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Abstract. The Eisenbud–Goto conjecture states that for a nondegenerate graded prime
ideal p of S = k[x1, . . . , xn], we have reg p ≤ deg p − codim p + 1. While this conjecture is
known to be false in general, it has been proven in several special cases, and is still open
when p is a toric ideal. We first characterize when equality holds for toric ideals in the
cases of monomial curves and complete intersections. Then we provide several necessary
conditions for equality to hold when p has codimension 2.

1. Introduction

Fix an algebraically closed field k of arbitrary characteristic. Let S := k[x] = k[x1, . . . , xn]
be a graded polynomial ring (with the standard grading). For a graded S-module M , we
denote the graded minimal free resolution of M

· · · −→ F2 −→ F1 −→ F0 −→M −→ 0

by F•. Each Fi is a direct sum of twists of S, so we can write Fi =
⊕

j∈Z S(−j)βi,j for some
nonnegative integers βi,j, called the Betti numbers of F•.

The Castelnuovo–Mumford regularity of a finitely generated graded S-module M is defined
by

regM := max{j : βi,i+j 6= 0 for some i}.
It does not depend on the choice of minimal free resolution. For a projective variety X ↪→
Pn−1, we write regX for the Castelnuovo–Mumford regularity of its vanishing ideal. We will
often refer to this quantity simply as the “regularity.” Regularity can be equivalently defined
in terms of local cohomology or sheaf cohomology; however, the definition in terms of Betti
numbers will be most suited to our purposes.

In their 1984 paper [EG84], Eisenbud and Goto made the following conjecture:

Conjecture 1.1. If p is a nondegenerate graded prime ideal of S, then

reg p ≤ deg p− codim p + 1.

In the same paper, they proved this bound holds if p is Cohen-Macaulay. In 2018, Peeva
and McCullough proved that this conjecture is false in general by exhibiting an explicit
counterexample ([MP18]).

While not true in full generality, the conjecture has been proven true in several special
cases. For example, the results of [GLP83] imply the truth of Conjecture 1.1 in the case where
p defines a projective curve. [HH03] resolved the case where S/p is a simplicial semigroup
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ring with isolated singularity, and [BEN12] resolved the case where S/p is simplicial and
seminormal.

It is still an open question whether or not Conjecture 1.1 is true for general toric ideals.

Definition 1.2. Let L ⊆ Zn be a lattice orthogonal to the all-1’s vector (1, 1, . . . , 1) ∈ Zn.
Then L defines a homogeneous lattice ideal

IL := 〈xu − xv : u− v ∈ L〉 ⊆ S.

When the lattice L is saturated (that is, QL ∩ Zn = L), this ideal is prime and we say that
IL is toric.

Fix L ⊆ Zn, and consider the case where L has rank 2. Let B ∈ Zn×2 be a matrix whose
columns form a basis for L, whose entry in the (i, j) position is given by bij. The Gale diagram
GL of L is the collection of Gale vectors, which are the row vectors bi := (bi1, bi2) ∈ Z2. Note
that the Gale diagram is determined up to the action of GL2(Z). The lattice L is saturated if
and only if the Gale vectors span Z2. Throughout the paper, we consider the Gale vectors to
be ordered pairs (i,bi), so that particular vectors bi ∈ Z2 are considered “with multiplicity,”
but for all other purposes we formally treat them just as vectors.

Note that the requirement that L be orthogonal to (1, 1, . . . , 1) implies that L contains
no nonzero nonnegative vectors and that IL defines a projective variety embedded in Pn−1.
It is known that the codimension of IL equals the rank of L.

In the case where codim IL = 2, Conjecture 1.1 is resolved for toric ideals in [PS98] by
using combinatorial objects coming from the lattice L (e.g. the Gale diagram) to describe
the minimal free resolution of IL.

The present paper aims to answer the following question:

Question 1.3. In cases where the inequality of Conjecture 1.1 has been proven for toric
ideals, when is equality achieved?

In Sections §2 and §3, we characterize when equality occurs for toric ideals IL in the cases
where IL defines a curve or a complete intersection variety. In §4, the main section of this
paper, we give combinatorial descriptions of the saturated lattices L that achieve equality
when codim IL = 2 and IL is not Cohen-Macaulay, building on work done in [PS98]. Our
main result is the following:

Theorem 1.4. Let L ⊆ Zn be a saturated lattice such that IL is not Cohen-Macaulay and
any Gale diagram of L contains at least 5 nonzero vectors. If the toric ideal IL achieves
equality in the Eisenbud–Goto conjecture, then there exists a Gale diagram GL of L and a
partition Q1 ∪Q2 ∪Q3 ∪Q4 = GL, where Qi only contains vectors in the ith closed quadrant
for all i, satisfying the following properties:

• the vectors in Q2 ∪Q4 all lie on a single line passing through the origin,
• there exist b1 ∈ Q1,b3 ∈ Q3 and a nonzero u ∈ Z2 such that b1 · u = −b3 · u = 1

and b · u = 0 for all b ∈ (Q1 ∪Q3)− {b1,b3},
• and up to dihedral symmetries, the set {

∑
b∈Qi b : 1 ≤ i ≤ 4} equals either

{(1, 1), (a,−b), (−1,−1), (−a, b)} or {(1, a), (1,−b), (−1,−a), (−1, b)}
for some positive integers a, b.
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In particular, all but two Gale vectors lie on a union of two lines, and the two exceptional
vectors are “close” to one of these lines (that is, they are as close as possible in the Euclidean
metric without being on the line itself). These properties of the Gale diagram are GL2(Z)-
invariant and therefore hold for any Gale diagram of L.

2. Monomial Curves

A nondegenerate toric variety X ↪→ Pn−1 of dimension 1 is (up to a reordering of coordi-
nates) necessarily the closure of the image of a map A1 → Pn−1 of the form

t 7→ [ta1 : ta2 : · · · : tan ]

where a1 = 0, gcd(a2, . . . , an) = 1, and a1 < a2 < · · · < an, and is therefore a monomial
curve. With these assumptions, degX = an.

The results of [HHS10] in conjunction with the general results on curves from [GLP83]
immediately resolve equality for monomial curves. We record the following corollary of their
results.

Proposition 2.1. Let X ↪→ Pn−1 be a toric curve of degree d. Then X achieves equality in
the Eisenbud-Goto conjecture if and only if one of the following holds:

• d ≤ n
• d ≥ n + 1 and, with notation as above, (a1, a2, . . . , an) = (0, 1, 2, . . . , n − 3, d − 1, d)

or (0, 1, d− n+ 3, d− n+ 4, . . . , d).

Proof. By general theory, since X is toric, X is rational.
If d ∈ {n − 1, n}, [GLP83, Theorem 3.1] implies that equality is achieved. So assume

d ≥ n+ 1. Comment 1 at the end of §2 of [GLP83] now says that a necessary condition for
X to achieve equality in EG is that X be smooth. So henceforth assume that X is smooth,
i.e., that a2 = 1 and an−1 = d− 1.

Using the notation of [HHS10], let λ(X) be the length of the longest gap (i.e., the largest
value of ak− ak−1− 1) in S = {a1, a2, · · · , an−1, an} and let ε = max{i : [0, i], [d− i, d] ⊆ S}.
Observe that the sum of all gaps is an − a1 − n + 1 = d − n + 1, so λ(X) = d − n + 1
is achieved if and only if there is only a single gap of positive length. We then see from
[HHS10, Theorem 2.7] that

reg I = reg(S/I) + 1 ≤ λ(X)− 1

ε
+ 3 ≤ d− n+ 3

with equality only if ε = 1 and λ(X) = d− n+ 1. Since there can only be a single gap, and
ε = 1 says that 2 and d− 2 cannot both appear in S, we conclude that the only possibilities
for S are {0, 1, 2, . . . , n− 3, d− 1, d} or {0, 1, d− n+ 3, d− n+ 4, . . . , d} (these are the same
list up to k 7→ d− k).

Finally, we need to know that these cases actually give equality. This is now exactly
implied by the statement of [HHS10, Theorem 3.4] with ε = 1 and p = d− n+ 3. �
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3. Complete Intersections

Proposition 3.1. Let X ↪→ Pn−1 be a nondegenerate complete intersection variety with

regX = degX − codimX + 1.

Then X is either a hypersurface or the intersection of two quadric hypersurfaces.

Proof. Let X be cut out by k equations of degrees d1, . . . , dk ≥ 2. The graded minimal free
resolution of I is given by the Koszul complex E• where

Ek =
⊕

i1<···<ik

S(−di1 − · · · − dik).

From this we see directly that

regX = d1 + · · ·+ dk − k + 1.

Since degX = d1 · · · dk, we arrive at

d1 · · · dk = d1 + · · ·+ dk.

If k = 1, then X is a hypersurface and this is always true. If k = 2, then we get d1d2 = d1+d2
whose only solution is d1 = d2 = 2, forcing X to be the intersection of two quadrics.

If k ≥ 3, there are no solutions. One way to see this is to show that

d1 · · · dk − (d1 + · · ·+ dk) ≥ 2k − 2k

by induction, which is straightforward. �

The following lemma reduces the question to a finite search:

Lemma 3.2. Let n > r and let S := k[x1, . . . , xr] and S ′ := k[x1, . . . , xn] be polynomial rings
with the standard grading. Let I be a homogeneous ideal of S and let I ′ := I ⊗S S ′ be an
ideal of S ′. Then reg I ′ = reg I and deg I ′ = deg I.

Proof. It is easy to see that the Betti tables of I and I ′ are the same; indeed if F• is a minimal
graded resolution of I by free S-modules, then F ′• := F•⊗S S ′ is a graded resolution of I ′ by
free S ′-modules, with syzygies in the same degrees. Let m = (x1, . . . , xr) be a maximal ideal
of S and m′ = (x1, . . . , xn) be a maximal ideal of S ′. By minimality, all maps Fi 7→ Fi−1
land inside mFi−1. It follows that all maps F ′i 7→ F ′i−1 land inside m′F ′i−1 (for example, since
the matrix entries of these maps are the same as those of F•). The statement on regularity
now follows immediately.

We now treat the statement on degrees. By induction, it suffices to treat the case n = r+1.
Then we have S ′/I ′ ∼= (S/I)[xr+1], and the grading on S ′/I ′ is the same whether viewed as
an S-module or an S ′-module. In particular, the mth graded piece of S ′/I ′ is spanned by
elements of the form fxjr+1 where f ∈ S/I has degree m − j. It follows that the Hilbert
functions satisfy hS′/I′(m) =

∑
j≤m hS/I(j). In particular, for m� 0, we see that the Hilbert

polynomials satisfy

PS/I(m) = PS′/I′(m)− PS′/I′(m− 1)

from which it is straightforward that deg I = deg I ′. �
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Corollary 3.3. Let L ⊆ Zn be a lattice whose Gale diagram GL has at least m instances of
the zero vector. Let L′ ⊆ Zn−m be the lattice whose Gale diagram is obtained from GL by
omitting any collection of m zero vectors. Then reg IL′ = reg IL and deg IL′ = deg IL.

Any quadric coming from a lattice has at most four variables in its support (it must be
of the form xixj − x2k or xixj − xkxl up to sign). Then Proposition 3.1 implies that for
any n > 8, there is no saturated lattice L ⊆ Zn with all nonzero Gale vectors defining a
complete intersection variety that achieves equality in the Eisenbud–Goto conjecture. There
are therefore finitely many such lattices. Any saturated lattice giving a complete intersection
variety achieving equality in the Eisenbud–Goto conjecture is equivalent to one of these
finitely many lattices after removing all Gale vectors equal to zero.

4. Codimension-2 Lattice Ideals

In this section, we give some necessary conditions for a codimension-2 toric ideal that is
not Cohen–Macaulay to achieve equality in the Eisenbud–Goto conjecture. The following
result motivates considering the more general class of codimension-2 lattice ideals.

Theorem 4.1 ([PS98, Theorem 7.3 and Proposition 7.7]). Let IL ⊆ k[x1, . . . , xn] be a
codimension-2 lattice ideal that is not Cohen–Macaulay. Then reg IL ≤ deg IL, and the
inequality is strict if IL is toric. Furthermore, if equality holds, then any Gale diagram for
L lies on two lines through the origin in R2.

We now develop the tools that were used in [PS98] to prove the above result, restricting
our attention to the case when IL has codimension 2, equivalently, when L has rank 2. As
usual, we assume that L ⊆ Zn is orthogonal to the all-1’s vector (1, 1, . . . , 1) ∈ Zn.

Let Γ := Zn/L be an abelian group. Note that S, IL, and S/IL are Γ-graded. A fiber is a
set of all monomials of S with a fixed degree C ∈ Γ. Given C ∈ Γ and a monomial xa with
a ∈ C, the monomials of degree C are in bijection with the lattice points in Pa := conv({u ∈
Z2 : Bu ≤ a}). Note that Pa and Pa′ are lattice translates if a − a′ ∈ L, so by considering
polygons up to translation, we define PC := Pa for a ∈ C. We say PC is primitive if it
contains no lattice points other than its vertices.

If IL is a not Cohen–Macaulay, then the projective dimension of the S-module S/IL equals
3. If S/IL has a minimal ith syzygy of degree C, then PC is primitive, and is a parallelogram
if i = 3. In this case, we say that PC is a syzygy quadrangle of IL. It turns out that the
free resolution of S/IL is controlled by the syzygy quadrangles of IL, in a way that is made
precise in [PS98].

Given v,w ∈ Z2 with |det(v,w)| = 1, let [v,w] := conv{(0, 0),v,w,v+w}) be a primitive
parallelogram. Then we have the following:

Proposition 4.2 ([PS98, Proposition 4.1 and Corollary 4.2]). The parallelogram [v,w] is a
syzygy quadrangle if and only if each vertex of [v,w] is supported by at least one vector in
the Gale diagram GL. Furthermore, if IL is not Cohen–Macaulay, then there exists a Gale
diagram GL which intersects each of the four open quadrants; in other words, there exists a
Gale diagram GL for which the unit square [(1, 0), (0, 1)] is a syzygy quadrangle.

We henceforth assume that IL is not Cohen-Macaulay. A crucial insight in the proof of
Theorem 4.1 is that one can reduce to the case of a curve in P3. We briefly outline the
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argument from [PS98] here. Given L ⊆ Zn, let GL := {b1, . . . ,bn} be a Gale diagram for
which the unit square is a syzygy quadrangle attaining the regularity, so that in particular,
by Proposition 4.2, the set GL contains at least vector in each open quadrant. Let GL =
Q1 ∪Q2 ∪Q3 ∪Q4 be a partition of the Gale vectors so that Qi consists only of Gale vectors
in the ith closed quadrant (note that multiple such partitions are possible if there are Gale
vectors on the axes). Then there is a morphism φ : k[x1, . . . , xn] → k[y1, . . . , y4] given by
xj 7→ yi if bj ∈ Qi. This morphism is surjective since each Qi is nonempty, so J := φ(IL) is
an ideal of k[y1, . . . , y4]. Moreover, J has dimension 1.

It is not always true that J is a lattice ideal. However, as discussed in [PS98], the saturation
IL′ := (J : (y1y2y3y4)

∞) is a lattice ideal corresponding to the lattice L′ with Gale diagram
GL′ := {b′1, . . . ,b′4}, where b′i :=

∑
b∈Qi b. It is not hard to show that deg J = deg IL. By

general properties of saturation, it follows that deg IL′ ≤ deg J = deg IL.
It is easy to see that each b′i intersects the ith open quadrant, so the unit square remains

a syzygy quadrangle, and the monomials corresponding to its vertices retain the same total
degree. It follows that reg IL′ ≥ reg IL. It is important to note that regularity can only
strictly increase if the L → L′ reduction process introduces a new syzygy quadrangle.

Thus if Theorem 4.1 holds for n = 4, then

reg IL ≤ reg IL′ ≤ deg IL′ ≤ deg IL

and so the result holds for general r.
By inspecting this reduction process in more detail, we will be able to restrict the possible

Gale diagrams of lattice ideals IL satisfying reg IL = deg IL − 1. The three key results that
allow us to prove Theorem 1.4 are Corollary 4.7 and Propositions 4.9 and 4.11.

Lemma 4.3. Suppose there exists a 1-dimensional associated prime p of J that contains
〈y1y2y3y4〉. Then p = 〈yi, yj〉 for some distinct i, j ∈ {1, 2, 3, 4}.

Proof. Since y1y2y3y4 ∈ p, we have that yi ∈ p for some 1 ≤ i ≤ 4. Let u ∈ Z2 be any
vector in the ith open quadrant, and let a = Bu ∈ L, so that xa+ − xa− ∈ IL. Note
φ(xa+)−φ(xa−) ∈ J , and that it follows from our choice of u that yi has a positive exponent
in the monomial φ(xa+) and has exponent zero in the monomial φ(xa−). Thus, φ(xa+) ∈ p,
and since φ(xa+)− φ(xa−) ∈ p, we have φ(xa−) ∈ p. But φ(xa−) is a nonconstant monomial
in which yi has degree 0, and p is prime, so yj ∈ p for some j 6= i, which means 〈yi, yj〉 ⊆ p.
Since dim p = 1, we must have equality. �

Lemma 4.4. Let i, j ∈ {1, 2, 3, 4} be distinct. Then 〈yi, yj〉 is an associated prime of J if
and only if for all nonzero u ∈ Z2, there is some b ∈ Qi ∪ Qj such that b · u < 0. In
particular, this can hold only if {i, j} = {1, 3}, {2, 4}.

Proof. For i ∈ {1, 2, 3, 4}, let Pi = {j : bj ∈ Qi}. Fix distinct i, j ∈ {1, 2, 3, 4}. Note that
〈yi, yj〉 is an associated prime of J if and only if 〈yi, yj〉 ⊇ J , since if 〈yi, yj〉 ⊇ J , then 〈yi, yj〉
is minimal over J . This occurs if and only if for all nonzero a ∈ L, we have

supp(a+) ∩ (Pi ∪ Pj) 6= ∅ and supp(a−) ∩ (Pi ∪ Pj) 6= ∅.
The forward direction follows from the fact that our constraints on B make it impossible for
there to exist a nonzero a ∈ L such that φ(xa+) = φ(xa−). By considering the negation of
a, we see that 〈yi, yj〉 is an associated prime of J if and only if for all nonzero a ∈ L, we
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have supp(a−) ∩ (Pi ∪ Pj) 6= ∅. Writing a = Bu for some nonzero u ∈ Z2, this is equivalent
to requiring that for all nonzero u ∈ Z2, there is some s ∈ Pi ∪Pj such that bs ·u < 0. Note
this cannot hold if {i, j} = {1, 2}, {2, 3}, {3, 4}, {4, 1}. �

Combining the two previous results, we obtain the following:

Proposition 4.5. We have that deg IL = deg IL′ if and only if there are two nonzero vectors
u13,u24 for which

(Q1 ∪Q3) ⊆ {v ∈ R2 : v · u13 ≥ 0}, (Q2 ∪Q4) ⊆ {v ∈ R2 : v · u24 ≥ 0}.

Proof. Recall that IL′ is a lattice ideal that equals the saturation (J : (y1y2y3y4)
∞). It follows

from [AM69, Proposition 4.9] that deg IL′ = deg J if and only if no 1-dimensional associated
prime of J contains 〈y1y2y3y4〉, so by Lemma 4.3, we see that deg IL′ = deg J if and only if
J does not have an associated prime of the form 〈yi, yj〉 for distinct i, j ∈ {1, 2, 3, 4}. The
desired result then follows from Lemma 4.4 and the fact that deg J = deg IL. �

Lemma 4.6. If deg IL = deg IL′, then every syzygy quadrangle of IL′ (with respect to GL′)
is a syzygy quadrangle of IL (with respect to GL).

Proof. Suppose that IL′ has a syzygy quadrangle which is not a syzygy quadrangle for IL.
Without loss of generality, after translating we may assume that this syzygy quadrangle has
vertices given by 0,v,w,v +w, for some vectors v,w with nonnegative y-coordinates. Since
|det(v,w)| = 1, after translating again if necessary, we may assume that v,w both lie in the
first closed quadrant or in the second closed quadrant. Suppose without loss of generality
that det(v,w) = 1. Let [v,w] denote this syzygy quadrangle.

Assume that v,w both lie in the first closed quadrant. The case where v,w both lie
in the second closed quadrant is similar. By Proposition 4.2, each vertex of the syzygy
quadrangle is supported by some vector in GL′ . Thus there exist vectors b′1,b

′
2,b

′
3,b

′
4 ∈ GL′

such that b′1 · v,−b′2 · v,−b′3 · v,b′4 · v > 0 and b′1 ·w,b′2 ·w,−b′3 ·w,−b′4 ·w > 0. Since
GL′ contains exactly four vectors, one in each open quadrant, we necessarily have that b′i
is the unique vector of GL′ that lies in the ith open quadrant. Since [v,w] is not a syzygy
quadrangle for IL, the Gale diagram GL does not contain an analogous collection of four
vectors b1,b2,b3,b4 satisfying the same inequalities as above. Since GL contains a vector
in each open quadrant, we see that there exist b1,b3 satisfying the conditions. Thus there
either does not exist b2 ∈ GL such that −b2 · v,b2 ·w > 0, or there does not exist b4 ∈ GL
such that b4 · v,−b4 ·w > 0. Assume the first case holds; the second case is similar. This
implies that each b ∈ Q2 either satisfies b · v ≥ 0 or b · w ≤ 0. Since

∑
b∈Q2

b = b′2, we
see that there must exist some nonzero c ∈ Q2 such that c · v ≥ 0, and there exists some
nonzero d ∈ Q2 such that d · w ≤ 0. But these conditions prevent the nonzero vectors
c,d,b′4 from all lying in a single closed half-plane with boundary passing through the origin,
contradicting Proposition 4.5, which asserts the existence of some nonzero u ∈ Z2 such that
0 ≤ u · c,u · d and 0 ≤ u ·

∑
b∈Q4

b = u · b′4. �

We can now prove our first key result.

Corollary 4.7. If reg IL ≥ deg IL − 1, then reg IL′ = reg IL.
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Proof. If reg IL′ > reg IL, then there is a syzygy quadrangle of IL′ that is not a syzygy
quadrangle of IL. Then Lemma 4.6 implies that deg IL′ < deg IL. But then reg IL ≤
deg IL − 2, a contradiction. �

The following lemma allows us to prove our next result, Proposition 4.9, which tells that
if reg IL = deg IL− 1 and certain nonrestrictive technical conditions are satisfied, then there
exists some partition GL = Q1 ∪Q2 ∪Q3 ∪Q4 for which reg IL′ = deg IL′ .

Lemma 4.8. Let L ⊆ Z4 and GL a Gale diagram for which the unit square is a syzygy
quadrangle attaining the regularity and reg IL = deg IL− 1. Then GL either lies on two lines
or has the following form up to reflections over the axes:

GL = {(1, a), (−1, d− 1), (−1, 1− a), (1,−d)}
for some a, d > 1.

Proof. Let C ∈ Z4/L be the multidegree for which PC is the unit square. Then reg IL =
degC − 2 since syzygy quadrangles correspond to third syzygies ([PS98], Theorem 3.4). We
start in the same spirit as [PS98], Proposition 7.7. Suppose the Gale vectors are given by

a = (a1, a2), b = (−b1, b2), c = (−c1,−c2), d = (d1,−d2)
where ai, bi, ci, di > 0 for all i = 1, 2. By rotating 180◦ if necessary, we can WLOG assume
that b2 ≤ d2.

We now have the following chain of comparisons:

deg IL − 1 = reg IL = degC − 2

= a1 + b2 + a2 + d1 − 2

≤ (a1 + d2 − 1) + (a2 + d1 − 1) (1)

≤ a1d2 + a2d1 (2)

= |det(d, a)|
≤ deg IL (3)

There are three inequalities, and hence three possibilities for where the jump by 1 can occur.
We treat these case by case.

Case 1: Inequality occurs at (1). In this case we have the following:

d2 = b2 + 1, (a1 − 1)(d2 − 1) = (a2 − 1)(d1 − 1) = 0, |det(d, a)| = deg IL

Since d2 = b2 + 1, we also have c2 = a2−1. If a2 = 1 then c2 = 0, so we conclude that d1 = 1
and a2 > 1. Similarly if d2 = 1 then b2 = 0 so we conclude that a1 = 1 and b2 > 1. Since
b1 + c1 = a1 + d1 = 2, we conclude that b1 = c1 = 1. Thus the Gale vectors have the form

a = (1, a2), b = (−1, d2 − 1), c = (−1, 1− a2), d = (1,−d2).
Case 2: Inequality occurs at (2). In this case we have the following:

d2 = b2, (a1 − 1)(d2 − 1) + (a2 − 1)(d1 − 1) = 1, |det(d, a)| = deg IL

Now we have c2 = a2.
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• Case 2.1: a1 = 1 and a2 = d1 = 2. Then the Gale vectors have the form

a = (1, 2), b = (−b1, d2), c = (−c1,−2), d = (2,−d2)
We then also have

4 + c1d2 = |det(c,d)| ≤ deg IL = |det(a,d)| = 4 + d2

forcing c1 = 1. We conclude that b1 = 2, so b + d = a + c = 0.
• Case 2.2: d2 = 1 and a2 = d1 = 2. Then the Gale vectors have the form

a = (a1, 2), b = (−b1, 1), c = (−c1,−2), d = (2,−1)

Then we again have

4 + c1 = |det(c,d)| ≤ deg IL = |det(a,d)| = 4 + a1

so c1 ≤ a1. By the same inequality with |det(a,b)|, we obtain b1 ≤ 2. Then

2 + a1 = b1 + c1 ≤ 2 + c1

so a1 ≤ c1. We conclude that a1 = c1. So b1 = 2 and again b + d = a + c.
• Case 2.3: a1 = d2 = 2 and a2 = 1. Proceed as in Case 2.1 to conclude that GL lies

on two lines.
• Case 2.4: a1 = d2 = 2 and d1 = 1. Proceed as in Case 2.2 to conclude that GL lies

on two lines.

Case 3: Inequality occurs at (3). In this case we have the following:

d2 = b2, (a1 − 1)(d2 − 1) = (a2 − 1)(d1 − 1) = 0, |det(d, a)| = deg IL − 1

We have a2 = c2 once again.

• Case 3.1: a1 = a2 = 1. Then the Gale vectors have the form

a = (1, 1), b = (−b1, d2), c = (−c1,−1), d = (d1,−d2)
We now have

c1d1 + d2 = |det(c,d)| ≤ deg IL = |det(d, a)|+ 1 = d1 + d2 + 1

Then either c1 = 1 or (c1, d1) = (2, 1). In the former case, d1 = b1 and the Gale
diagram lies on two lines. In the latter case, b1 = 2 the Gale diagram must be

a = (1, 1), b = (−2, d2), c = (−2,−1), d = (1,−d2)
But now we see that

2d2 + 2 = |det(b, c)| ≤ deg IL = |det(d, a)|+ 1 = d2 + 2

which is absurd, so (c1, d1) = (2, 1) does not occur.
• Case 3.2: a1 = d1 = 1. Since b1 + c1 = a1 + d1 = 2, we conclude that b1 = c1 = 1.

Then the Gale vectors have the form

a = (1, a2), b = (−1, d2), c = (−1,−a2), d = (1,−d2)
and so lie on two lines.
• Case 3.3: a2 = d2 = 1. Proceed as in Case 3.2 to conclude that GL lies on two lines.
• Case 3.4: d1 = d2 = 1. Proceed as in Case 3.1 to conclude that GL lies on two lines.

�
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We now prove our second key result.

Proposition 4.9. Let n ≥ 5 and let L ⊆ Zn be a lattice satisfying the following conditions:

• reg IL = deg IL − 1,
• the Gale diagram GL consists of nonzero vectors,
• the Gale diagram GL is not contained on two lines.

Suppose there is a partition GL = Q1∪Q2∪Q3∪Q4 giving rise to a lattice L′ ⊆ Z4 satisfying
reg IL′ = deg IL′ − 1. Then there is a different choice of partition GL = R1 ∪ R2 ∪ R3 ∪ R4

giving rise to a lattice L′′ ⊆ Z4 satisfying reg IL′′ = deg IL′′.

Proof. First, observe that by construction, the unit square remains a syzygy quadrangle of
GL′ . Since reg IL′ = reg IL by Corollary 4.7, it follows that the unit square still attains
the regularity. We therefore know that GL′ is of one of the forms described in Lemma 4.8.
Write GL′ = {b′1,b′2,b′3,b′4} where b′i =

∑
b∈Qi b. Suppose that GL′ lies on two lines

`1 ⊇ {b′1,b′3} and `2 ⊇ {b′2,b′4} passing through the origin. Since reg IL′ = reg IL, we
see that deg IL = deg IL′ , so Proposition 4.5 implies that there is a closed half-plane H13

containing Q1∪Q3. Since H13 is closed under addition, this implies that b′1,b
′
3 ∈ H13, so we

conclude that ∂H13 = `1. But then every vector in Q1 must lie on `1, otherwise b′1 ∈ H13\`1.
Likewise, Q3 ⊆ `1. Analogously, Q2, Q4 ⊆ `2. This contradicts that GL is not contained in
two lines. So henceforth suppose GL′ is not contained in two lines.

Let `+ and `− denote the positive and negative y-axis, respectively. If GL∩`+ and GL∩`−
are both nonempty, Proposition 4.5 implies there is a partition of GL leading to a lattice L′′
with deg IL′′ < deg IL (choose any partition R1 ∪ R2 ∪ R3 ∪ R4 so that R1 contains vectors
from GL ∩ `+ and R3 contains vectors from GL ∩ `−). So henceforth suppose WLOG that
GL ∩ `− = ∅.

Lemma 4.8 implies that up to reflections over the axes, we have

GL′ = {(1, a), (−1, d− 1), (−1, 1− a), (1,−d)}
for some a, d > 1. Combining this with GL ∩ `− = ∅, we have

GL = {(1, a′), (−1, b′), (−1, 1− a), (1,−d)} ∪Qx=0
1 ∪Qx=0

2

where Qx=0
i is the intersection of Qi with y-axis and 0 < a′ ≤ a and 0 < b′ ≤ d− 1. Suppose

that Qx=0
2 is nonempty, that is, there is some (0, ε) ∈ Q2. Since deg IL = deg IL′ , we can

choose a half-plane H24 = {v ∈ R2 : v ·u ≥ 0} containing Q2 ∪Q4. If u = (u1, u2), this now
implies

−u1 + u2b
′ ≥ 0, u1 − u2d ≥ 0, u2 ≥ 0

which quickly implies u1 = u2 = 0, a contradiction. So Qx=0
2 = ∅ and b′ = d−1. If a′ < a−1,

the same argument shows that Qx=0
1 = ∅. But this is impossible, since n ≥ 5. So a′ ≥ a− 1.

Since Qx=0
1 contains some nonzero vector, we also see that a′ ≤ a − 1. So a′ = a − 1 and

Qx=0
1 = {(0, 1)} (and also, evidently, n = 5). To finish the argument, consider the partition
{Ri}4i=1 obtained by taking {Qi}4i=1 and moving (0, 1) from Q1 to Q2. The resulting lattice
L′′ ⊆ Z4 has Gale diagram

GL′′ = {(1, a− 1), (−1, d), (−1, 1− a), (1,−d)}
and so lies on two lines. Conclude as in the first paragraph that deg IL′′ 6= deg IL. �
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Now, we begin to prove Proposition 4.11.

Lemma 4.10. Suppose 〈yi, yj〉 is an associated prime of J for distinct i, j ∈ {1, 2, 3, 4}. If
J 6⊆ 〈yi, y2j 〉, then there exist bj ∈ Qj and a nonzero u ∈ Z2 such that Qi ∪ (Qj − {bj}) ⊆
{v ∈ R2 : v · u ≥ 0} and bj · u = −1.

Proof. Suppose that J 6⊆ 〈yi, y2j 〉. Then there exists a nonzero a ∈ L such that yi and y2j do

not divide φ(xa−). Letting u ∈ Z2 such that Bu = a, we see that Qi ⊆ {v ∈ R2 : v ·u ≥ 0},
and that there is at most one vector bj ∈ Qj such that bj ·u < 0, and moreover if such a bj
exists, then bj · u = −1. By Lemma 4.4, since u is nonzero, we see that such a bj indeed
exists, so we are done. �

Proposition 4.11. Suppose that L ⊆ Zn is chosen such that deg(IL′) = deg(IL)− 1. Sup-
pose furthermore that the Gale diagram GL, chosen such that the unit square is a syzygy
quadrangle attaining the regularity, satisfies

∑
b∈Q1∪Q3

b =
∑

b∈Q2∪Q4
b = 0. Then for ei-

ther {i, j} = {1, 3} or {i, j} = {2, 4}, the vectors in GL − (Qi ∪ Qj) all lie on a single line
passing through the origin. Furthermore, there exist vectors bi ∈ Qi,bj ∈ Qj and a nonzero
vector u ∈ Z2 such that bi ·u = 1, bj ·u = −1, and b ·u = 0 for all b ∈ (Qi∪Qj)−{bi,bj}.
Proof. Since deg(IL′) = deg(IL) − 1 = deg(J) − 1, it follows from [AM69, Proposition 4.9]
and Lemmas 4.3 and 4.4 that exactly one of 〈y1, y3〉 and 〈y2, y4〉 is an associated prime of J .
Let 〈yi, yj〉 be this prime, so that {i, j} = {1, 3} or {i, j} = {2, 4}. Let {1, 2, 3, 4} − {i, j} =
{i′, j′}. Since 〈yi′ , yj′〉 is not an associated prime of J , it follows from Lemma 4.4 and∑

b∈Qi′∪Qj′
b = 0 that all the vectors in Qi′ ∪Qj′ lie on a line passing through the origin.

Note that the ideal 〈yi, y2j 〉 has degree 2. If J ⊆ 〈yi, y2j 〉, then it follows that deg(IL′) ≤
deg(J) − 2, a contradiction. Thus, J 6⊆ 〈yi, y2j 〉, and similarly J 6⊆ 〈y2i , yj〉. So, there exist

vectors bi ∈ Qi,bj ∈ Qj and nonzero u1,u2 ∈ Z2 such that Qi ∪ (Qj − {bj}) ⊆ {v ∈ R2 :
v · u1 ≥ 0}, bj · u1 = −1, (Qi − {bi}) ∪Qj ⊆ {v ∈ R2 : v · u2 ≥ 0}, and bi · u2 = −1.

Recall that by definition, b′i =
∑

b∈Qi b and b′j =
∑

b∈Qj b. By assumption, b′j = −b′i.

Note that b′i · u1 ≥ 0, b′j · u1 ≥ −1, b′i · u2 ≥ −1, and b′j · u2 ≥ 0. Thus, 0 ≤ b′i · u1 ≤ 1 and
−1 ≤ b′i · u2 ≤ 0.

Suppose that u2 = −αu1 for some positive real number α. If b′i · u1 = 0, then b · u1 = 0
for all b ∈ Qi, but this contradicts that bi · u2 = −1. Thus, we have that b′i · u1 = 1, so
b′i · u2 = −α, and α = 1. This implies that b · u2 = 0 for all b ∈ Qi − {bi}. We also have
b′j · u1 = −1, so that b · u1 = 0 for all b ∈ Qj − {bj}. So, we are done by taking u = u1.

Henceforth, suppose that u2 6= −αu1 for any positive real number α. Clearly we also have
u2 6= −αu1 for any nonpositive real number α, so u1,u2 are linearly independent over R.
For convenience, in the remaining cases, we will take advantage of the linear independence
of u1,u2 by occasionally referring to a vector v ∈ R2 as an ordered pair [v · u1,v · u2] of
real numbers enclosed in brackets. Note that each ordered pair uniquely determines the
corresponding member of R2.

Suppose b′i · u1 = 0. Then b · u1 = 0 for all b ∈ Qi. This implies that bi = [0,−1] must
be the only nonzero vector in Qi. Also, b′j · u1 = 0, so there exists vj ∈ Qj different from
bj such that vj · u1 = 1, and moreover b · u1 = 0 for all b ∈ Qj −{bj,vj}. Since b′i 6= 0, we
have b′i · u2 = −1, hence b′j · u2 = 1. This implies there exists v′j ∈ Qj such that v′j · u2 = 1
and b · u2 = 0 for all b ∈ Qj − {v′j}. Note that for all b ∈ Qj − {bj,vj,v′j}, we have
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b · u1 = b · u2 = 0, hence b = 0; thus, the only nonzero vectors in Qj are bj,vj,v
′
j. If v′j

is different from both bj and vj, then bj · u2 = vj · u2 = 0, which implies that bj = −vj, a
contradiction. Thus, either v′j = bj or v′j = vj. In the first case, the only nonzero members
of Qj are [−1, 1], [1, 0], and in the second case, they are [−1, 0], [1, 1]. In either case, we are
done by taking u = −u2 and relabeling vectors if necessary.

Now suppose that b′i ·u1 = 1. Then there exists vi ∈ Qi such that vi ·u1 = 1, and b·u1 = 0
for all b ∈ Qi − {vi}. Also, we have that b′j · u1 = −1, so b · u1 = 0 for all b ∈ Qj − {bj}.
We now break into cases:

• Case 1: b′i ·u2 = −1. Thus, b ·u2 = 0 for all b ∈ Qi−{bi}. For all b ∈ Qi−{bi,vi},
we have b · u1 = b · u2 = 0, so that b = 0. This implies the only nonzero vectors
in Qi are bi,vi. If bi = vi, then Qi contains exactly one nonzero vector, namely
[1,−1] and if bi 6= vi, then Qi contains exactly two distinct nonzero vectors, namely
bi = [0,−1] and vi = [1, 0].

We also have b′j · u2 = 1. Then there exists vj ∈ Qj such that vj · u2 = 1, and
b · u2 = 0 for all b ∈ Qj − {vj}. It follows that the only nonzero vectors in Qj are
bj,vj. If bj = vj, then the only nonzero vector in Qj is [−1, 1], and if bj 6= vj, then
the only nonzero vectors in Qj are bj = [−1, 0] and vj = [0, 1]. It is easy to see that
for all four possibilities, the desired vectors exist.
• Case 2: b′i · u2 = 0. So, there exists v′i ∈ Qi different from bi such that v′i · u2 = 1,

and b · u2 = 0 for all b ∈ Qi − {bi,v′i}. So bi,vi,v
′
i are the only nonzero vectors

in Qi. If vi is not equal to both bi and v′i, then bi · u1 = v′i · u1 = 0. This implies
bi = −v′i, a contradiction. Thus vi = bi or vi = v′i. In the first case, the only
nonzero vectors in Qi are [1,−1], [0, 1], and in the second case, they are [0,−1], [1, 1].

Also, b′j · u2 = 0, so that b · u2 = 0 for all b ∈ Qj. This implies that bj = [−1, 0]
is the only nonzero vector in Qj. It is easy to check that for either possibility for Qi,
the desired vectors exist.

Having exhausted all cases, we are done. �

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that IL is a codimension-2 toric ideal that is not Cohen-
Macaulay and achieves equality in the Eisenbud–Goto conjecture. Then reg IL = deg IL− 1.
Choose a Gale diagram GL for which the unit square is a syzygy quadrangle achieving the
regularity. Since IL is not a complete intersection, [PS98, Proposition 7.10] implies that GL
does not lie on two lines. Applying Proposition 4.9, we conclude there is a reduction L′ ⊆ Z4

for which reg IL′ = deg IL′ . Then Theorem 4.1 and [PS98, Remark 7.9] imply that GL′ lies
on two lines, and in particular is of one of the following two forms:

{(1, 1), (a,−b), (−1,−1), (−a, b)} or {(1, a), (1,−b), (−1,−a), (−1, b)}.
This implies that the sum of the vectors in Q1∪Q3 (resp. Q2∪Q4) is 0. Now Proposition 4.11
gives the remaining properties of GL, after reflecting across an axis if necessary. �

5. Future Directions

5.1. Overview of simplicial affine semigroup rings. Since [Nit14] proved the Eisenbud–
Goto conjecture for certain simplicial affine semigroup rings, it makes sense to see when
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equality should occur in these cases as well. We spend this section recalling the setup of
[Nit14] and discussing starting points for analyzing when equality occurs. The following defi-
nitions can be found in [Nit14]. We largely follow the notation there and as such, conventions
may be inconsistent with those in previous sections.

Let α ∈ N and let ei = (0, 0, . . . , α, . . . , 0) ∈ Nd be the vector with an α in the ith
coordinate and 0’s elsewhere. Let a1, . . . , ac ∈ Nd be a set of vectors, with ai = (ai1, . . . , aid),
and assume that gcd(aij)i,j = 1. Let B be the submonoid of (Nd,+) generated by the set
{e1, . . . , ed, a1, . . . , ac}. Then c = codim k[B].

Let A be the submonoid of B generated by {e1, . . . , ed}, and let ZA and ZB be the groups

generated by A and B respectively. For x = (x1, . . . , xd) ∈ Nd we set deg(x) = α−1
∑d

i=1 xi.
Now let

BA := {x ∈ B : x− a /∈ B for all a ∈ A}.
Let ∼ denote the equivalence relation on ZB such that x ∼ y when x − y ∈ ZA = αZd.

There are finitely many equivalence classes which we denote Γ1, . . . ,Γf . For 1 ≤ t ≤ f , we
define ht ∈ Zd via

ht := (min{m1 : m ∈ Γt}, . . . ,min{md : m ∈ Γt}).
Let T := k[y] = k[y1, . . . , yd] be a polynomial ring with the standard grading. Let

Γ̃t := {y
x−ht
α : x ∈ Γt}

and let It = Γ̃tT . We get from [Nit14] that

reg k[B] = max{deg It + deg ht : 1 ≤ t ≤ f}.
For some x ∈ B and b1, . . . , bn ∈ B we say λ = (b1, . . . , bn) has the ∗-property of x

if bi ∈ {e1, . . . , ed, a1, . . . , ac} and x −
∑i

k=1 bk ∈ B for all 1 ≤ i ≤ n. Let x(λ, i) denote

x−
∑i

k=1 bk and let Λx denote all sequence of length deg(x) with the ∗-property of x. Finally
let x, y ∈ B \ {0}, λ ∈ Λx and ν ∈ Λy. We define

• ∆(λ, ν) = {(i, j) ∈ N2 : 0 ≤ i ≤ deg(x), 0 ≤ j ≤ deg(y), x(λ, i) ∼ y(ν, j)},
• δ(λ, ν) = |∆(λ, ν)| − 2,
• δ(x, y) = min{δ(λ′, ν ′) : λ′ ∈ Λx, ν

′ ∈ ∆y}.
We are prepared to state the conditions in which equality is obtained in the results of

[Nit14, §3].

Proposition 5.1. Suppose there exists a t such that reg k[B] = reg It + deg ht and |Γt| = 2.
Let Γt = {x, x′}, and let λ ∈ Λx and ν ∈ Λx′. Then reg k[B] = deg k[B]− codim k[B] if and
only if the following 3 conditions are satisfied:

• deg k[B] = deg x+ deg x′ − |∆(λ, ν)|+ c,
• (deg x− 1, deg x′ − 1) /∈ ∆(λ, ν),
• δ(λ, ν) = deg ht − 1.

Proof. See [Nit14, Theorem 3.2]. �

Thus a natural starting point for describing when k[B] achieves equality (in the cases
where the hypotheses of Proposition 5.1 are met) is to analyze when the various conditions
in Proposition 5.1 can hold.
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5.2. Other directions for further study. There are a few natural directions in which one
could try to extend the results of §4:

• Addressing the Cohen-Macaulay case of codimension-2 toric ideals. This would in-
volve looking at syzygy triangles as opposed to quadrangles.
• Proving partial converses to the main results of §4.
• Analyzing the case of generic lattice ideals to see if the statements of §4 can be made

stronger under this assumption.
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