing Quivers (Directed Graphs)

Given a quiver Q (i.e. a directed graph) with n vertices, we build an n-by- n skew-symmetric matrix $B_{Q}=\left[b_{i j}\right]_{i=1, j=1}^{n}$ whose entries are

$$
b_{i j}=(\# \text { arrows from } i \text { to } j)-(\# \text { arrows from } j \text { to } i)
$$

Note: More generally, we can let B_{Q} be skew-symmetrizable, meaning there exists a diagonal matrix D with positive integer entries such that $D B_{Q}$ is skew-symmetric, i.e. satisfies $\left(D B_{Q}\right)^{T}=-D B_{Q}$.

If $Q=1 \rightarrow 2$, then $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, if $Q=1 \Rightarrow 2$, then $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$,
and if $Q=1 \Rightarrow 2 \leftarrow 3 \leftarrow 4$, then $B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$.

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{1} Q=1 \leftarrow 2 \leftarrow 3<4, \quad \mu_{1} B_{Q}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
2 & 0 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & -1 & 1 & 0
\end{array}\right] .
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{2} Q=1<2 \rightarrow 3+4, \quad \mu_{2} B_{Q}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
2 & 0 & 1 & -1 \\
0 & -1 & 0 & 0 \\
-2 & 1 & 0 & 0
\end{array}\right] .
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{3} Q=1 \Rightarrow 2 \rightarrow 3 \rightarrow 4, \quad \mu_{3} B_{Q}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{4} Q=1 \Rightarrow 2 \quad 3 \rightarrow 4, \quad \mu_{4} B_{Q}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right] .
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}}
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

$x_{5}=\frac{x_{4}+1}{x_{3}}=$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

$x_{5}=\frac{x_{4}+1}{x_{3}}=\frac{\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}+1}{\left(x_{2}+1\right) / x_{1}}=$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$:

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

$$
x_{5}=\frac{x_{4}+1}{x_{3}}=\frac{\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}+1}{\left(x_{2}+1\right) / x_{1}}=\frac{x_{1}\left(x_{1}+x_{2}+1+x_{1} x_{2}\right)}{x_{1} x_{2}\left(x_{2}+1\right)}=
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$: (Finite Type, of Type A_{2})

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

$$
x_{5}=\frac{x_{4}+1}{x_{3}}=\frac{\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}+1}{\left(x_{2}+1\right) / x_{1}}=\frac{x_{1}\left(x_{1}+x_{2}+1+x_{1} x_{2}\right)}{x_{1} x_{2}\left(x_{2}+1\right)}=\frac{x_{1}+1}{x_{2}}
$$

Rank 2 Cluster Algebras

Let $B=\left[\begin{array}{cc}0 & b \\ -c & 0\end{array}\right], b, c \in \mathbb{Z}_{>0} .\left(\left\{x_{1}, x_{2}\right\}, B\right)$ is a seed for a cluster algebra $\mathcal{A}(b, c)$ of rank 2 .

$$
\mu_{1}(B)=\mu_{2}(B)=-B \quad \text { and } \quad x_{1} x_{1}^{\prime}=x_{2}^{c}+1, \quad x_{2} x_{2}^{\prime}=1+x_{1}^{b}
$$

Thus the cluster variables in this case are

$$
\left\{x_{n}: n \in \mathbb{Z}\right\} \text { satisfying } x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { is odd } \\
x_{n-1}^{c}+1 \text { if } n \text { is even }
\end{array}\right.
$$

Example $1(b=c=1)$: (Finite Type, of Type A_{2})

$$
x_{3}=\frac{x_{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}+1}{x_{2}}=\frac{\frac{x_{2}+1}{x_{1}}+1}{x_{2}}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} .
$$

$x_{5}=\frac{x_{4}+1}{x_{3}}=\frac{\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}+1}{\left(x_{2}+1\right) / x_{1}}=\frac{x_{1}\left(x_{1}+x_{2}+1+x_{1} x_{2}\right)}{x_{1} x_{2}\left(x_{2}+1\right)}=\frac{x_{1}+1}{x_{2}} . \quad x_{6}=x_{1}$.

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} .
$$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=
$$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} .
$$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{aligned}
& \quad x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
& x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=
\end{aligned}
$$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{gathered}
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . \quad x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=\frac{x_{2}^{6}+3 x_{2}^{4}+3 x_{2}^{2}+1+x_{1}^{4}+2 x_{1}^{2}+2 x_{1}^{2} x_{2}^{2}}{x_{1}^{3} x_{2}^{2}}, \ldots
\end{gathered}
$$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{gathered}
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=\frac{x_{2}^{6}+3 x_{2}^{4}+3 x_{2}^{2}+1+x_{1}^{4}+2 x_{1}^{2}+2 x_{1}^{2} x_{2}^{2}}{x_{1}^{3} x_{2}^{2}}, \ldots
\end{gathered}
$$

If we let $x_{1}=x_{2}=1$, we obtain $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}=\{2,5,13,34\}$.

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{gathered}
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=\frac{x_{2}^{6}+3 x_{2}^{4}+3 x_{2}^{2}+1+x_{1}^{4}+2 x_{1}^{2}+2 x_{1}^{2} x_{2}^{2}}{x_{1}^{3} x_{2}^{2}}, \ldots
\end{gathered}
$$

If we let $x_{1}=x_{2}=1$, we obtain $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}=\{2,5,13,34\}$.
The next number in the sequence is $x_{7}=\frac{34^{2}+1}{13}=$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{gathered}
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=\frac{x_{2}^{6}+3 x_{2}^{4}+3 x_{2}^{2}+1+x_{1}^{4}+2 x_{1}^{2}+2 x_{1}^{2} x_{2}^{2}}{x_{1}^{3} x_{2}^{2}}, \ldots
\end{gathered}
$$

If we let $x_{1}=x_{2}=1$, we obtain $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}=\{2,5,13,34\}$.
The next number in the sequence is $x_{7}=\frac{34^{2}+1}{13}=\frac{1157}{13}=$

Rank 2 Cluster Algebras

Example $2(b=c=2)$: (Affine Type, of Type $\left.\widetilde{A}_{1}\right)$

$$
\begin{gathered}
x_{3}=\frac{x_{2}^{2}+1}{x_{1}} . x_{4}=\frac{x_{3}^{2}+1}{x_{2}}=\frac{x_{2}^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}^{2} x_{2}} . \\
x_{5}=\frac{x_{4}^{2}+1}{x_{3}}=\frac{x_{2}^{6}+3 x_{2}^{4}+3 x_{2}^{2}+1+x_{1}^{4}+2 x_{1}^{2}+2 x_{1}^{2} x_{2}^{2}}{x_{1}^{3} x_{2}^{2}}, \ldots
\end{gathered}
$$

If we let $x_{1}=x_{2}=1$, we obtain $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}=\{2,5,13,34\}$.
The next number in the sequence is $x_{7}=\frac{34^{2}+1}{13}=\frac{1157}{13}=89$, an integer!

Quivers and Exchange Matrices with Principal Coefficients

Given a quiver Q on n vertices, and its associated n-by- n matrix B_{Q}, we build the corresponding $2 n$-by- n exchange matrix with principal coefficients via $\widetilde{B_{Q}}=\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, where I_{n} denotes the n-by- n identity matrix.
Equivalently, $\widetilde{B_{Q}}$ corresponds to the exchange matrix of the framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ with a single arrow from $i^{\prime} \rightarrow i$ for each $1 \leq i \leq n$.

Quivers and Exchange Matrices with Principal Coefficients

Given a quiver Q on n vertices, and its associated n-by- n matrix B_{Q}, we build the corresponding $2 n$-by- n exchange matrix with principal coefficients via $\widetilde{B_{Q}}=\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, where I_{n} denotes the n-by- n identity matrix.
Equivalently, $\widetilde{B_{Q}}$ corresponds to the exchange matrix of the framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ with a single arrow from $i^{\prime} \rightarrow i$ for each $1 \leq i \leq n$.
Example:

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}
$$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}
$$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \rightarrow^{\mu_{1}}
$$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right]
$$

$\rightarrow{ }^{\mu_{2}}$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}} } & {\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] } \\
& \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}}
\end{aligned}
$$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\begin{aligned}
& {\left[\begin{array}{cl}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] } \\
& \rightarrow{ }^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] .
\end{aligned}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

1^{\prime}	2^{\prime}
\downarrow	\downarrow
$1 \Rightarrow$	2

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right]
$$

$\rightarrow \mu_{2}$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

1^{\prime}	2^{\prime}
\downarrow	\downarrow
$1 \Rightarrow$	2

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right]
$$

$\rightarrow^{\mu_{2}}\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 5 & -4 \\ 4 & -3\end{array}\right] \rightarrow^{\mu_{1}}$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right]
$$

$\rightarrow^{\mu_{2}}\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 5 & -4 \\ 4 & -3\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}0 & -2 \\ 2 & 0 \\ -5 & 6 \\ -4 & 5\end{array}\right] \rightarrow^{\mu_{2}}$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right]
$$

$$
\rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
7 & -6 \\
6 & -5
\end{array}\right] \rightarrow^{\mu_{1}}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right]
$$

$\rightarrow^{\mu_{2}}\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 5 & -4 \\ 4 & -3\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}0 & -2 \\ 2 & 0 \\ -5 & 6 \\ -4 & 5\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 7 & -6 \\ 6 & -5\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ -7 & 8 \\ -6 & 7\end{array}\right] \rightarrow \ldots$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \quad\left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}
\end{aligned}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \quad\left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=
\end{aligned}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=\frac{y_{1} y_{2}+\frac{y_{1}+x_{2}}{x_{1}}}{x_{2}}=
\end{aligned}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{gathered}
\left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=\frac{y_{1} y_{2}+\frac{y_{1}+x_{2}}{x_{1}}}{x_{2}}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}
\end{gathered}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=\frac{y_{1} y_{2}+\frac{y_{1}+x_{2}}{x_{1}}}{x_{2}}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}} \\
& x_{5}=\frac{y_{2}+x_{4}}{x_{3}}=
\end{aligned}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=\frac{y_{1} y_{2}+\frac{y_{1}+x_{2}}{x_{1}}}{x_{2}}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, \\
& x_{5}=\frac{y_{2}+x_{4}}{x_{3}}=\frac{y_{2}+\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}}{\frac{y_{1}+x_{2}}{x_{1}}}=
\end{aligned}
$$

Cluster Variables with Principal Coefficients

Framed quivers for a type A_{2} quiver:

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2}+x_{3}}{x_{2}}=\frac{y_{1} y_{2}+\frac{y_{1}+x_{2}}{x_{1}}}{x_{2}}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{0}} \\
& x_{5}=\frac{y_{2}+x_{4}}{x_{1} x_{1} x_{2}}=\frac{y_{2}+\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}}{=}=\frac{y_{2} x_{1}+1}{}
\end{aligned}
$$

Cluster Variables for the Kronecker quiver, i.e. $\mathcal{A}(2,2)$

The cluster algebra $\mathcal{A}(2,2)$ corresponding to the Kronecker quiver $1 \Rightarrow 2$ has a geometric interpretation

Cluster Variables for the Kronecker quiver, i.e. $\mathcal{A}(2,2)$

The cluster algebra $\mathcal{A}(2,2)$ corresponding to the Kronecker quiver $1 \Rightarrow 2$ has a geometric interpretation as an annulus with a marked point on each boundary:

Cluster Variables for the Kronecker quiver, i.e. $\mathcal{A}(2,2)$

The cluster algebra $\mathcal{A}(2,2)$ corresponding to the Kronecker quiver $1 \Rightarrow 2$ has a geometric interpretation as an annulus with a marked point on each boundary:

Cluster Variables for the Kronecker quiver, i.e. $\mathcal{A}(2,2)$

The cluster algebra $\mathcal{A}(2,2)$ corresponding to the Kronecker quiver $1 \Rightarrow 2$ has a geometric interpretation as an annulus with a marked point on each boundary:

Cluster Variables for the Kronecker quiver, i.e. $\mathcal{A}(2,2)$

The cluster algebra $\mathcal{A}(2,2)$ corresponding to the Kronecker quiver $1 \Rightarrow 2$ has a geometric interpretation as an annulus with a marked point on each boundary:

Cluster variables x_{n} 's correspond to arcs that wind around the annulus.

Example of Type A_{3} with Principal Coefficients

Example 3: Let \mathcal{A} be the cluster algebra defined by the initial cluster $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ and the initial exchange pattern
$x_{1} x_{1}^{\prime}=y_{1}+x_{2}, \quad x_{2} x_{2}^{\prime}=x_{1} x_{3} y_{2}+1, \quad x_{3} x_{3}^{\prime}=y_{3}+x_{2}$, i.e. $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Example of Type A_{3} with Principal Coefficients

Example 3: Let \mathcal{A} be the cluster algebra defined by the initial cluster $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ and the initial exchange pattern
$x_{1} x_{1}^{\prime}=y_{1}+x_{2}, \quad x_{2} x_{2}^{\prime}=x_{1} x_{3} y_{2}+1, \quad x_{3} x_{3}^{\prime}=y_{3}+x_{2}$, i.e. $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

REU Exercise \# 3.1: Each seed of \mathcal{A} corresponds to a triangulation of a hexagon such that chords correspond to cluster variables.

Example of Type A_{3} with Principal Coefficients

Example 3: Let \mathcal{A} be the cluster algebra defined by the initial cluster $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ and the initial exchange pattern
$x_{1} x_{1}^{\prime}=y_{1}+x_{2}, \quad x_{2} x_{2}^{\prime}=x_{1} x_{3} y_{2}+1, \quad x_{3} x_{3}^{\prime}=y_{3}+x_{2}$, i.e. $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

REU Exercise \# 3.1: Each seed of \mathcal{A} corresponds to a triangulation of a hexagon such that chords correspond to cluster variables. Furthermore, \mathcal{A} is a cluster algebra of finite type, with cluster variables given as:

$$
\begin{aligned}
& \left\{x_{1}, x_{2}, x_{3}, \frac{y_{1}+x_{2}}{x_{1}}, \frac{x_{1} x_{3} y_{2}+1}{x_{2}}, \frac{y_{3}+x_{2}}{x_{3}}, \frac{x_{1} x_{3} y_{1} y_{2}+y_{1}+x_{2}}{x_{1} x_{2}}\right. \\
& \left.\frac{x_{1} x_{3} y_{2} y_{3}+y_{3}+x_{2}}{x_{2} x_{3}}, \frac{x_{1} x_{3} y_{1} y_{2} y_{3}+y_{1} y_{3}+x_{2} y_{3}+x_{2} y_{1}+x_{2}^{2}}{x_{1} x_{2} x_{3}}\right\} .
\end{aligned}
$$

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Answer: It is sufficient to check that $a>0, b>0, c>0$ and $a d-b c>0$. (for a total of 4 verifications rather than all 5 minors).

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Answer: It is sufficient to check that $a>0, b>0, c>0$ and $a d-b c>0$. (for a total of 4 verifications rather than all 5 minors).

Note: If $\Delta=a d-b c>0, a>0, b>0$, and $c>0$, then we can rewrite $d=\frac{\Delta+b c}{a}$, and obtain $d>0$.

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Answer: It is sufficient to check that $a>0, b>0, c>0$ and $a d-b c>0$. (for a total of 4 verifications rather than all 5 minors).

Note: If $\Delta=a d-b c>0, a>0, b>0$, and $c>0$, then we can rewrite $d=\frac{\Delta+b c}{a}$, and obtain $d>0$.
There is another such possible verification set of size 4, namely $b>0, c>0, d>0$, and $\Delta=a d-b c>0$.

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Answer: It is sufficient to check that $a>0, b>0, c>0$ and $a d-b c>0$. (for a total of 4 verifications rather than all 5 minors).

Note: If $\Delta=a d-b c>0, a>0, b>0$, and $c>0$, then we can rewrite $d=\frac{\Delta+b c}{a}$, and obtain $d>0$.
There is another such possible verification set of size 4, namely $b>0, c>0, d>0$, and $\Delta=a d-b c>0$.

Together, these 5 algebraic elements generate a cluster algebra structure of type A_{1} (i.e. a binomial exchange between a and d with b, c, Δ frozen).

Relationship with Total Positivity

Given a 2-by-2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}$, what is a sufficient condition to check whether it is totally positive, meaning that all minors are positive? (i.e. $a>0, b>0, c>0, d>0, a d-b c>0$.)

Answer: It is sufficient to check that $a>0, b>0, c>0$ and $a d-b c>0$. (for a total of 4 verifications rather than all 5 minors).

Note: If $\Delta=a d-b c>0, a>0, b>0$, and $c>0$, then we can rewrite $d=\frac{\Delta+b c}{a}$, and obtain $d>0$.
There is another such possible verification set of size 4, namely $b>0, c>0, d>0$, and $\Delta=a d-b c>0$.

Together, these 5 algebraic elements generate a cluster algebra structure of type A_{1} (i.e. a binomial exchange between a and d with b, c, Δ frozen).

Warning: Even if $a>0, c>0, d>0, a d-b c>0$, it is still possible $b \leq 0$. (Ditto if we leave out c or $\Delta=a d-b c$.)

Relationship with Total Positivity

Given a 3-by-3 matrix $M=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in G L_{3}$, how do you check whether it is totally positive, meaning that all minors are positive?
(i.e. $a>0, b>0, c>0, \ldots, a e-b d>0, \ldots, \operatorname{det} M>0$.)

Relationship with Total Positivity

Given a 3-by-3 matrix $M=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in G L_{3}$, how do you check whether it is totally positive, meaning that all minors are positive?
(i.e. $a>0, b>0, c>0, \ldots, a e-b d>0, \ldots, \operatorname{det} M>0$.)

Answer: It is sufficient to check that $c>0, g>0, b f-c e>0$, $d h-e g>0$ and four other conditions
(for a total of 8 verifications rather than all 19 minors).

Relationship with Total Positivity

Given a 3-by-3 matrix $M=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in G L_{3}$, how do you check whether it is totally positive, meaning that all minors are positive?
(i.e. $a>0, b>0, c>0, \ldots, a e-b d>0, \ldots, \operatorname{det} M>0$.)

Answer: It is sufficient to check that $c>0, g>0, b f-c e>0$, $d h-e g>0$ and four other conditions
(for a total of 8 verifications rather than all 19 minors).
There are exactly 50 such overlapping sets of four conditions. These 50 algebraic elements generate a cluster algebra structure of type D_{4} (with binomial exchange relations among the elements).

More Matrix Minors: Coordinate Ring of Grassmannian

Let $G r_{2, n+3}=\left\{V \mid V \subset \mathbb{C}^{n+3}, \operatorname{dim} V=2\right\}$ planes in $(n+3)$-space Elements of $G r_{2, n+3}$ represented by 2-by- $(n+3)$ matrices of full rank.

More Matrix Minors: Coordinate Ring of Grassmannian

Let $G r_{2, n+3}=\left\{V \mid V \subset \mathbb{C}^{n+3}, \operatorname{dim} V=2\right\}$ planes in $(n+3)$-space
Elements of $\mathrm{Gr}_{2, n+3}$ represented by 2-by- $(n+3)$ matrices of full rank.
Plücker coordinates $p_{i j}(M)=$ det of 2-by-2 submatrices in columns i and j.
The coordinate ring $\mathbb{C}\left[\mathrm{Gr}_{2, n+3}\right]$ is generated by all the $p_{i j}$'s for $1 \leq i<j \leq n+3$ subject to the Plücker relations given by the 4-tuples

$$
p_{i k} p_{j \ell}=p_{i j} p_{k \ell}+p_{i \ell} p_{j k} \text { for } i<j<k<\ell
$$

More Matrix Minors: Coordinate Ring of Grassmannian

Let $G r_{2, n+3}=\left\{V \mid V \subset \mathbb{C}^{n+3}, \operatorname{dim} V=2\right\}$ planes in $(n+3)$-space
Elements of $G r_{2, n+3}$ represented by 2-by- $(n+3)$ matrices of full rank.
Plücker coordinates $p_{i j}(M)=$ det of 2-by-2 submatrices in columns i and j.
The coordinate ring $\mathbb{C}\left[G r_{2, n+3}\right]$ is generated by all the $p_{i j}$'s for $1 \leq i<j \leq n+3$ subject to the Plücker relations given by the 4-tuples

$$
p_{i k} p_{j \ell}=p_{i j} p_{k \ell}+p_{i \ell} p_{j k} \text { for } i<j<k<\ell
$$

Claim. $\mathbb{C}\left[G r_{2, n+3}\right]$ has the structure of a type A_{n} cluster algebra. Clusters are each maximal algebraically independent sets of $p_{i j}$'s.

Each have size $(2 n+3)$ where $(n+3)$ of the variables are frozen and n of them are exchangeable.

More Matrix Minors: Coordinate Ring of Grassmannian

Cluster algebra structure of $G r_{2, n+3}$ as a triangulated $(n+3)$-gon.
Frozen Variables / Coefficients \longleftrightarrow sides of the $(n+3)$-gon
Cluster Variables $\longleftrightarrow\left\{p_{i j}:|i-j| \neq 1 \bmod (n+3)\right\} \longleftrightarrow$ diagonals

More Matrix Minors: Coordinate Ring of Grassmannian

Cluster algebra structure of $G r_{2, n+3}$ as a triangulated $(n+3)$-gon.
Frozen Variables / Coefficients \longleftrightarrow sides of the $(n+3)$-gon
Cluster Variables $\longleftrightarrow\left\{p_{i j}:|i-j| \neq 1 \bmod (n+3)\right\} \longleftrightarrow$ diagonals
Seeds \longleftrightarrow triangulations of the $(n+3)$-gon
Clusters \longleftrightarrow Set of $p_{i j}$'s corresponding to a triangulation

Can exchange between various clusters by flipping between triangulations.

From Cluster Variables to F-polynomials

If we start with a framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and the intial cluster $\left\{x_{1}, \ldots, x_{N}\right\}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$, we iterate cluster mutation with the extra restriction of disallowing mutation at vertices i^{\prime}.

From Cluster Variables to F-polynomials

If we start with a framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and the intial cluster $\left\{x_{1}, \ldots, x_{N}\right\}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$, we iterate cluster mutation with the extra restriction of disallowing mutation at vertices i^{\prime}.

Consequently, the binomial exchange relation for cluster mutation

$$
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
$$

will involve $y_{1}, y_{2}, \ldots, y_{n}$ in the numerator, but never in the denominator.

From Cluster Variables to F-polynomials

If we start with a framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and the intial cluster $\left\{x_{1}, \ldots, x_{N}\right\}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$, we iterate cluster mutation with the extra restriction of disallowing mutation at vertices i^{\prime}.

Consequently, the binomial exchange relation for cluster mutation

$$
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
$$

will involve $y_{1}, y_{2}, \ldots, y_{n}$ in the numerator, but never in the denominator.
By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\}
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} .
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} . \\
& \left\{F_{1}, F_{2}\right\}=\{1, \quad 1\}
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} . \\
& \left\{F_{1}, F_{2}\right\}=\{1,1\} \rightarrow^{\mu_{1}}\left\{y_{1}+1,1\right\}
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
& x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} . \\
& \left\{F_{1}, F_{2}\right\}=\{1,1\} \rightarrow^{\mu_{1}}\left\{y_{1}+1,1\right\} \rightarrow^{\mu_{2}}\left\{y_{1}+1, \quad y_{1} y_{2}+y_{1}+1\right\}
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\}
$$

$$
x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} .
$$

$$
\begin{aligned}
& \left\{F_{1}, F_{2}\right\}=\{1,1\} \rightarrow^{\mu_{1}}\left\{y_{1}+1,1\right\} \rightarrow^{\mu_{2}}\left\{y_{1}+1, y_{1} y_{2}+y_{1}+1\right\} \\
& \rightarrow^{\mu_{1}}\left\{y_{2}+1, \quad y_{1} y_{2}+y_{1}+1\right\} \rightarrow^{\mu_{2}}\left\{y_{2}+1,1\right\}
\end{aligned}
$$

From Cluster Variables to F-polynomials

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example 1: Cluster Algebra of Type A_{2} with principal coefficients

$$
\begin{gathered}
\left\{x_{1}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{2}\right\} \rightarrow\left\{x_{3}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{4}\right\} \rightarrow\left\{x_{5}, x_{1}\right\} \rightarrow\left\{x_{2}, x_{1}\right\} \\
x_{3}=\frac{y_{1}+x_{2}}{x_{1}}, \quad x_{4}=\frac{y_{1} y_{2} x_{1}+y_{1}+x_{2}}{x_{1} x_{2}}, x_{5}=\frac{y_{2} x_{1}+1}{x_{2}} .
\end{gathered}
$$

$$
\left\{F_{1}, F_{2}\right\}=\{1, \quad 1\} \rightarrow^{\mu_{1}}\left\{y_{1}+1, \quad 1\right\} \rightarrow^{\mu_{2}}\left\{y_{1}+1, \quad y_{1} y_{2}+y_{1}+1\right\}
$$

$$
\rightarrow^{\mu_{1}}\left\{y_{2}+1, \quad y_{1} y_{2}+y_{1}+1\right\} \rightarrow^{\mu_{2}}\left\{y_{2}+1,1\right\} \rightarrow^{\mu_{1}}\{1, \equiv 1\}
$$

c-vectors

Given a framed quiver \widetilde{Q} and its images under a sequence of mutations, we define the c-vectors associated to the seed t by

$$
\mathbf{c}_{\mathbf{j}, \mathbf{t}}=\left[c_{1 j}, c_{2 j}, \ldots, c_{n j}\right]^{T}
$$

where $c_{i j}=\#$ arrows from $i^{\prime} \rightarrow j$.

c-vectors

Given a framed quiver \widetilde{Q} and its images under a sequence of mutations, we define the c-vectors associated to the seed t by

$$
\mathbf{c}_{\mathbf{j}, \mathbf{t}}=\left[c_{1 j}, c_{2 j}, \ldots, c_{n j}\right]^{T}
$$

where $c_{i j}=$ \#arrows from $i^{\prime} \rightarrow j$. Equivalently, $\mathbf{c}_{\mathbf{j}, \mathrm{t}}$ is the j th column of the bottom half of the $2 n$-by- n exchange matrix associated to seed t.

c-vectors

Given a framed quiver \widetilde{Q} and its images under a sequence of mutations, we define the c-vectors associated to the seed t by

$$
\mathbf{c}_{\mathbf{j}, \mathbf{t}}=\left[c_{1 j}, c_{2 j}, \ldots, c_{n j}\right]^{T}
$$

where $c_{i j}=$ \#arrows from $i^{\prime} \rightarrow j$. Equivalently, $\mathbf{c}_{\mathbf{j}, \mathrm{t}}$ is the j th column of the bottom half of the $2 n$-by- n exchange matrix associated to seed t.

In particular, the initial c-vectors, for seed t_{0}, equal unit vectors

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{c}_{\mathbf{n}, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right],
$$

and then recursively c-vectors mutate alongside quivers and exchange matrices.

c-vectors

Given a framed quiver \widetilde{Q} and its images under a sequence of mutations, we define the c-vectors associated to the seed t by

$$
\mathbf{c}_{\mathbf{j}, \mathbf{t}}=\left[c_{1 j}, c_{2 j}, \ldots, c_{n j}\right]^{T}
$$

where $c_{i j}=$ \#arrows from $i^{\prime} \rightarrow j$. Equivalently, $\mathbf{c}_{\mathbf{j}, \mathrm{t}}$ is the j th column of the bottom half of the $2 n$-by- n exchange matrix associated to seed t.

In particular, the initial c-vectors, for seed t_{0}, equal unit vectors

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{c}_{\mathbf{n}, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right],
$$

and then recursively c-vectors mutate alongside quivers and exchange matrices. Letting $\mathbf{c}_{\mathbf{j}, \mu_{\mathbf{k}} \mathbf{t}}=\left[c_{1 j}^{\prime}, c_{2 j}^{\prime}, \ldots, c_{n j}^{\prime}\right]^{T}$ for each $1 \leq j \leq n$, we have

$$
c_{i j}^{\prime}=\left\{\begin{array}{l}
-c_{i j}=-c_{i k} \text { if } j=k \\
c_{i j}+\left[c_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-c_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\begin{aligned}
t_{0} & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3} & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$,

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \\
& \mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
\end{aligned}
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

$$
\mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{3}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right],
$$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

$$
\mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{3}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{4}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right],
$$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 1 Revisited: c-vectors for $1 \rightarrow 2$

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]
$$

$$
\mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{3}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{4}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{5}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 2 Revisited: c-vectors for $1 \Rightarrow 2$

$$
\begin{gathered}
t_{0}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow \ldots
\end{gathered}
$$

Example 2 Revisited: c-vectors for $1 \Rightarrow 2$

$$
\begin{gathered}
t_{0}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow \ldots \\
\mathbf{c}_{\mathbf{1}, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
\end{gathered}
$$

Example 2 Revisited: c-vectors for $1 \Rightarrow 2$

$$
\begin{gathered}
t_{0}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow \ldots \\
\mathbf{c}_{\mathbf{1}, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{1}, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right]
\end{gathered}
$$

Example 2 Revisited: c-vectors for $1 \Rightarrow 2$

$$
\begin{gathered}
t_{0}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow \ldots \\
\mathbf{c}_{\mathbf{1}, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{1}, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{\mathbf{1}, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
\end{gathered}
$$

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For $1 \Rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \cdots$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
$$

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For $1 \Rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \cdots$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
$$

Theorem (Derksen-Weyman-Zelevinsky 2010) Each c-vector consists exclusively of nonnegative entries or exclusively of nonpositive entries.

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For $1 \Rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \cdots$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
$$

Theorem (Derksen-Weyman-Zelevinsky 2010) Each c-vector consists exclusively of nonnegative entries or exclusively of nonpositive entries.

Sign Coherence implies we can assign a sign $\epsilon_{j, t_{r}} \in\{ \pm 1\}$ to each $\mathbf{c}_{\mathbf{j}, \mathbf{t}_{\mathbf{r}}}$.

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For $1 \Rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \cdots$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
$$

Theorem (Derksen-Weyman-Zelevinsky 2010) Each c-vector consists exclusively of nonnegative entries or exclusively of nonpositive entries.

Sign Coherence implies we can assign a sign $\epsilon_{j, t_{r}} \in\{ \pm 1\}$ to each $\mathbf{c}_{\mathbf{j}, \mathbf{t}_{\mathbf{r}}}$.
Note: Conjectured by Fomin-Zelevinsky in Cluster Algebras IV, 2006, and proven in the skew-symmetrizable case by Gross-Hacking-Keel-Kontsevich.

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{\ell}} t_{\ell}$.

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization: Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.

$$
\text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{c} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right|} .
$$

Also see [Nagao10], [Keller12], and [Reading18].

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i 2}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{i} ; t_{e}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:

$$
\begin{aligned}
& \text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{c_{1} \cdot B_{Q}\left|c_{k}\right| L_{2}^{c_{2}} \cdot B_{Q}\left|c_{k}\right| \ldots L_{k-1}^{c_{k-1}} \cdot B_{Q}\left|c_{k}\right|} \text { for } k \geq 2 . \\
& \text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \cdot g_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right|} .
\end{aligned}
$$

Also see [Nagao10], [Keller12], and [Reading18].
Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$ or $\mathbf{g}_{\mathbf{p}}$) denotes the p th c -vector (resp. the normalized c -vector $\epsilon_{p} \mathbf{c}_{\mathrm{p}}$ or the g -vector) along the mutation sequence $\bar{\mu}$,

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow{ }^{\mu_{1}} t_{1} \rightarrow^{\mu_{i}} \ldots t_{\ell-1} \rightarrow{ }^{\mu_{i}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:

$$
\begin{gathered}
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right| \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \text { for } k \geq 2 .} \\
\text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| .
\end{gathered}
$$

Also see [Nagao10], [Keller12], and [Reading18].
Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$ or $\mathbf{g}_{\mathbf{p}}$) denotes the p th c-vector (resp. the normalized c -vector $\epsilon_{p} \mathbf{c}_{\mathbf{p}}$ or the g-vector) along the mutation sequence $\bar{\mu}, B_{Q}$ denotes the exchange matrix associated to Q before any mutations,

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i 2}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

Then the F -polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:

$$
\begin{gathered}
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \ldots L_{k-1}^{\mathbf{c}_{k-1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \text { for } k \geq 2 . \\
\text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| .}
\end{gathered}
$$

Also see [Nagao10], [Keller12], and [Reading18].
Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$ or $\mathbf{g}_{\mathbf{p}}$) denotes the p th c-vector (resp. the normalized c -vector $\epsilon_{p} \mathbf{c}_{\mathbf{p}}$ or the g-vector) along the mutation sequence $\bar{\mu}, B_{Q}$ denotes the exchange matrix associated to Q before any mutations, $\mathbf{a} \cdot \mathbf{b}$ denotes ordinary dot product,

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i 2}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

Then the F -polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:

$$
\begin{gathered}
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \ldots L_{k-1}^{\mathbf{c}_{k-1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \text { for } k \geq 2 . \\
\text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y}\left|\mathbf{c}_{\ell}\right| .
\end{gathered}
$$

Also see [Nagao10], [Keller12], and [Reading18].
Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$ or $\mathbf{g}_{\mathbf{p}}$) denotes the p th c-vector (resp. the normalized c -vector $\epsilon_{p} \mathbf{c}_{\mathbf{p}}$ or the g-vector) along the mutation sequence $\bar{\mu}, B_{Q}$ denotes the exchange matrix associated to Q before any mutations, $\mathbf{a} \cdot \mathbf{b}$ denotes ordinary dot product, and $\mathbf{y}^{\left(d_{1}, d_{2}, \ldots, d_{n}\right)}$ is shorthand for $y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{n}^{d_{n}}$.

F-polynomials from C-Vectors

Theorem (Based on Gupta '18): Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i 2}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.
Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{i} ; t_{e}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors (and g-vectors), followed by a monomial specilization:
Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{c_{1} \cdot B_{Q}\left|c_{k}\right|} L_{2}^{c_{2} \cdot B_{Q}\left|c_{k}\right| \ldots L_{k-1}^{c_{k-1}} \cdot B_{Q}\left|c_{k}\right|}$ for $k \geq 2$.

$$
\text { Then } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \cdot g_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z,=y\left|c_{\ell}\right|} .
$$

Also see [Nagao10], [Keller12], and [Reading18].
Note: Before the monomial specialization, the L_{j} 's and $F_{i_{\ell}, t_{e}}$'s may be rational functions in the z_{i} 's.

Note 2: g-vectors to be discussed later.

Type A_{2} Quiver Example

$$
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right| L_{2}^{\mathbf{c}_{2}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right| \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \text { for } k \geq 2
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$.

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{3}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{gathered}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
& B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& L_{1}=1+z_{1},
\end{aligned}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
& B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=
\end{aligned}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=\frac{1+z_{1}+z_{2}}{1+z_{1}}
\end{gathered}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=\frac{1+z_{1}+z_{2}}{1+z_{1}} \\
& L_{3}=1+z_{3} L_{1}^{-1} L_{2}^{-1}=
\end{aligned}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=\frac{1+z_{1}+z_{2}}{1+z_{1}} \\
L_{3}=1+z_{3} L_{1}^{-1} L_{2}^{-1}=1+\frac{z_{3}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}}=
\end{gathered}
$$

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=\frac{1+z_{1}+z_{2}}{1+z_{1}} \\
L_{3}=1+z_{3} L_{1}^{-1} L_{2}^{-1}=1+\frac{z_{3}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{c}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{gathered}
$$

$L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=$

Type A_{2} Quiver Example (continued)

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

$$
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=$

Type A_{2} Quiver Example (continued)

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

$$
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{3}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}$

Type A_{2} Quiver Example (continued)

$$
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \text { for } k \geq 2
$$

$$
\text { Supoose } B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and } \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \text {. Then }
$$

$$
c_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], c_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] c_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], c_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], c_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

$$
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{3}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$$
L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
L_{5}=1+z_{5} L_{1}^{-1} L_{2}^{-1} L_{3}^{0} L_{4}^{1}=
$$

Type A_{2} Quiver Example (continued)

$$
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \text { for } k \geq 2
$$

$$
\text { Supoose } B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and } \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \text {. Then }
$$

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], c_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

$$
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$$
L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
L_{5}=1+z_{5} L_{1}^{-1} L_{2}^{-1} L_{3}^{0} L_{4}^{1}=1+\frac{z_{5}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}} \frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

Type A_{2} Quiver Example (continued)

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], c_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

$$
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$$
L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
L_{5}=1+z_{5} L_{1}^{-1} L_{2}^{-1} L_{3}^{0} L_{4}^{1}=1+\frac{z_{5}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}} \frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y} \mathbf{c}_{\ell} \mid \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i \ell ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1},
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}, \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y} \mathbf{c}_{\mathbf{1}}\left|, \ldots, z_{\ell}=y\right| \mathbf{c}_{\ell} \mid \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2},
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y} \mathbf{c}_{\ell} \mid \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2} \\
F_{3}=L_{2} L_{3}=
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2} \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}},
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y} \mathbf{c}_{\mathbf{1}}\left|, \ldots, z_{\ell}=y\right| \mathbf{c}_{\ell} \mid \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2} \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}} \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}} \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2} \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i \ell ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}, \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i \ell ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y} \mid \mathbf{c}_{\mathbf{c}_{1}\left|, \ldots, z_{\ell}=y\right| \mathbf{c}_{\ell} \mid} \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Based on $\epsilon_{3}=-1, \epsilon_{4}=+1, \epsilon_{5}=+1$, and B_{Q} as above, we get

$$
F_{3} F_{1}=F_{2}+z_{3}, \quad F_{4} F_{2}=z_{4} F_{3}+1, \quad F_{5} F_{3}=z_{5} F_{4}+1,
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y| |_{\ell} \mid} \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Based on $\epsilon_{3}=-1, \epsilon_{4}=+1, \epsilon_{5}=+1$, and B_{Q} as above, we get

$$
F_{3} F_{1}=F_{2}+z_{3}, \quad F_{4} F_{2}=z_{4} F_{3}+1, \quad F_{5} F_{3}=z_{5} F_{4}+1,
$$

and these recurrences are valid for these expressions as rational functions.

Type A_{2} Quiver Example (continued)

$$
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} ; \varepsilon_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right|}
$$

$$
\begin{gathered}
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Letting $z_{1}=y_{1}, z_{2}=y_{1} y_{2}, z_{3}=y_{2}, z_{4}=y_{1}, z_{5}=y_{2}$, we get polynomials

$$
F_{1}=y_{1}+1, \quad F_{2}=y_{1} y_{2}+y_{1}+1, \quad F_{3}=y_{2}+1, \quad F_{4}=1, \quad F_{5}=1 .
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y^{\left|c_{\ell}\right|} \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Motivation for REU Problem 3: What is a combinatorial or geometric interpretation of the rational functions $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ or $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ (in terms of z_{i} 's), the latter of which specialize to F-polynomials?

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right|} \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Motivation for REU Problem 3: What is a combinatorial or geometric interpretation of the rational functions $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ or $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ (in terms of z_{i} 's), the latter of which specialize to F-polynomials?

Five Minute Coffee Break

F-polynomials from C-Vectors (2nd Version)

Theorem (Based on Gupta '18) : Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i}} t_{\ell}$.

$$
\begin{gathered}
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{c_{1} \cdot B_{Q}\left|c_{k}\right|} L_{2}^{c_{2} \cdot B_{Q}\left|c_{k}\right| \ldots L_{k-1}^{c_{k-1} \cdot} \cdot B_{Q}\left|c_{k}\right|} \text { for } k \geq 2 \\
\text { and } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \cdot g_{\ell}}\right|_{z_{1}=y}\left|c_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right| .
\end{gathered}
$$

Note: g-vectors to be discussed later.

F-polynomials from C-Vectors (2nd Version)

Theorem (Based on Gupta '18) : Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i 2}} \ldots t_{\ell-1} \rightarrow{ }^{\mu_{i}} t_{\ell}$.

$$
\begin{gathered}
\text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{c_{1} \cdot B_{Q}\left|c_{k}\right|} L_{2}^{c_{2} \cdot B_{Q}\left|c_{k}\right| \ldots L_{k-1}^{c_{k-1}} \cdot B_{Q}\left|c_{k}\right|} \text { for } k \geq 2 \\
\text { and } F_{i_{e} ; t_{e}}=\left.\left.\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \mathbf{g}_{\ell}}\right|_{z_{1}=y}\right|_{c_{1} \mid, \ldots, z_{\ell}=y}\right|_{c_{l} \mid} .
\end{gathered}
$$

Note: g-vectors to be discussed later.
REU Exercise \# 3.2: Use the Generalized Binomial Theorem and the above product expansion for $F_{i ;} ; t_{\ell}$ to derive the following power series expansion (which appears in a slightly different form in Gupta '18):

$$
F_{i_{\ell}, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\begin{array}{c}
\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)
\end{array}\right) \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

Kronecker Quiver Example (via Power Series Expansion)

$$
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\begin{array}{c}
\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{\substack{\ell=j+1 \\
m_{j}}}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)
\end{array}\right) \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i e}$.

Kronecker Quiver Example (via Power Series Expansion)

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)\right) \mathbf{y}^{m_{j}^{\ell}}{ }^{\ell=1} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right| .
$$

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{e}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$,
and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$.

Kronecker Quiver Example (via Power Series Expansion)

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{\substack{\ell \\ m_{j}+1}}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)\right) \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{j}\right|} .
$$

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{e}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$, and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$. Hence
$\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-\ell \\ \ell+1\end{array}\right]=\ell-j+1, \mathbf{c}_{\mathbf{j}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-2 k+2 \\ -2 k\end{array}\right]=2(j-k)$.

Kronecker Quiver Example (via Power Series Expansion)

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{\substack{\ell=j+1 \\ m_{j}}}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)\right) \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathrm{j}}\right|} .
$$

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{e}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{c}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$, and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$. Hence
$\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-\ell \\ \ell+1\end{array}\right]=\ell-j+1, \mathbf{c}_{\mathbf{j}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-2 k+2 \\ -2 k\end{array}\right]=2(j-k)$.
Consequently, we simplify the formula in the Kronecker case to

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

Kronecker Quiver Example (continued)

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z} \geq 0} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

$$
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=}
$$

Kronecker Quiver Example (continued)

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z} \geq 0} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

$$
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=} 1+y_{1}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z} \geq 0} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=} 1+y_{1} \\
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}} \stackrel{?}{=}
\end{gathered}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=} 1+y_{1} \\
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}} \stackrel{?}{=} 1+2 y_{1}+y_{1}^{2}+y_{1}^{2} y_{2} .
\end{gathered}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=} 1+y_{1} \\
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}} \stackrel{?}{=} 1+2 y_{1}+y_{1}^{2}+y_{1}^{2} y_{2} . \\
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}} \stackrel{?}{=}
\end{gathered}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}} \stackrel{?}{=} 1+y_{1} \\
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}} \stackrel{?}{=} 1+2 y_{1}+y_{1}^{2}+y_{1}^{2} y_{2} . \\
F_{1 ; t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}} \stackrel{?}{=} \\
1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .
\end{gathered}
$$

This power series expansion of $F_{i, i t}$ leaves the polynomiality (finiteness of the sum) and positivity of the coefficients as surprising consequences,

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

$$
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}}=\underline{1+2 y_{1}+y_{1}^{2}}+\underline{y_{1}^{2} y_{2}}
$$

The two underlined contributions correspond to $m_{2}=0$ and $m_{2}=1$, respectively. Analogously, there are no contributions for $m_{2} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

$$
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}}=\underline{1+2 y_{1}+y_{1}^{2}}+\underline{y_{1}^{2} y_{2}}
$$

The two underlined contributions correspond to $m_{2}=0$ and $m_{2}=1$, respectively. Analogously, there are no contributions for $m_{2} \geq 2$.

The first three terms correspond to $m_{1}=0, m_{1}=1, m_{1}=2$, respectively, and there are no contributions for $m_{1} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .}
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1 ; t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .}
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

However, in addition we get an infinite number of contributions

$$
\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+4} y_{2}^{2}+\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+3} y_{2}^{2} ; \quad \text { recall } \quad\binom{-1}{m_{1}}=(-1)^{m_{1}}
$$

arising when $m_{2}=2, m_{3}=0$ or $m_{2}=0, m_{3}=1$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1 ; t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .}
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

However, in addition we get an infinite number of contributions

$$
\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+4} y_{2}^{2}+\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+3} y_{2}^{2} ; \quad \text { recall } \quad\binom{-1}{m_{1}}=(-1)^{m_{1}}
$$

arising when $m_{2}=2, m_{3}=0$ or $m_{2}=0, m_{3}=1$. This telescoping infinite sum vanishes except for the term of $y_{1}^{3} y_{2}^{2}$ for $m_{1}=0, m_{2}=0, m_{3}=1$.

Kronecker Quiver Example (continued)

The formulae continue as
$F_{2 ; t_{4}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4} \in \mathbb{Z}_{\geq 0}}\binom{4-2 m_{2}-4 m_{3}-6 m_{4}}{m_{1}}\binom{3-2 m_{3}-4 m_{4}}{m_{2}}$

$$
\begin{gathered}
\times\binom{ 2-2 m_{4}}{m_{3}}\binom{1}{m_{4}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}} \\
F_{1 ; t_{5}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4}, m_{5} \in \mathbb{Z}_{\geq 0}}\binom{5-2 m_{2}-4 m_{3}-6 m_{4}-8 m_{5}}{m_{1}}\binom{4-2 m_{3}-4 m_{4}-6 m_{5}}{m_{2}} \times \\
\binom{3-2 m_{4}-4 m_{5}}{m_{3}}\binom{2-2 m_{5}}{m_{4}}\binom{1}{m_{5}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}+5 m_{5}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}+4 m_{5}}
\end{gathered}
$$

Kronecker Quiver Example (continued)

The formulae continue as
$F_{2 ; t_{4}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4} \in \mathbb{Z}_{\geq 0}}\binom{4-2 m_{2}-4 m_{3}-6 m_{4}}{m_{1}}\binom{3-2 m_{3}-4 m_{4}}{m_{2}}$

$$
\times\binom{ 2-2 m_{4}}{m_{3}}\binom{1}{m_{4}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}}
$$

$$
F_{1 ; t_{5}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4}, m_{5} \in \mathbb{Z}_{\geq} \geq 0}\binom{5-2 m_{2}-4 m_{3}-6 m_{4}-8 m_{5}}{m_{1}}\binom{4-2 m_{3}-4 m_{4}-6 m_{5}}{m_{2}} \times
$$

$$
\binom{3-2 m_{4}-4 m_{5}}{m_{3}}\binom{2-2 m_{5}}{m_{4}}\binom{1}{m_{5}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}+5 m_{5}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}+4 m_{5}}
$$

$F_{1 ; t_{5}}$ includes terms such as $6 y_{1}^{5} y_{2}^{3}-2 y_{1}^{5} y_{2}^{3}=4 y_{1}^{5} y_{2}^{3}$ in its expansion, corresponding to ($\left.m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right)=(0,1,1,0,0)$ and ($1,0,0,1,0$), respectively. In particular, the contributions from negative binomial coefficients yield a positive term, yet arises from a non-trivial difference.

More on the Kronecker Quiver Example

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i \ell ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z} \geq 0} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

More on the Kronecker Quiver Example

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z} \geq 0} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

We now switch gears and discuss a formula for q-binomial coefficients

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n+1}\right)\left(1-q^{n+2}\right) \cdots\left(1-q^{n+k}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}
$$

Onto q-Binomial Coefficients

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i \nless ; ;_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}}
$$

We now switch gears and discuss a formula for q-binomial coefficients

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+\sum_{j=0}^{i-1} 2(i-j) m_{k-j}+m_{k-i} \\
m_{k-i}
\end{array}\right]_{q}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition of k which contains m_{i} occurrences of i,

Onto q-Binomial Coefficients

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i \nless ; ;_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}}
$$

We now switch gears and discuss a formula for q-binomial coefficients

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+\sum_{j=0}^{i-1} 2(i-j) m_{k-j}+m_{k-i} \\
m_{k-i}
\end{array}\right]_{q}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition of k which contains m_{i} occurrences of i, and $n(\lambda)=\sum_{i=1}^{k}(i-1) \lambda_{i}=\sum_{i=1}^{k}\binom{\lambda_{i}^{\prime}}{2}$.

Onto q-Binomial Coefficients

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i_{\ell} ; ;_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}}
$$

We now switch gears and discuss a formula for q-binomial coefficients

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+\sum_{\substack{i-0 \\
m_{k-i}}}^{i-1} 2(i-j) m_{k-j}+m_{k-i}
\end{array}\right]_{q}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition of k which contains m_{i} occurrences of i, and $n(\lambda)=\sum_{i=1}^{k}(i-1) \lambda_{i}=\sum_{i=1}^{k}\binom{\lambda_{i}^{\prime}}{2}$.

Note that $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{K}^{\prime}\right)$ is the conjugate partition and if we write $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$, then $m_{i}=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}$ as well.

Onto q-Binomial Coefficients

For general $\ell \geq 1$, recall the power series expansion formula we derived for $1 \Rightarrow 2$ is

$$
F_{i_{\ell} ; ;_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}}
$$

We now switch gears and discuss a formula for q-binomial coefficients

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+\sum_{\substack{i-0 \\
m_{k-i}}}^{i-1} 2(i-j) m_{k-j}+m_{k-i}
\end{array}\right]_{q}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition of k which contains m_{i} occurrences of i, and $n(\lambda)=\sum_{i=1}^{k}(i-1) \lambda_{i}=\sum_{i=1}^{k}\binom{\lambda_{i}^{\prime}}{2}$.

Note that $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{K}^{\prime}\right)$ is the conjugate partition and if we write $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$, then $m_{i}=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}$ as well.

This is known as the KOH (Kathleen O^{\prime} Hara) Formula,

Onto q-Binomial Coefficients

This is known as the KOH (Kathleen O' Hara) Formula:

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+\sum_{\substack{j=0 \\
m_{k-i}}}^{i-1} 2(i-j) m_{k-j}+m_{k-i}
\end{array}\right]_{q}
$$

Possible Paper Presentations: Kathleen O' Hara, "Unimodality of Gaussian Coefficients: A Constructive Proof' in JCTA (1990)

Zeilberger, "A One-line High School Algebra Proof of the Unimodality of the Gaussian Polynomials", q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York (1989).
I.G. Macdonald, "An Elementary Proof of a q-Binomial Identity", q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York (1989).

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots,\left(\right.$ or specialize cluster variables as $x_{1}=x_{2}=1$)

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

Furthermore, Fibonacci numbers can be decomposed into sums of binomial coefficients: if $F_{1}=F_{2}=1$, and $F_{n+2}=F_{n+1}+F_{n}$, then

$$
F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

Furthermore, Fibonacci numbers can be decomposed into sums of binomial coefficients: if $F_{1}=F_{2}=1$, and $F_{n+2}=F_{n+1}+F_{n}$, then

$$
F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

See Hoggatt-Lind, "Fibonacci and Binomial Properties of Weighted Compositions" from Journal of Combinatorial Theory (1968), or

Gessel-Li, "Compositions and Fibonacci Identities" from Journal of Integer Sequences (2013):

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i \ell ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots,\left(\right.$ or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

The Carlitz q-Fibonacci numbers $F_{n}(q)=\sum_{k=1} q^{(k-1)^{2}}\left[\begin{array}{l}n-k \\ k-1\end{array}\right]_{q}$.

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots,\left(\right.$ or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

The Carlitz q-Fibonacci numbers $F_{n}(q)=\sum_{k=1} q^{(k-1)^{2}}\left[\begin{array}{l}n-k \\ k-1\end{array}\right]_{q}$.
REU Exercise 3.3: a) Compute $F_{n}(q)$ for $3 \leq n \leq 7$.

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i \ell ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots,\left(\right.$ or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

The Carlitz q-Fibonacci numbers $F_{n}(q)=\sum_{k=1} q^{(k-1)^{2}}\left[\begin{array}{l}n-k \\ k-1\end{array}\right]_{q}$.
REU Exercise 3.3: a) Compute $F_{n}(q)$ for $3 \leq n \leq 7$.
b) Prove that for $n \geq 3, F_{n}(q)=F_{n-1}(q)+q^{n-2} F_{n-2}(q)$.

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots,\left(\right.$ or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

The Carlitz q-Fibonacci numbers $F_{n}(q)=\sum_{k=1} q^{(k-1)^{2}}\left[\begin{array}{l}n-k \\ k-1\end{array}\right]_{q}$.
REU Exercise 3.3: a) Compute $F_{n}(q)$ for $3 \leq n \leq 7$.
b) Prove that for $n \geq 3, F_{n}(q)=F_{n-1}(q)+q^{n-2} F_{n-2}(q)$.
c) Give and prove a combinatorial interpretation for $F_{n}(q)$ in terms of counting integer partitions.

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

What if we instead define $\widetilde{F}_{n}(q)=\sum_{k=1} q^{(k-1)}\binom{n-k}{k-1}$?

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers
$1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

What if we instead define $\widetilde{F}_{n}(q)=\sum_{k=1} q^{(k-1)}\binom{n-k}{k-1}$?
REU Exercise 3.4: a) What are $\widetilde{F}_{n}(q)$ for $3 \leq n \leq 7$?

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } \quad F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

What if we instead define $\widetilde{F}_{n}(q)=\sum_{k=1} q^{(k-1)}\binom{n-k}{k-1}$?
REU Exercise 3.4: a) What are $\widetilde{F}_{n}(q)$ for $3 \leq n \leq 7$?
b) Describe a combinatorial interpretation for the $\widetilde{F}_{n}(q)$'s.

Comparing Kronecker Quiver Example and KOH

Recall that if we let $y_{1}=y_{2}=1$ for the Kronecker Quvier $1 \Rightarrow 2$, then the F-polynomials $F_{i_{\ell} ; t_{\ell}}$ specialize to every-other Fibonacci numbers $1,1,2,5,13,34,89, \ldots$, (or specialize cluster variables as $x_{1}=x_{2}=1$)

$$
\text { Note that we also have } F_{n}=\sum_{k=1}\binom{n-k}{k-1}
$$

What if we instead define $\widetilde{F}_{n}(q)=\sum_{k=1} q^{(k-1)}\binom{n-k}{k-1}$?
REU Exercise 3.4: a) What are $\widetilde{F}_{n}(q)$ for $3 \leq n \leq 7$?
b) Describe a combinatorial interpretation for the $\widetilde{F}_{n}(q)$'s.
c) Describe a $\mathbb{Z}[q]$-specialization of the F-polynomials for the Kronecker quiver such that for each $\ell \geq 3$, we have $F_{i_{\ell} ; \ell_{\ell}}$ specializes to $\widetilde{F}_{\ell}(q)$.

Comparing Kronecker Quiver Example and KOH

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq \geq}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

Note that we also have $F_{n}=\sum_{k=1}\binom{n-k}{k-1}$.
Carlitz: $F_{n}(q)=\sum_{k=1}\left[\begin{array}{c}n-k \\ k-1\end{array}\right]_{q}, \quad$ Variant: $\tilde{F}_{n}(q)=\sum_{k=1} q^{(k-1)}\binom{n-k}{k-1}$.
REU Problem \# 3.1: Develop a (q, t)-analogue of KOH formula for binomial coefficients and identify the associated algebraic transformation such that the analogous sum of (q, t)-binomial coefficients match the formulas for $F_{i ; i t_{\ell}}\left(y_{1}, y_{2}\right)$ for the Kronecker quiver.

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{\lambda \vdash k} q^{2 n(\lambda)} \prod_{i=0}^{k-1}\left[\begin{array}{c}
(k-i) n-2 i+m_{k-i}+\sum_{j=0}^{i-1} 2(i-j) m_{k-j} \\
m_{k-i}
\end{array}\right]_{q}
$$

REU Problem \# 3.2: KOH vs MACKOH

There is also hope that a better understanding of how the above power series formula for F-polynomials for Kronecker quivers and the KOH formula for q-Binomial Coefficients and/or q-Fibonacci numbers would help solve an open problem of Dennis Stanton!

REU Problem \# 3.2: KOH vs MACKOH

There is also hope that a better understanding of how the above power series formula for F-polynomials for Kronecker quivers and the KOH formula for q-Binomial Coefficients and/or q-Fibonacci numbers would help solve an open problem of Dennis Stanton!

Note: The KOH is combinatorially proven under the assumption that q-binomial coefficients of the form $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=0$ when $N<0$ and $s \geq 0$.

REU Problem \# 3.2: KOH vs MACKOH

There is also hope that a better understanding of how the above power series formula for F-polynomials for Kronecker quivers and the KOH formula for q-Binomial Coefficients and/or q-Fibonacci numbers would help solve an open problem of Dennis Stanton!

Note: The KOH is combinatorially proven under the assumption that q-binomial coefficients of the form $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=0$ when $N<0$ and $s \geq 0$.

However, if we instead evaluate $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}$, for negative N, as a generalized binomial coefficient, i.e. $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=\frac{\left(1-q^{N}\right)\left(1-q^{N-1}\right) \cdots\left(1-q^{N-s+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{s}\right)}$, then this identity is known as MACKOH (due to lan Macdonald's work).

REU Problem \# 3.2: KOH vs MACKOH

Note: The KOH is combinatorially proven under the assumption that q-binomial coefficients of the form $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=0$ when $N<0$ and $s \geq 0$.

REU Problem \# 3.2: KOH vs MACKOH

Note: The KOH is combinatorially proven under the assumption that
q-binomial coefficients of the form $\left[\begin{array}{l}N \\ s\end{array}\right]_{q}=0$ when $N<0$ and $s \geq 0$.
However, if we instead evaluate $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}$, for negative N, as a generalized binomial coefficient, i.e. $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=\frac{\left(1-q^{N}\right)\left(1-q^{N-1}\right) \cdots\left(1-q^{N-s+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{s}\right)}$, then this identity is known as MACKOH (due to lan Macdonald's work).

Open Problem 5.8 of Dennis Stanton: Find an involution that proves the MACKOH identity implies the KOH. (See http://www-users. math.umn.edu/~ stant001/PAPERS/Prob2019.pdf.)

REU Problem \# 3.2: KOH vs MACKOH

Note: The KOH is combinatorially proven under the assumption that q-binomial coefficients of the form $\left[\begin{array}{l}N \\ s\end{array}\right]_{q}=0$ when $N<0$ and $s \geq 0$.

However, if we instead evaluate $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}$, for negative N, as a generalized binomial coefficient, i.e. $\left[\begin{array}{c}N \\ s\end{array}\right]_{q}=\frac{\left(1-q^{N}\right)\left(1-q^{N-1}\right) \cdots\left(1-q^{N-s+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{s}\right)}$, then this identity is known as MACKOH (due to lan Macdonald's work).

Open Problem 5.8 of Dennis Stanton: Find an involution that proves the MACKOH identity implies the KOH. (See http://www-users. math.umn.edu/~ stant001/PAPERS/Prob2019.pdf.)

Also see the $M=N$ conjecture from mathematical physics as in P. Di Francesco and R. Kedem, "Proof of the Combinatorial Kirillov-Reshetikhin Conjecture", arXiv:0710.4415.pdf

Formula for general Rank Two, i.e. r-Kronecker Case

For the case of $B_{Q}=\left[\begin{array}{cc}0 & r \\ -r & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i e_{e}}$,
$F_{i_{\ell}, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2}^{\sum_{i=1}^{\ell} s_{i-2} m_{i}}$
where $s_{-1}=0, s_{0}=1, s_{k+1}=r s_{k}-s_{k-1}$ for $k \geq 0$.

Formula for general Rank Two, i.e. r-Kronecker Case

For the case of $B_{Q}=\left[\begin{array}{cc}0 & r \\ -r & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{\ell}}$,
$F_{i,, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2}^{\sum_{i=1}^{\ell} s_{i-2} m_{i}}$
where $s_{-1}=0, s_{0}=1, s_{k+1}=r s_{k}-s_{k-1}$ for $k \geq 0$.
REU Problem \# 3.3: Explicitly demonstrate positivity and polynomiality of these power series expressions.

Formula for general Rank Two, i.e. r-Kronecker Case

For the case of $B_{Q}=\left[\begin{array}{cc}0 & r \\ -r & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i}$,
$F_{i \ell, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2} \sum_{i=1}^{\ell} s_{i-2} m_{i}$
where $s_{-1}=0, s_{0}=1, s_{k+1}=r s_{k}-s_{k-1}$ for $k \geq 0$.
REU Problem \# 3.3: Explicitly demonstrate positivity and polynomiality of these power series expressions. Describe how to regroup terms of this power series to match up with known combinatorial formulas for cluster variables or F-polynomials in the rank two case.

REU Problem \# 3.3: Combinatorics for the r-Kronecker

$$
F_{i, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2}^{\sum_{i=1}^{\ell} s_{i-2} m_{i}}
$$

REU Problem \# 3.3: Explicitly demonstrate positivity and polynomiality of these power series expressions. Describe how to regroup terms of this power series to match up with known combinatorial formulas for cluster variables or F-polynomials in the rank two case.

Possible Paper Presentations:
Kyungyong Lee "On Cluster Variables of Rank Two Acyclic Cluster Algebras", Annals of Combinatorics (2012)
Lee-Schiffler "A combinatorial formula for rank 2 cluster variables", Journal of Algebraic Combinatorics (2013)
Lee-Li-Zelevinsky "Greedy elements in rank 2 cluster algebras", Selecta Mathematica (2014)

REU Problem \# 3.3: Combinatorics for the r-Kronecker

$F_{i_{\ell}, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2}^{\sum_{i=1}^{\ell} s_{i-2} m_{i}}$
REU Problem \# 3.3: Explicitly demonstrate positivity and polynomiality of these power series expressions. Describe how to regroup terms of this power series to match up with known combinatorial formulas for cluster variables or F-polynomials in the rank two case.

Kyungyong Lee "On Cluster Variables of Rank Two Acyclic Cluster Algebras", Annals of Combinatorics (2012)

Note: K. Lee's formulas therein utilize binomial coefficients that are set to zero when the top of the binomial coefficient is negative.

REU Problem \# 3.3: Combinatorics for the r-Kronecker

$F_{i, t t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2}^{\sum_{i=1}^{\ell} s_{i-2} m_{i}}$
REU Problem \# 3.3: Explicitly demonstrate positivity and polynomiality of these power series expressions. Describe how to regroup terms of this power series to match up with known combinatorial formulas for cluster variables or F-polynomials in the rank two case.

Kyungyong Lee "On Cluster Variables of Rank Two Acyclic Cluster Algebras", Annals of Combinatorics (2012)

Note: K. Lee's formulas therein utilize binomial coefficients that are set to zero when the top of the binomial coefficient is negative. Hence we see KOH -like behavior where our above power series formulas were assuming generalized binomial coefficients and exhibited MACKOH-like behavior.

Further afield, but two other related

open-ended REU problems on this topic

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0} j=1} \prod_{\substack{\ell=j+1 \\
m_{j}}}^{\ell}\left(\begin{array}{c}
\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{Q}^{\ell}\left|\mathbf{c}_{\mathbf{k}}\right|\right)
\end{array}\right) \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

In the TA session this afternoon g-vectors will be discussed, and how there are "holes" in the cluster fan in the case of infinite type cluster algebras.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

In the TA session this afternoon g-vectors will be discussed, and how there are "holes" in the cluster fan in the case of infinite type cluster algebras. For example, for the Kronecker example, the g-vectors of the form $\left[\begin{array}{c}n \\ -n\end{array}\right]$ for $n \geq 1$ will never occur as \mathbf{g}_{ℓ} associated to the result of finite length mutation sequence.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

However, for $1 \Rightarrow 2$ if we let $\bar{\mu}$ be the infinite sequence $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots$ and $\mathbf{g}_{\ell}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, we get an infinite power series as a result, which can also be expressed as a ratio of two series taken to a limit.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

However, for $1 \Rightarrow 2$ if we let $\bar{\mu}$ be the infinite sequence $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots$ and $\mathbf{g}_{\ell}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, we get an infinite power series as a result, which can also be expressed as a ratio of two series taken to a limit.

In fact, such expressions are examples of infinite path-ordered products in scattering diagrams.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

However, for $1 \Rightarrow 2$ if we let $\bar{\mu}$ be the infinite sequence $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots$ and $\mathbf{g}_{\ell}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, we get an infinite power series as a result, which can also be expressed as a ratio of two series taken to a limit.

In fact, such expressions are examples of infinite path-ordered products in scattering diagrams.

Possible Paper Presentation: Sections 3.2 and 3.3 of Nathan Reading, "A combinatorial appraoch to scattering diagrams", arXiv:1806.05094.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{\ell ;} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

In the TA session this afternoon g-vectors will be discussed, and how there are "holes" in the cluster fan in the case of infinite type cluster algebras.

REU Problem \# 3.4: Develop power series formulas (or expressed as ratios) for missing g-vectors beyond the case of the Kronecker quiver.

REU Problem \# 3.4: F-polynomial formulas in the limit

Consider the original power series expansion for general quivers and mutation sequences:

$$
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\binom{\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)}{m_{j}} \mathbf{y}^{\sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right|}
$$

In the TA session this afternoon g-vectors will be discussed, and how there are "holes" in the cluster fan in the case of infinite type cluster algebras.

REU Problem \# 3.4: Develop power series formulas (or expressed as ratios) for missing g-vectors beyond the case of the Kronecker quiver.

Alternatively, see Sections 6 and 7 of M. Gupta, "A formula for F-Polynomials in terms of C-Vectors and Stabilization of F-Polynomials" for a different approach to obtaining such limits.

Can we better understand the combintorics behind such formulas?

REU Problem \# 3.5: Other Specializations

More Open-ended Question: Are there different specializations of the z_{i} 's in the formuals for L_{k} 's or $F_{i, t t_{l}}$'s, which were naturally rational functions in terms of the z_{i} 's which lead to different families of polynomials that are also of interest?

REU Problem \# 3.5: Other Specializations

More Open-ended Question: Are there different specializations of the z_{i} 's in the formuals for L_{k} 's or $F_{i_{\ell}, t_{l}}$'s, which were naturally rational functions in terms of the z_{i} 's which lead to different families of polynomials that are also of interest?

Or are there other ways to understand these rational functions as generating functions or partition functions (i.e. think statistical mechanics or weighted paths in networks) that would be meaningful in the theory of cluster algebras?

REU Problem \# 3.5: Other Specializations

More Open-ended Question: Are there different specializations of the z_{i} 's in the formuals for L_{k} 's or $F_{i_{\ell}, t_{l}}$'s, which were naturally rational functions in terms of the z_{i} 's which lead to different families of polynomials that are also of interest?

Or are there other ways to understand these rational functions as generating functions or partition functions (i.e. think statistical mechanics or weighted paths in networks) that would be meaningful in the theory of cluster algebras?

As motivation for this last question, cutting edge research of Hamed-He-Lam "Cluster configurations spaces of finite type" in arXiv:2005.11419 discussed a family of rational functions known as f_{γ} 's and a different family of variables (u-variables) that are relevant to both mathematics and physics alike.

Further References

- Meghal Gupta, A formula for F-polynomials in terms of C-Vectors and Stabilization of F-polynomials, REU 2018, arXiv: 1812.01910
- S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients, Compositio Mathematica. 2007.
- B. Keller. Cluster algebras and derived categories, arXiv:1202.4161.
- K. Nagao. Donaldson-Thomas theory and cluster algebras, Duke Mathematical Journal. 2013.
- T. Nakanishi. Periodicities in cluster algebras and dilogarithm identities, Representations of algebras and related topics. 2011.
- I. G. Macdonald, An elementary proof of a q-binomial identity. q-series and partitions (Minneapolis, MN 1988), 73-75, IMA Vol. Math. Appl., 18, Springer, New York, 1989.
- K. Lee. On Cluster Variables of Rank Two Acyclic Cluster Algebras, Annals of Combinatorics. 2012.
- N. Reading. A Combinatorial Approach to Scattering Diagrams, arXiv:1806. 05094.

