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Log-concave sequences

Definition

A sequence a0, a1, . . . , an of nonnegative real numbers is log-concave if
a2i ≥ ai−1ai+1 for all i .

If a sequence of nonnegative real numbers is log-concave and has no
internal zeros, then it is unimodal.

Example

The sequence 0, 1, 2, 3, . . . , 10 is log-concave. So are 0, 1, 4, 9, . . . , 100 and
1, 2, 4, 8, . . . , 1024. A more interesting example is an arbitrary row of
Pascal’s triangle: (

n

0

)
,

(
n

1

)
, . . . ,

(
n

n − 1

)
,

(
n

n

)
.

Another interesting example is the sequence of the (absolute values of the)
coefficients of the chromatic polynomial of a finite graph (Huh 2012).
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Pólya frequency sequences

Definition

A sequence a0, a1, . . . , an of nonnegative real numbers is a Pólya frequency
sequence (or PFS) if the polynomial

∑n
i=0 ai t

i has only real roots.

Any Pólya frequency sequence is log-concave with no internal zeros.

Example

Each row of Pascal’s triangle forms a PFS: the sequence
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
gives the polynomial (1 + t)n, which has only real roots.
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Theorem (Aissen–Schoenberg–Whitney)

The sequence (ai )
n
i=0 is a Pólya frequency sequence if and only if the

associated Aissen–Schoenberg–Whitney matrix
a0 a1 a2 · · · an 0 0 · · ·
0 a0 a1 · · · an−1 an 0 · · ·
0 0 a0 · · · an−2 an−1 an · · ·
...

...
...

. . .
...

...
...

. . .


is totally nonnegative.
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Graphs on a cylinder

Throughout, our graphs will be planar, bipartite, and embedded on a
cylinder.

Interested in “dimer covers” on these graphs.
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Dimer covers

Definition

A dimer cover (or perfect matching) of a graph G is a subgraph which
contains every vertex of G , and in which every vertex has degree 1.
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Graphs on a cylinder
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Relative height function

Fix a positive orientation of the cylinder O (e.g., counterclockwise).

In any
dimer cover π of G , we orient each edge of π from blue to red. Let π∨

denote the same dimer cover, but with edges directed from red to blue.

π1 π∨
2
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Example

Note that for all dimer covers π1, π2 of G , the union π1 ∪ π∨2 is a union of
vertex-disjoint directed cycles.

We define:

Definition

The (relative) height ht(π1, π2) of two dimer covers π1, π2 of G equals the
number of positively oriented cycles of π1 ∪ π∨2 minus the number of
negatively oriented cycles of π1 ∪ π∨2 .

Relative height 2 (previous slide):

+1

+1

0

π1 ∪ π∨
2
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Absolute height function

Lemma

For any three dimer covers π1, π2, π3 of G, we have
ht(π1, π3) = ht(π1, π2) + ht(π2, π3).

Thus, there exists a dimer cover π0 of G such that ht(π, π0) ≥ 0 for
all dimer covers π.

Definition

The absolute height of a dimer cover π of G is given by ht(π) := ht(π, π0).

Absolute height of π is independent of the choice of π0. Also, it follows
that

ht(π1, π2) = ht(π1)− ht(π2)
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Height sequence

We define the height sequence a0, a1, . . . of G by letting ai be the
number of dimer covers of G with absolute height i .

We can do the same if G has edge weights, which are taken to either
be positive real numbers or to be variables. We define the weight
wt(π) of a dimer cover π to be the product of the weights of its
edges.Then we let

ai :=
∑

dimer covers π
ht(π)=i

wt(π).
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2× 2 minors–weighted

Proposition

The 2× 2 minors of the ASW matrix of (ai ) are nonnegative. In particular,
(ai ) is log-concave.

Main idea: let Ti be the set of dimer covers of height i . Then there is a
weight-preserving injection

Ti+1 × Ti−1 → Ti × Ti
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Example

+1

+1

0

Now look at “running sum” from the top down.
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Example (cont).

−1

+1

0
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Certain 3× 3 minors–weighted

Earlier, we stated that we knew the 2× 2 minors of the ASW matrix of
(ai ) are nonnegative. We also know that two certain 3× 3 minors are also
nonnegative:

Proposition

We have

det

a1 a2 a3
a0 a1 a2
0 a0 a1

 ≥ 0, det

a2 a3 a4
a1 a2 a3
a0 a1 a2

 ≥ 0.
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PFS–unweighted grid graphs

Proposition

G is an unweighted grid graph =⇒ (ai ) is a PFS.

This is a real-rootedness proof as opposed to one about total
nonnegativity.
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