Unimodal, log-concave, and Polya frequency property for graphs on cylinders

Defy A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of real numbers is unimodal if for some $s \in[n], \quad a_{0} \leq a_{1} \leq \ldots \leq a_{s} \geq a_{s+1} \leq \ldots \geq a_{n}$.

Plot the points

$$
\left(i, a_{i}\right)
$$

kostta number

- Let $K_{\lambda \mu}=\begin{aligned} & \text { \# of SSYT's of shape } \lambda \\ & \text { and weight } \mu\end{aligned}=\left[x^{\mu}\right]^{n} S_{\lambda}\left(x_{1, \ldots}, x_{n}\right){ }_{n} \gg 0$.

$$
a_{i j}=\left(0, \ldots, \substack{1 \\ \text { in } \\ \text { spot }}_{1,0, \ldots,-1,0 \ldots 0)}^{\substack{i+1 \\ j^{j p o t}}}\right.
$$

then $\left(K_{\lambda}, \mu+K_{i j}\right)_{k \in \mathbb{Z}}$ is animusal.
e. 9 :

$$
\left.\begin{array}{cccccccc}
\begin{array}{cccccc}
\lambda=(S 41) \\
\mu=(433)
\end{array} & \cdots=K_{\lambda 163}\left\langle K_{\lambda, 253}\right. & \langle & K_{\lambda, 343} & =\left\langle{ }_{\lambda, 433}\right\rangle & \left.K_{\lambda, 523}\right\rangle & K_{613}=\ldots \\
i, j=1,2 & \cdots & 0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

t many more examples (posets, poly topes, graph trey, rep theory, alg geom)

Defn 1 Seq is log-concave if $a_{i}{ }^{2} \geq a_{i-1} a_{i+1} \forall i \quad \begin{array}{ll}\Rightarrow 2 \log a_{i} \geq \log a_{i, n}+ \\ \log a_{i+1}\end{array}$
Reu Ex \mid If $\left(a_{i}\right)_{i=0}^{n} \in \mathbb{R}_{>0}$ is log-conave, then it is unimodal. The same holds if $\left(a_{i}\right)_{i=0}^{n} \in \mathbb{R} \geq 0$ has no internal: $(\ldots, \neq 0,0, \neq 0, \ldots)$
"Best" proof of \mid Bps $a_{i}=\# T_{i}$. Construct maps:
uniwodality
ant
$T_{0}$$T_{1} \hookrightarrow \ldots \leftrightarrow T_{S} \hookleftarrow T_{S+1} \hookleftarrow \ldots \leftrightarrow T_{n}$.
(or: switch " \rightarrow " to " \rightarrow " and reverse direction of maps).
"Best" proof of construct maps $T_{i-1} \times T_{i+1} \longrightarrow T_{i} \times T_{i}$

PF S
Defn $\left(a_{i}\right)_{i=0}^{n} \in \mathbb{R}_{\geq 0}$ is a Pólya Frequency if its sequence
generating function $\sum_{i=0}^{n} a_{i} t^{i}$ has only real roots.
$\operatorname{Thm}\left(\begin{array}{c}\text { Edrei, } \\ \text { Thoma } \\ \sim 1950 s\end{array}\right):\left(a_{i}\right)_{i=0}^{n}$ is a P.F.S. $\Leftrightarrow \Longrightarrow$ the in finite matrix \Leftrightarrow real-routed poly

Rok: \Rightarrow not so hard (uses Schur function identities).

* hard.
is totally nonnegative (all minorsare ≥ 0).
$\left.\frac{\operatorname{Reu}}{4.2} E_{x} \right\rvert\,$ P.F.S $\Rightarrow \log$-concave with no internal zeros. ($\left(\underset{E_{x} 4.1}{\Rightarrow}\right.$ unimodal)
 inequalitiés.
A distacting riddle: dedure $n=2$ Edre: - Thoma from quadratic formula
"Best"prouf Give a combinataral inter pretation of the minors
of PFS

Edrei-7homa matrix

Since det is a signed sum, this usually weans canceling out each minus term with a corresponding plus term, and understanding the leftover terms (which will be cervin plusterms).

Eg Lind stwon lemma gives combinatorial interprin of deteranionts. ass non-intersecting paths
leto verst $\quad \underset{\text { sources }}{I} \rightarrow \underset{\text { sinks }}{J}$)

Reu Problem \#4 asks you to explore sequences from graph theory as P.F.S vS log-concave vS unimodal in 3 setups. strongest weakest.
edog-vighted
Def'n Let G be an undirected graph. Terminolugy: dimer \quad edge in G
dimer configuration/matching :collection of edges, each vtx used Oor 1 dimer cover I perteet mathing exactly 1 tine.

Thm ${ }^{\text {Lielmann }}$ Lies For any G, let
$a_{k}:=$ Hof dimer configs on Gusing k dimers.

Thon $\left(a_{k}\right)$ is a PFS.
Rmk: true $\forall G$, no plaravity ets. arsumption

For dimer cover π, by convention direct edges $\bullet \rightarrow 0$
denote by π^{v} same edges but directed $\bullet \longleftarrow 0$ double dimer cover

- $\forall \pi_{1}, \pi_{2}, \quad \pi_{1} \cup \pi_{2}^{v}$ is a union of oriented, simple cycles (and double edges $\because 0$)

Fact \forall dimer $\pi_{1}, \pi_{2}, \pi_{3}$
$h+a r h+\pi_{2}$ han $\pi_{1}-\ln _{2}-\left(L_{1}+\pi_{2}-h+\pi_{3}\right.$
$h t\left(\pi_{1}, \pi_{2}\right)=h t\left(\pi_{1}, \pi_{3}\right)-h t\left(\pi_{2}, \pi_{3}\right)$

Egg $G=\therefore \frac{1-0}{2 \times 2} 0$ admits diver covers:

$\pi 1$

π_{2}

Leu (Explain why $H, V i Z_{2}{ }^{2}$ is always a union of orionted simple cycles. Exercise 4.3

- for $G=$ and
$\because!$
identify all dimer covers t their relative heights.
notjust dimer configurations

Rec	
Problem	Let $a_{k}=\#$ of dimes covers of homer config
nt k.	

4.1 Show that $\left(a_{k}\right)$ is a PFS (for any bip
conjecture - Show that $\left(a_{k}\right)$ is a PFS (for any cylindrial $G \subseteq O$) of
Pylyarskyy - give combinatorial proofs of unimodality, by-concavity, or PFS
Technical: Sos G has edge weights $\left(\mathbb{R}_{>0}\right)$. Define a_{k} as remark a weighted sum. We expect $\left(a_{k}\right)$ is a PFS, and expect flat Edrei-7 hora minors are positive sums of monomials in edge uts.
2×2 minors are so (comsi natwially)
Rev Problem Give combinatorial proof of Heilmann-Lieb the (what do the Edrei- minors
4.2 "count"?), or of otter classical real-rootedness the rems.

Setup $2 \mid G \leq \Theta$ is a directed graph om bedded cylinder all have pritive winding number or ed cycles numb bes.

Rev Problem Establish that $a_{k}=$ \# of k cycles in G is a PFS 4.3
(give combinatorial proofs)
do edge-neighted case...

If $G \subseteq O$ is an undirected graph, a cycle-rooted spanning forest is a spanning suigraph whose corrected components have

Hot vertices = Hot edges (one more edge then a tree
\Rightarrow one cycle
Setup 3
kenyon Let $C_{K}=$ \# of $C R S F \subseteq G$ with $k \wedge$ connected components.
Them 6.1
Then $\quad \sum C_{k}\left(2-t+\frac{1}{t}\right)^{k}$ is real-rooted. (essentili: cycle has)

Den Prob give a combinatorial interpretation of Edrei- Tho na minos
4,4 in this setting (CRSFs).

Furtlos exercises (for later)
Rev Ex - check real-rootedness for 2×2 and 2×3 grid 4.4 graphs in setup 1. Bonus: do with edge veights in 2×2 case.

Rev - Derive a recurrence describing \# of dimer coves of the Ex
4.5 an cylindrical grid

What is the have of this ser of \#S?

- Describe a similar rea-rence for the edge-ceighted $2 x n$ cylindial grid (pick a good naming convention for the edges)

Rev Ex In setup 1,
4,6 When G is the graph

what is a_{i}, \{a it?
Leu Ex 1 Present a proof of $h t\left(\pi_{1}, \pi_{3}\right)-h t\left(\pi_{2}, \pi_{3}\right)=h t\left(\pi, \pi \pi_{2}\right)$, e.g. from kenyon.

Len Ex Present proofideas of the Heilwann-Lieb the 4.8 (original source, Seymour-Chudnousky version, resent updates)

