Equality in the Eisenbud-Goto Conjecture for Certain Toric Ideals

Preston Cranford, Alan Peng*, Vijay Srinivasan*

August 2020

Outline

(1) Introduction

(2) Background for Codimension-2

(3) Results

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$
- Assume the \mathbb{Z}-span of the columns of A equals \mathbb{Z}^{d}, which implies $n \geq d$

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$
- Assume the \mathbb{Z}-span of the columns of A equals \mathbb{Z}^{d}, which implies $n \geq d$
- Let $\operatorname{ker} A \subseteq \mathbb{Z}^{n}$ be the kernel of the multiplication-by- $A \operatorname{map} \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$
- Assume the \mathbb{Z}-span of the columns of A equals \mathbb{Z}^{d}, which implies $n \geq d$
- Let $\operatorname{ker} A \subseteq \mathbb{Z}^{n}$ be the kernel of the multiplication-by- $A \operatorname{map} \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$
- $I_{A}:=\left\langle\left\{\mathbf{x}^{\mathbf{a}}-\mathbf{x}^{\mathbf{b}}: \mathbf{a}, \mathbf{b} \in \mathbb{Z}_{\geq 0}^{n}\right.\right.$ and $\left.\left.\mathbf{a}-\mathbf{b} \in \operatorname{ker} A\right\}\right\rangle \subseteq k[\mathbf{x}]=$ $k\left[x_{1}, \ldots, x_{n}\right]$ is prime
- If one of the rows of A is $\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right) \in \mathbb{Z}^{n}$, then I_{A} is a graded (or homogeneous) ideal-we will assume this is the case from now on

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$
- Assume the \mathbb{Z}-span of the columns of A equals \mathbb{Z}^{d}, which implies $n \geq d$
- Let $\operatorname{ker} A \subseteq \mathbb{Z}^{n}$ be the kernel of the multiplication-by- $A \operatorname{map} \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$
- $I_{A}:=\left\langle\left\{\mathbf{x}^{\mathbf{a}}-\mathbf{x}^{\mathbf{b}}: \mathbf{a}, \mathbf{b} \in \mathbb{Z}_{\geq 0}^{n}\right.\right.$ and $\left.\left.\mathbf{a}-\mathbf{b} \in \operatorname{ker} A\right\}\right\rangle \subseteq k[\mathbf{x}]=$ $k\left[x_{1}, \ldots, x_{n}\right]$ is prime
- If one of the rows of A is $\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right) \in \mathbb{Z}^{n}$, then I_{A} is a graded (or homogeneous) ideal-we will assume this is the case from now on

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Then $\operatorname{ker} A \subseteq \mathbb{Z}^{n}$ is generated by
$\left(\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)$.

Toric ideals

- Let k be a field and $A \in \mathbb{Z}^{d \times n}$
- Assume the \mathbb{Z}-span of the columns of A equals \mathbb{Z}^{d}, which implies $n \geq d$
- Let ker $A \subseteq \mathbb{Z}^{n}$ be the kernel of the multiplication-by- $A \operatorname{map} \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$
- $I_{A}:=\left\langle\left\{\mathbf{x}^{\mathbf{a}}-\mathbf{x}^{\mathbf{b}}: \mathbf{a}, \mathbf{b} \in \mathbb{Z}_{\geq 0}^{n}\right.\right.$ and $\left.\left.\mathbf{a}-\mathbf{b} \in \operatorname{ker} A\right\}\right\rangle \subseteq k[\mathbf{x}]=$ $k\left[x_{1}, \ldots, x_{n}\right]$ is prime
- If one of the rows of A is $\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right) \in \mathbb{Z}^{n}$, then I_{A} is a graded (or homogeneous) ideal-we will assume this is the case from now on

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Then $\operatorname{ker} A \subseteq \mathbb{Z}^{n}$ is generated by
$\left(\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)$. We find

$$
I_{A}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right\rangle \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] .
$$

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$ is a graded ring

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$ is a graded ring
- A twist of S, denoted $S(-p)$ for some $p \in \mathbb{Z}$, is an S-module that is the same as the S-module S, but "shifted," so that an element of S that has degree i in S has degree $i+p$ in $S(-p)$

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$ is a graded ring
- A twist of S, denoted $S(-p)$ for some $p \in \mathbb{Z}$, is an S-module that is the same as the S-module S, but "shifted," so that an element of S that has degree i in S has degree $i+p$ in $S(-p)$

Definition

Let M be a finitely generated S-module.

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$ is a graded ring
- A twist of S, denoted $S(-p)$ for some $p \in \mathbb{Z}$, is an S-module that is the same as the S-module S, but "shifted," so that an element of S that has degree i in S has degree $i+p$ in $S(-p)$

Definition

Let M be a finitely generated S-module. The exact sequence of S-modules given by

$$
0 \leftarrow M \stackrel{d_{0}}{\leftarrow} F_{0} \stackrel{d_{1}}{\leftarrow} F_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{i}}{\leftarrow} F_{i} \stackrel{d_{i+1}}{\leftarrow} \cdots
$$

is a minimal graded free resolution of M if each F_{i} is a finite direct sum of twists of S, each d_{i} preserves the degree of (nonzero) homogeneous elements, and $d_{i+1}\left(F_{i+1}\right) \subseteq\left\langle x_{1}, \ldots, x_{n}\right\rangle F_{i}$ for all $i \geq 0$.

Minimal graded free resolutions

- k is a field, $S:=k\left[x_{1}, \ldots, x_{n}\right]$ is a graded ring
- A twist of S, denoted $S(-p)$ for some $p \in \mathbb{Z}$, is an S-module that is the same as the S-module S, but "shifted," so that an element of S that has degree i in S has degree $i+p$ in $S(-p)$

Definition

Let M be a finitely generated S-module. The exact sequence of S-modules given by

$$
0 \leftarrow M \stackrel{d_{0}}{\leftarrow} F_{0} \stackrel{d_{1}}{\leftarrow} F_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{i}}{\leftarrow} F_{i} \stackrel{d_{i+1}}{\leftarrow} \cdots
$$

is a minimal graded free resolution of M if each F_{i} is a finite direct sum of twists of S, each d_{i} preserves the degree of (nonzero) homogeneous elements, and $d_{i+1}\left(F_{i+1}\right) \subseteq\left\langle x_{1}, \ldots, x_{n}\right\rangle F_{i}$ for all $i \geq 0$.

- All minimal graded free resolutions of M are isomorphic and have "finite length"

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$.

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Recall

$$
I_{A}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right\rangle \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=: S .
$$

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Recall

$$
I_{A}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right\rangle \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=: S
$$

The minimal graded free resolution of I_{A} is

$$
0 \leftarrow I_{A} \stackrel{d_{0}}{\leftarrow} S(-2)^{3} \stackrel{d_{1}}{\leftrightarrows} S(-3)^{2} \stackrel{d_{2}}{\leftarrow} 0 .
$$

Castelnuovo-Mumford regularity

As before, let M be a finitely generated S-module, where $S=k\left[x_{1}, \ldots, x_{n}\right]$, and consider the minimal graded free resolution of M :

$$
0 \leftarrow M \stackrel{d_{0}}{\leftarrow} F_{0} \stackrel{d_{1}}{\leftarrow} F_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{i}}{\leftarrow} F_{i} \stackrel{d_{i+1}}{\leftarrow} \cdots .
$$

Castelnuovo-Mumford regularity

As before, let M be a finitely generated S-module, where $S=k\left[x_{1}, \ldots, x_{n}\right]$, and consider the minimal graded free resolution of M :

$$
0 \leftarrow M \stackrel{d_{0}}{\leftarrow} F_{0} \stackrel{d_{1}}{\leftarrow} F_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{i}}{\leftarrow} F_{i} \stackrel{d_{i+1}}{\leftarrow} \cdots .
$$

We can write each F_{i} as a direct sum of twists: let $F_{i}=\bigoplus_{p \in \mathbb{Z}} S(-p)^{\beta_{i, p}}$, where the $\beta_{i, p}$ are Betti numbers.

Castelnuovo-Mumford regularity

As before, let M be a finitely generated S-module, where $S=k\left[x_{1}, \ldots, x_{n}\right]$, and consider the minimal graded free resolution of M :

$$
0 \leftarrow M \stackrel{d_{0}}{\leftarrow} F_{0} \stackrel{d_{1}}{\leftarrow} F_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{i}}{\leftarrow} F_{i} \stackrel{d_{i+1}}{\leftarrow} \cdots .
$$

We can write each F_{i} as a direct sum of twists: let $F_{i}=\bigoplus_{p \in \mathbb{Z}} S(-p)^{\beta_{i, p}}$, where the $\beta_{i, p}$ are Betti numbers.

Definition

The Castelnuovo-Mumford regularity of M is given by the quantity

$$
\operatorname{reg} M:=\max \left\{j: \beta_{i, i+j} \neq 0 \text { for some } i\right\} .
$$

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Recall

$$
I_{A}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right\rangle \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=: S
$$

The minimal graded free resolution of I_{A} is

$$
0 \leftarrow I_{A} \stackrel{d_{0}}{\leftarrow} S(-2)^{3} \stackrel{d_{1}}{\leftarrow} S(-3)^{2} \stackrel{d_{2}}{\leftarrow} 0 .
$$

Example

Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3\end{array}\right)$. Recall

$$
I_{A}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right\rangle \subseteq k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=: S
$$

The minimal graded free resolution of I_{A} is

$$
0 \leftarrow I_{A} \stackrel{d_{0}}{\leftarrow} S(-2)^{3} \stackrel{d_{1}}{\leftarrow} S(-3)^{2} \stackrel{d_{2}}{\leftarrow} 0 .
$$

The nonzero Betti numbers are $\beta_{0,2}=3$ and $\beta_{1,3}=2$.
Thus, reg $I_{A}=2$.

The Eisenbud-Goto conjecture

Conjecture (Eisenbud-Goto 1984)

Suppose k is algebraically closed and $S=k\left[x_{1}, \ldots, x_{n}\right]$. For all graded prime ideals I that are contained in $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{2}$, we have

$$
\operatorname{reg} I \leq \operatorname{deg} I-\operatorname{codim} I+1
$$

The Eisenbud-Goto conjecture

Conjecture (Eisenbud-Goto 1984)

Suppose k is algebraically closed and $S=k\left[x_{1}, \ldots, x_{n}\right]$. For all graded prime ideals $/$ that are contained in $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{2}$, we have

$$
\operatorname{reg} I \leq \operatorname{deg} I-\operatorname{codim} I+1
$$

Theorem (McCullough-Peeva 2018)

The Eisenbud-Goto conjecture is false.

The Eisenbud-Goto conjecture

Conjecture (Eisenbud-Goto 1984)

Suppose k is algebraically closed and $S=k\left[x_{1}, \ldots, x_{n}\right]$. For all graded prime ideals I that are contained in $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{2}$, we have

$$
\operatorname{reg} I \leq \operatorname{deg} I-\operatorname{codim} I+1
$$

Theorem (McCullough-Peeva 2018)

The Eisenbud-Goto conjecture is false.
However, the Eisenbud-Goto conjecture is still open for toric ideals.

Problem Statement

Question

When is equality achieved in the EG conjecture for toric ideals?
It makes sense to attack this in the cases where the inequality has already been proven.

- Curves $(d=2)$
- Complete Intersections
- S / I is a simplicial affine semigroup ring
- Codimension $2(n-d=2)$ - this is our primary focus; the EG inequality becomes

$$
\text { reg } I \leq \operatorname{deg} I-1
$$

Outline

(1) Introduction

(2) Background for Codimension-2

(3) Results

Peeva-Sturmfels 1998

- Proved Eisenbud-Goto for codimension 2.
- Considered the more general class of lattice ideals. Given a lattice $\mathcal{L} \subset \mathbb{Z}^{n}$, construct $I_{\mathcal{L}} \subset k\left[x_{1}, \ldots, x_{n}\right]$ via

$$
I_{\mathcal{L}}:=\left\langle\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}: \mathbf{u}-\mathbf{v} \in \mathcal{L}\right\rangle
$$

- When $\mathcal{L}=\operatorname{ker} A$ for some A, this is a toric ideal.

Gale diagrams

Let \mathcal{L} have rank 2 . Choose an $n \times 2$ matrix B whose columns span \mathcal{L}.

$$
B:=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1 \\
1 & -2 \\
0 & 1
\end{array}\right)
$$

The rows of B are vectors in \mathbb{Z}^{2}, which gives us the Gale diagram of \mathcal{L}.

Gale diagrams

$$
B:=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1 \\
1 & -2 \\
0 & 1
\end{array}\right)
$$

Peeva-Sturmfels 1998

$\mathcal{I}_{\mathcal{L}}$ is a codimension-2 lattice ideal defining a projective variety...

Theorem (Peeva-Sturmfels 1998)

Then reg $I_{\mathcal{L}} \leq \operatorname{deg} I_{\mathcal{L}}$. If equality holds, any Gale diagram of \mathcal{L} lies on two lines.

Inequality is strict when $I_{\mathcal{L}}$ is toric! This proves $E G$ in the codimension-2 case: $\operatorname{reg} I_{\mathcal{L}} \leq \operatorname{deg} I_{\mathcal{L}}-1$.

Outline

(1) Introduction

(2) Background for Codimension-2

(3) Results

Our results

Theorem

Assume $I_{\mathcal{L}}$ is toric, codimension 2, not Cohen-Macaulay. If $I_{\mathcal{L}}$ achieves equality in Eisenbud-Goto, then there are two lines containing all but two Gale vectors. The remaining two Gale vectors are "nearest points" to one of these lines.

Example

$$
B:=\left(\begin{array}{cc}
-1 & 3 \\
-1 & 2 \\
1 & -3 \\
1 & -2 \\
1 & 1 \\
-1 & -1
\end{array}\right)
$$

$\operatorname{reg} I_{\mathcal{L}}=7, \quad \operatorname{deg} I_{\mathcal{L}}=8$

Method of proof

- Reduction to $n=4$ (i.e., curves in \mathbb{P}^{3}).
- (P-S) Given a lattice ideal $I_{\mathcal{L}} \subset k\left[x_{1}, \ldots, x_{n}\right]$ that is not Cohen-Macaulay, there is a lattice ideal $I_{\mathcal{L}^{\prime}} \subset k\left[y_{1}, \ldots, y_{4}\right]$ for which

$$
\operatorname{reg} I_{\mathcal{L}} \leq \operatorname{reg} I_{\mathcal{L}^{\prime}} \leq \operatorname{deg} I_{\mathcal{L}^{\prime}} \leq \operatorname{deg} I_{\mathcal{L}}
$$

- If reg $I_{\mathcal{L}}=\operatorname{deg} I_{\mathcal{L}}-1$ (i.e., equality holds in the EG conjecture), this chain of inequalities is pretty tight

Reduction to $n=4$

- Find a suitable partition of $\left\{x_{1}, \ldots, x_{n}\right\}$ into four subsets
- Add the corresponding Gale vectors to get a new lattice

$$
\begin{gathered}
B:=\left(\begin{array}{cc}
-1 & 3 \\
-1 & 2 \\
1 & -3 \\
1 & -2 \\
1 & 1 \\
-1 & -1
\end{array}\right) \longrightarrow B^{\prime}:=\left(\begin{array}{cc}
-2 & 5 \\
2 & -5 \\
1 & 1 \\
-1 & -1
\end{array}\right) \\
x_{1}, x_{2} \mapsto y_{1}, \quad x_{3}, x_{4} \mapsto y_{2}, \quad x_{5} \mapsto y_{3}, \quad x_{6} \mapsto y_{4}
\end{gathered}
$$

Get a new lattice ideal $I_{\mathcal{L}^{\prime}} \subset k\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ (after a saturation).

Reduction to $n=4$ (cont).

Example result

Suppose that $I_{\mathcal{L}}$ is not Cohen-Macaulay.

Proposition

If $\operatorname{deg} I_{\mathcal{L}}=\operatorname{deg} I_{\mathcal{L}^{\prime}}$, then $\operatorname{reg} I_{\mathcal{L}}=\operatorname{reg} I_{\mathcal{L}^{\prime}}$.

Corollary

If reg $I_{\mathcal{L}}=\operatorname{deg} I_{\mathcal{L}}-1$, then for any reduction, we have $\operatorname{reg} I_{\mathcal{L}^{\prime}}=\operatorname{reg} I_{\mathcal{L}}$.

Example result

Proposition

Suppose that $I_{\mathcal{L}}$ is not Cohen-Macaulay, and that the Gale diagram of \mathcal{L} contains at least 5 nonzero vectors. If $\operatorname{reg} I_{\mathcal{L}}=\operatorname{deg} I_{\mathcal{L}}-1$, then there exists a choice of reduction for which $\operatorname{reg} I_{\mathcal{L}^{\prime}}=\operatorname{deg} I_{\mathcal{L}^{\prime}}$.

Acknowledgments

We would like to acknowledge Christine Berkesch for mentoring this project, and Mahrud Sayrafi for being our TA. We would also like to thank everyone who made the UMN Twin Cities REU possible, including of course the NSF RTG grant DMS-1745638.

