REU Problem 6: Frieze Patterns from Dissections

Mentor: Esther Banaian TA: Libby Farrell

06/22/20

Banaian

REU Problem 6: Frieze Patterns from Dissections

06/22/20 1 / 40

. . .

Finite Frieze Pattern of Laurent Polynomials

Frieze Patterns

Definition ((Finite) Frieze Pattern)

- First row (and last row) consists of all zeroes
- Second row (and second to last row) consists of all ones.

• All diamonds
$$b$$
 c satisfy the diamond condition $bc - ad = 1$.
 d

We introduce the following indexing.

0		0		0		0		0	
	1		1		1		1		1
$m_{-1,1}$		$m_{0,2}$		$m_{1,3}$		$m_{2,4}$		<i>m</i> _{3,5}	
	$m_{-1,2}$		$m_{0,3}$		$m_{1,4}$		$m_{2,5}$		$m_{3,7}$
$m_{-2,2}$		$m_{-1,3}$		$m_{0,4}$		$m_{1,5}$		$m_{2,6}$	
	$m_{-2,3}$		$m_{-1,4}$		$m_{0,5}$		$m_{1,6}$		$m_{2,7}$

Basic Terms and Exercise 1

- The number of rows of a finite frieze pattern is the width.
- The first nontrivial row is called the *quiddity row*.
- If the quiddity row is the first row, then $m_{i,j}$ is in row j i 1.

Basic Terms and Exercise 1

- The number of rows of a finite frieze pattern is the width.
- The first nontrivial row is called the *quiddity row*.
- If the quiddity row is the first row, then $m_{i,j}$ is in row j i 1.

REU Exercise 6.1

a Show that for $j \ge i + 2$, $m_{i,j} = m_{i,i+2}m_{i+1,j} - m_{i+2,j}$. Let $m_{i,i+1} = 1$ and $m_{i,i} = 0$ for all *i*.

b From part a, deduce

$$m_{i,j} = \det \begin{pmatrix} m_{i,i+2} & 1 & & & \\ 1 & m_{i+1,i+3} & 1 & & & \\ & 1 & m_{i+2,i+4} & 1 & & & \\ & & \ddots & & & \\ & & & 1 & m_{j-3,j-1} & 1 \\ & & & & 1 & m_{j-2,j} \end{pmatrix}$$

Theorem (Conway-Coxeter)

Theorem (Conway-Coxeter)

Frieze patterns of positive integers with width n are in bijection with triangulations of an (n + 3)-gon.

- The entries of a frieze pattern can be interpreted as counting certain combinatorial objects.
- We can also think about them as giving the length of arcs in the triangulated surface.

Banaian

BCI Tuples

There are three BCI tuples going clockwise from v_2 to v_6 .

- α, γ, β
- α, γ, δ
- β, γ, δ

Cluster Algebras to the rescue!

- Coxeter defined frieze patterns in the 70's and soon after proved the bijection with Conway.
- Besides work by BCI, frieze patterns hibernated until the development of cluster algebras.
- Cluster algebras of type A and frieze patterns are both related to triangulated polygon, hence can be connected to each other.

- Coxeter defined frieze patterns in the 70's and soon after proved the bijection with Conway.
- Besides work by BCI, frieze patterns hibernated until the development of cluster algebras.
- Cluster algebras of type A and frieze patterns are both related to triangulated polygon, hence can be connected to each other.
- Given a triangulated polygon, each chord corresponds to a cluster variable. Filling in the variable from chord (i, j) in spot $m_{i,j}$ gives a frieze pattern.

- Coxeter defined frieze patterns in the 70's and soon after proved the bijection with Conway.
- Besides work by BCI, frieze patterns hibernated until the development of cluster algebras.
- Cluster algebras of type A and frieze patterns are both related to triangulated polygon, hence can be connected to each other.
- Given a triangulated polygon, each chord corresponds to a cluster variable. Filling in the variable from chord (i, j) in spot $m_{i,j}$ gives a frieze pattern.
- Then, the $\mathbf{Z}_{>0}$ frieze pattern arises from specializing all intial cluster variables to 1.

- Coxeter defined frieze patterns in the 70's and soon after proved the bijection with Conway.
- Besides work by BCI, frieze patterns hibernated until the development of cluster algebras.
- Cluster algebras of type A and frieze patterns are both related to triangulated polygon, hence can be connected to each other.
- Given a triangulated polygon, each chord corresponds to a cluster variable. Filling in the variable from chord (i, j) in spot $m_{i,j}$ gives a frieze pattern.
- Then, the $\mathbf{Z}_{>0}$ frieze pattern arises from specializing all intial cluster variables to 1.
- We can also interpret these finite **Z**_{>0} frieze patterns as counting subrepresentations of quiver representations!

Annuli and Once-Punctured Discs

- Let S_n be a once-punctured disc with n marked points on the boundary.
- Let $A_{n,m}$ be an annulus with *n* marked points on the outer boundary and *m* marked points on the inner boundary.
- A *peripheral arc* goes between marked points on the same boundary.
- A *bridging arc* goes between marked points on different boundaries.

An example of triangulated $A_{3,2}$ and S_4 . The blue arcs are peripheral.

Infinite Frieze Pattern example

							1		4										
0		0		0		0		0		0		0		0		0		0	
	1		1		1		1		1		1		1		1		1		1
1		4		4		1		4		4		1		4		4		1	
	3		15		3		3		15		3		3		15		3		3
8		11		11		8		11		11		8		11		11		8	
	29		8		29		29		8		29		29		8		29		
105		21		21		105		21		21		105		21		21		105	
	76		55		76		76		55	:	76		76		55		76		

Infinite Frieze Pattern example

							1		4										
0		0		0		0		0		0		0		0		0		0	
	1		1		1		1		1		1		1		1		1		1
1		4		4		1		4		4		1		4		4		1	
	3		15		3		3		15		3		3		15		3		3
8		11		11		8		11		11		8		11		11		8	
	29		8		29		29		8		29		29		8		29		
105		21		21		105		21		21		105		21		21		105	
	76		55		76		76		55		76		76		55		76		
										:									

Infinite Frieze Pattern - Big Theorem

Theorem (Baur-Parsons-Tschabold)

Periodic infinite frieze patterns of positive integers are in bijection with triangulations of annuli and once-punctured discs.

Proof of Infinite Frieze Bijection

Claim

Every infinite periodic frieze pattern arises from a triangulated annulus or once-punctured disc.

Observation

The quiddity sequence $\cdots 2, 2, 2 \cdots$ comes from a punctured disc.

Claim

Every infinite periodic frieze pattern arises from a triangulated annulus or once-punctured disc.

Theorem

If (a_1, \ldots, a_n) is the quiddity sequence of an infinite frieze pattern, so is $(a_1, \ldots, a_i + 1, \ldots, a_n)$ for any *i*.

Proposition

If (a_1, \ldots, a_n) is realizable, so is $(a_1, \ldots, a_i + 1, \ldots, a_n)$ for any *i*.

Claim

Every infinite periodic frieze pattern arises from a triangulated annulus or once-punctured disc.

Cutting

We can cut at a 1 in a quiddity sequence by the following

$$(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n) \rightarrow (a_1,\ldots,a_{i-1}-1,a_{i+1}-1,\ldots,a_n)$$

Note that unless all $a_j = 1$, we cannot have adjacent values of 1 in a quiddity sequence.

Gluing

Gluing is the reverse operation of cutting. We can glue as many times as we want to any quiddity sequence.

Banaian

Example of Cutting

. . .

REU Problem 6: Frieze Patterns from Dissections

. . .

Example of Cutting

Proof of Infinite Frieze Bijection

Claim

Every infinite periodic frieze pattern arises from a triangulated annulus or once-punctured disc.

Proof

Let (a_1, \ldots, a_n) be the quiddity sequence of an infinite frieze pattern.

- If all $a_i = 2$, this is from a triangulated once-punctured disc.
- If all $a_i \ge 2$ and for some j, $a_j > 2$, this is from a triangulated annulus.
- Otherwise, there exists j such that $a_j = 1$. Cut at a_j and check again.

Proof of Infinite Frieze Bijection

Claim

Every triangulated once-punctured disc or annulus gives rise to an infinite frieze pattern.

Proof

- Every triangulated once-punctured disc is either a wheel or has a cuttable triangle.
- Given a triangulated annulus with quiddity sequence (a_1, \ldots, a_n) , we can construct a triangulated once-punctured disc with quiddity sequence (b_1, \ldots, b_n) such that $b_i \leq a_i$ for all *i*.

Theorem (Growth Coefficient Theorem, Baur-Fellner-Parsons-Tschabold)

Given an infinite frieze pattern with period n, $m_{i,i+kn+1} - m_{i+1,i+kn}$ is constant for each $k \ge 1$.

Informally, think difference between row kn and row kn - 2 is constant. This gives a sequence $\{s_k\}$ of growth coefficients from each infinite frieze pattern.

Theorem (BFPT)

The growth coefficients of a frieze pattern are related by

$$s_{k+1} = s_1 s_k - s_{k-1}$$

where $s_0 = 2$.

0		0		0		0		0		0		0	
	1		1		1		1		1		1		1
1		4		4		1		4		4		1	
	3		15		3		3		15		3		3
8		11		11		8		11		11		8	
	29		8		29		29		8		29		29
105		21		21		105		21		21		105	
	76		55		76		76		55		76		76
55		199		199		55		199		199		55	
							:						
	_	7	47		, 0								

•
$$s_1 = 7, s_2 = 47 = 7 \cdot 7 - 2, s_3 = 7 \cdot 47 - 7$$

Theorem (Gunawan-Musiker-Vogel)

Let ${\mathcal F}$ be an infinite frieze pattern with n-periodic rows. Then, for all $1\leq \ell\leq k$

$$m_{i,j+kn} = s_{\ell}m_{i,j+(k-\ell)n} + m_{j+(k-\ell)n,i+\ell n}$$

where, if a > b, $m_{a,b} = -m_{b,a}$

Take-Away

Once we compute the first n non-trivial rows of an n-periodic frieze pattern and the first growth coefficient, we know a lot! In particular, if all of these are positive, the whole frieze pattern is positive.

Growth Coefficient Examples

-1		-1		$^{-1}$		-1		-1		$^{-1}$		
	0		0		0		0		0		0	
1		1		1		1		1		1		1
	4		4		1		4		4		1	
3		15		3		3		15		3		3
	11		11		8		11		11		8	
29		8		29		29		8		29		29
	21		21		105		21		21		105	
76		55		76		76		55		76		76
	199		199		55		199		199		55	
	-1 1 3 29 76		$\begin{array}{cccc} -1 & -1 \\ & 0 \\ 1 & 1 \\ & 4 \\ 3 & 15 \\ & 11 \\ 29 & 8 \\ & 21 \\ 76 & 55 \\ & 199 \end{array}$	$\begin{array}{cccc} -1 & -1 \\ & 0 & 0 \\ 1 & 1 \\ & 4 & 4 \\ 3 & 15 \\ & 11 & 11 \\ 29 & 8 \\ & 21 & 21 \\ 76 & 55 \\ & 199 & 199 \\ \end{array}$	$\begin{array}{ccccccc} -1 & -1 & -1 \\ & 0 & 0 \\ 1 & 1 & 1 \\ & 4 & 4 \\ 3 & 15 & 3 \\ & 11 & 11 \\ 29 & 8 & 29 \\ & 21 & 21 \\ 76 & 55 & 76 \\ & 199 & 199 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

÷

•
$$s_1 = 7, s_2 = 47$$

• $m_{0,7} = s_1 m_{0,4} + m_{4,3} = 7 \cdot 11 + -1.$
• Also, $m_{0,7} = s_2 m_{0,1} + m_{1,6} = 47 \cdot 1 + 29$

We can generalize these constructions to polygon dissections.

A *p*-angulation is a polygon dissection that breaks the surface into *p*-gons.

Frieze Patterns from Polygon Dissections

If a vertex is adjacent to polygons of size p_1, \ldots, p_n , we associate to it $\sum_{i=1}^n \lambda_{p_i}$ where $\lambda_{p_i} = 2\cos(\pi/p_i)$.

Note that λ_p is the ratio of the length of the shortest diagonal of a regular *p*-gon and the length of a side.

Theorem (Holm-Jørgensen)

Each polygon dissection of an n-gon produces a frieze pattern of width n-3 with entries in the ring of algebraic integers of the field $\mathbf{Q}(\lambda_{p_1},\ldots,\lambda_{p_s})$

This has the width we expect and still has glide symmetry.

Proof of Injection

• First, establish a frieze pattern on an empty-dissected *n*-gon.

Proof of Injection

- First, establish a frieze pattern on an empty-dissected *n*-gon.
- Then, show that these elementary frieze patterns can be glued together.

1-periodic Frieze Patterns

The polynomials in this frieze pattern are normalized Chebyshev polynomials of the second kind, $U_k(x)$, which satisfy $U_k(x) = xU_{k-1}(x) - U_{k-2}(x)$. Let $U_1(x) = x$ and $U_0(x) = 1$.

06/22/20 27 / 40

1-periodic Frieze Patterns

The polynomials in this frieze pattern are normalized Chebyshev polynomials of the second kind, $U_k(x)$, which satisfy $U_k(x) = xU_{k-1}(x) - U_{k-2}(x)$. Let $U_1(x) = x$ and $U_0(x) = 1$.

Proposition

The length of a k-diagonal in a regular p-gon with sides length s is $U_k(\lambda_p) \cdot s$.

A k-diagonal bypasses k vertices. Sanity check: $U_1(\lambda_p) \cdot s = \lambda_p \cdot s$

Banaian

Theorem (Holm-Jørgensen)

There is bijection between p-angulations of an n-gon and frieze patterns of width n - 3 whose quiddity row consists of multiples of λ_p .

The frieze patterns in this theorem are said to be type Λ_p .

The proof that each finite frieze pattern of type Λ_p uses the theory of Hecke groups. This is an optional presentation for one of you to give!

The proof that each finite frieze pattern of type Λ_p uses the theory of Hecke groups. This is an optional presentation for one of you to give!

Let a frieze pattern whose quiddity row consists of positive linear combinations of $\lambda_{p_1}, \ldots, \lambda_{p_s}$ be type Λ_{p_1,\ldots,p_s} .

REU Problem 6.1

Does every finite frieze pattern of type $\Lambda_{p_1,...,p_s}$ come from a dissected polygon? If not, describe the subset of such frieze patterns which do arise from dissected polygons.

• Triangulated surfaces in general encode cluster algebras. In fact, most "nice" cluster algebras come from surfaces.

- Triangulated surfaces in general encode cluster algebras. In fact, most "nice" cluster algebras come from surfaces.
- There is interest to find cluster algebra-like structure for *p*-angulations (and general dissections?).

- Triangulated surfaces in general encode cluster algebras. In fact, most "nice" cluster algebras come from surfaces.
- There is interest to find cluster algebra-like structure for *p*-angulations (and general dissections?).
- In some very special cases, polygon dissections correspond to "generalized cluster algebras."

	Finite Frieze Patterns	Infinite Frieze Patterns
<i>p</i> -angulations	Bijection by HJ	Conjecture: Bijection
	Finite Type Λ_p	Infinite Type Λ_p
	Polygon	$A_{n,m}$ and S_n
		REU Problem 6.2
Polygon Dissections	Injection by HJ	Not Injective
Polygon Dissections	Injection by HJ Surjection??	Not Injective Not Surjective?

REU Exercise 2

Which annuli $A_{n,m}$ can be *p*-angulated? Verify that if we set m = 0, we get the correct result for S_n .

p-angulated Annuli

REU Problem 6.2

Conjecture: There is a bijection between *p*-angulations of S_n and $A_{n,m}$ and periodic, infinite frieze patterns of type Λ_p .

The following steps should help prove the conjecture.

- Establish a base set of infinite frieze patterns of type Λ_p (like $\cdots 2, 2, 2 \cdots$)
- Show that you can add multiples of λ_p to a realizable quiddity sequence and remain realizable.
- Verify cutting and gluing for infinite frieze patterns from *p*-angulations.

Dissections of $A_{n,m}$ and S_n

Conjecture (Part of REU Problem 6.3?)

Every frieze pattern from a dissection of S_n has $s_1 = 2$. (Known for triangulations by Tschabold)

Banaian

REU Problem 6: Frieze Patterns from Dissections

06/22/20 35 / 4

It is surprisingly easy to find infinite frieze patterns of type $\Lambda_{p_1,...,p_s}$ which do not *seem* to come from dissections.

.

Frieze Patterns with multiple Dissections

Patterns in Failure?

Consider a 2-periodic frieze pattern with quiddity sequence (a, b).

$a \setminus b$	3	$2 + \sqrt{2}$	$1 + 2\sqrt{2}$	$3\sqrt{2}$
3	\checkmark	\checkmark	?	×
$2 + \sqrt{2}$	\checkmark	*	\checkmark	?
$1 + 2\sqrt{2}$?	\checkmark	*	\checkmark
$3\sqrt{2}$	×	?	\checkmark	\checkmark

- ✓ means there is a unique dissection corresponding to this frieze pattern.
- ? means this is a valid frieze pattern but no clear dissection.
- * means there are multiple dissections corresponding to this frieze pattern.
- \times means this frieze pattern is not valid (has negatives)

REU Exercise 6.3

Find the dissections from this table. Compute the table with (3, 4).

REU Problem 6.3

Investigate infinite frieze patterns from dissections of S_n and $A_{n,m}$. Can you characterize which are drawable? When do we have ambiguity?

	Finite Frieze Patterns	Infinite Frieze Patterns
<i>p</i> -angulations	Bijection by HJ	Conjecture: Bijection
	Finite Type Λ_p	Infinite Type Λ_p
	Polygon	$A_{n,m}$ and S_n
		REU Problem 6.2
Polygon Dissections	Injection by HJ	Not Injective
	Surjection??	Not Surjective?
	REU Problem 6.1	REU Problem 6.3

Thank you for listening!

Check out the Google Drive for papers and these slides, and please contact me or Libby (or the rest of the Cluster Algebra Posse) with any questions!