Real-rootedness of Polynomials from Planar Graphs

Lingxin Cheng, Alan Peng*, Vijay Srinivasan*

August 2020

Outline

(1) Introduction

(2) Results

Log-concave sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all i.

Log-concave sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all i.

If a sequence of nonnegative real numbers is log-concave and has no internal zeros, then it is unimodal.

Log-concave sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all i.

If a sequence of nonnegative real numbers is log-concave and has no internal zeros, then it is unimodal.

Example

The sequence $0,1,2,3, \ldots, 10$ is log-concave. So are $0,1,4,9, \ldots, 100$ and $1,2,4,8, \ldots, 1024$.

Log-concave sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all i.

If a sequence of nonnegative real numbers is log-concave and has no internal zeros, then it is unimodal.

Example

The sequence $0,1,2,3, \ldots, 10$ is log-concave. So are $0,1,4,9, \ldots, 100$ and $1,2,4,8, \ldots, 1024$. A more interesting example is an arbitrary row of Pascal's triangle:

$$
\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n-1},\binom{n}{n}
$$

Log-concave sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all i.

If a sequence of nonnegative real numbers is log-concave and has no internal zeros, then it is unimodal.

Example

The sequence $0,1,2,3, \ldots, 10$ is log-concave. So are $0,1,4,9, \ldots, 100$ and $1,2,4,8, \ldots, 1024$. A more interesting example is an arbitrary row of Pascal's triangle:

$$
\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n-1},\binom{n}{n} .
$$

Another interesting example is the sequence of the (absolute values of the) coefficients of the chromatic polynomial of a finite graph (Huh 2012).

Pólya frequency sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is a Pólya frequency sequence (or PFS) if the polynomial $\sum_{i=0}^{n} a_{i} t^{i}$ has only real roots.

Pólya frequency sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is a Pólya frequency sequence (or PFS) if the polynomial $\sum_{i=0}^{n} a_{i} t^{i}$ has only real roots.

Any Pólya frequency sequence is log-concave with no internal zeros.

Pólya frequency sequences

Definition

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of nonnegative real numbers is a Pólya frequency sequence (or PFS) if the polynomial $\sum_{i=0}^{n} a_{i} t^{i}$ has only real roots.

Any Pólya frequency sequence is log-concave with no internal zeros.

Example

Each row of Pascal's triangle forms a PFS: the sequence $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$ gives the polynomial $(1+t)^{n}$, which has only real roots.

Theorem (Aissen-Schoenberg-Whitney)

The sequence $\left(a_{i}\right)_{i=0}^{n}$ is a Pólya frequency sequence if and only if the associated Aissen-Schoenberg-Whitney matrix

$$
\left(\begin{array}{cccccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n} & 0 & 0 & \cdots \\
0 & a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} & 0 & \cdots \\
0 & 0 & a_{0} & \cdots & a_{n-2} & a_{n-1} & a_{n} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is totally nonnegative.

Graphs on a cylinder

Throughout, our graphs will be planar, bipartite, and embedded on a cylinder.

Interested in "dimer covers" on these graphs.

Dimer covers

Definition

A dimer cover (or perfect matching) of a graph G is a subgraph which contains every vertex of G, and in which every vertex has degree 1.

Graphs on a cylinder

Relative height function

Fix a positive orientation of the cylinder \mathcal{O} (e.g., counterclockwise).

Relative height function

Fix a positive orientation of the cylinder \mathcal{O} (e.g., counterclockwise). In any dimer cover π of G, we orient each edge of π from blue to red.

Relative height function

Fix a positive orientation of the cylinder \mathcal{O} (e.g., counterclockwise). In any dimer cover π of G, we orient each edge of π from blue to red. Let π^{\vee} denote the same dimer cover, but with edges directed from red to blue.

Relative height function

Fix a positive orientation of the cylinder \mathcal{O} (e.g., counterclockwise). In any dimer cover π of G, we orient each edge of π from blue to red. Let π^{\vee} denote the same dimer cover, but with edges directed from red to blue.

Example

Note that for all dimer covers π_{1}, π_{2} of G, the union $\pi_{1} \cup \pi_{2}^{\vee}$ is a union of vertex-disjoint directed cycles.

Example

Note that for all dimer covers π_{1}, π_{2} of G, the union $\pi_{1} \cup \pi_{2}^{\vee}$ is a union of vertex-disjoint directed cycles. We define:

Definition

The (relative) height ht $\left(\pi_{1}, \pi_{2}\right)$ of two dimer covers π_{1}, π_{2} of G equals the number of positively oriented cycles of $\pi_{1} \cup \pi_{2}^{\vee}$ minus the number of negatively oriented cycles of $\pi_{1} \cup \pi_{2}^{\vee}$.

Relative height 2 (previous slide):

Absolute height function

Lemma

For any three dimer covers $\pi_{1}, \pi_{2}, \pi_{3}$ of G, we have $\operatorname{ht}\left(\pi_{1}, \pi_{3}\right)=\operatorname{ht}\left(\pi_{1}, \pi_{2}\right)+\operatorname{ht}\left(\pi_{2}, \pi_{3}\right)$.

Absolute height function

Lemma

For any three dimer covers $\pi_{1}, \pi_{2}, \pi_{3}$ of G, we have $\operatorname{ht}\left(\pi_{1}, \pi_{3}\right)=\operatorname{ht}\left(\pi_{1}, \pi_{2}\right)+\operatorname{ht}\left(\pi_{2}, \pi_{3}\right)$.

- Thus, there exists a dimer cover π_{0} of G such that $\operatorname{ht}\left(\pi, \pi_{0}\right) \geq 0$ for all dimer covers π.

Definition

The absolute height of a dimer cover π of G is given by $\operatorname{ht}(\pi):=h t\left(\pi, \pi_{0}\right)$.
Absolute height of π is independent of the choice of π_{0}.

Absolute height function

Lemma

For any three dimer covers $\pi_{1}, \pi_{2}, \pi_{3}$ of G, we have $\operatorname{ht}\left(\pi_{1}, \pi_{3}\right)=\operatorname{ht}\left(\pi_{1}, \pi_{2}\right)+\operatorname{ht}\left(\pi_{2}, \pi_{3}\right)$.

- Thus, there exists a dimer cover π_{0} of G such that $\operatorname{ht}\left(\pi, \pi_{0}\right) \geq 0$ for all dimer covers π.

Definition

The absolute height of a dimer cover π of G is given by $\operatorname{ht}(\pi):=h t\left(\pi, \pi_{0}\right)$.
Absolute height of π is independent of the choice of π_{0}. Also, it follows that

$$
\operatorname{ht}\left(\pi_{1}, \pi_{2}\right)=h t\left(\pi_{1}\right)-\operatorname{ht}\left(\pi_{2}\right)
$$

Height sequence

- We define the height sequence a_{0}, a_{1}, \ldots of G by letting a_{i} be the number of dimer covers of G with absolute height i.

Height sequence

- We define the height sequence a_{0}, a_{1}, \ldots of G by letting a_{i} be the number of dimer covers of G with absolute height i.
- We can do the same if G has edge weights, which are taken to either be positive real numbers or to be variables. We define the weight $\mathrm{wt}(\pi)$ of a dimer cover π to be the product of the weights of its edges.

Height sequence

- We define the height sequence a_{0}, a_{1}, \ldots of G by letting a_{i} be the number of dimer covers of G with absolute height i.
- We can do the same if G has edge weights, which are taken to either be positive real numbers or to be variables. We define the weight $\mathrm{wt}(\pi)$ of a dimer cover π to be the product of the weights of its edges. Then we let

$$
a_{i}:=\sum_{\substack{\operatorname{dimer} \text { covers } \pi \\ \text { ht }(\pi)=i}} \mathrm{wt}(\pi) .
$$

Outline

(1) Introduction

(2) Results

2×2 minors-weighted

Proposition

The 2×2 minors of the ASW matrix of $\left(a_{i}\right)$ are nonnegative. In particular, $\left(a_{i}\right)$ is log-concave.

2×2 minors-weighted

Proposition

The 2×2 minors of the ASW matrix of $\left(a_{i}\right)$ are nonnegative. In particular, $\left(a_{i}\right)$ is log-concave.

Main idea: let T_{i} be the set of dimer covers of height i. Then there is a weight-preserving injection

$$
T_{i+1} \times T_{i-1} \rightarrow T_{i} \times T_{i}
$$

Example

Now look at "running sum" from the top down.

Example (cont).

Certain 3×3 minors-weighted

Earlier, we stated that we knew the 2×2 minors of the ASW matrix of $\left(a_{i}\right)$ are nonnegative. We also know that two certain 3×3 minors are also nonnegative:

Certain 3×3 minors-weighted

Earlier, we stated that we knew the 2×2 minors of the ASW matrix of $\left(a_{i}\right)$ are nonnegative. We also know that two certain 3×3 minors are also nonnegative:

Proposition

We have

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right) \geq 0, \quad \operatorname{det}\left(\begin{array}{lll}
a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2}
\end{array}\right) \geq 0
$$

PFS-unweighted grid graphs

Proposition

G is an unweighted grid graph $\Longrightarrow\left(a_{i}\right)$ is a PFS.
This is a real-rootedness proof as opposed to one about total nonnegativity.

Acknowledgments

We would like to thank our mentor Chris Fraser, our TA Eric Stucky, and everyone who made the UMN Twin Cities REU possible. We would also like to acknowledge the NSF RTG grant supporting this work, with grant number DMS-1745638.

