Infinite Frieze Patterns and Dissections on Annuli

Jiuqi (Lena) Chen Mentor: Esther Banaian TA: Libby Farrell

08/07/20

Lena Chen

Infinite Frieze Patterns and Dissections on Annuli

08/07/20 1/31

1 Frieze Patterns and Polygon Dissections

- 2 Dissected Annuli Realizations of Type $\Lambda_{p_1,...,p_s}$ Friezes
- 3 Nontrivial Entries in a Realizable Frieze
- 4 Combinatorial Interpretation of The Growth Coefficients
- 5 Future Discussion

Definition (Frieze Pattern)

- First row consists of all zeroes
- Second row consists of all ones.
- The first non trivial row is called the *quiddity row*.

• All diamonds $b \stackrel{a}{c} c$ satisfy the diamond condition bc - ad = 1.

	0		0		0		0		0	
		1		1		1		1		
	<i>m</i> _1,1		$m_{0,2}$		$m_{1,3}$		<i>m</i> _{2,4}		<i>m</i> 3,5	
		<i>m</i> _{-1,2}		<i>m</i> _{0,3}		$m_{1,4}$		<i>m</i> _{2,5}		
• • •	$m_{-2,2}$		<i>m</i> _1,3		$m_{0,4}$		$m_{1,5}$		$m_{2,6}$	
• • •		$m_{-2,3}$		<i>m</i> _1 ,4		<i>m</i> 0,5		$m_{1,6}$		•••
					$m_{-1.5}$		·			

Previous Findings on Frieze Patterns

- Conway-Coxeter:
 Finite frieze of positive integers *Bijection Bijection*
- Baur-Parsons-Tschabold: Infinite frieze of positive integers Bijection Bijection
- Holm-Jørgensen: Finite frieze of type $\Lambda_{p_1,...,p_s} \underset{Injection}{\longleftarrow}$ Dissections of polygon

Definition

Friezes with entries in the ring of algebraic integers of the field $\mathbf{Q}(\lambda_{p_1},\ldots,\lambda_{p_s})$ are called friezes of type Λ_{p_1,\ldots,p_s} , where $\lambda_{p_i} = 2\cos(\pi/p_i)$.

Frieze Patterns arise from Dissections-Example

If a vertex is adjacent to polygons of size p_1, \ldots, p_n , we associate to it the weighted count $\sum_{i=1}^n \lambda_{p_i}$.

Would there be any correspondence between polygon dissections on annuli and infinite friezes of type $\Lambda_{p_1,...,p_s}$?

Frieze Patterns and Polygon Dissections

- 2 Dissected Annuli Realizations of Type $\Lambda_{p_1,...,p_s}$ Friezes
- 3 Nontrivial Entries in a Realizable Frieze
- 4 Combinatorial Interpretation of The Growth Coefficients

5 Future Discussion

Dissection on Annuli

- Let $A_{n,m}$ be an annulus with *n* outer vertices and *m* inner vertices. If m = 0, it's a punctured disc.
- A *peripheral arc* connects 2 outer vertices or 2 inner vertices. A dissection that does not contain any peripheral arc is called *skeletal*.
- A bridging arc connects an outer vertex and an inner vertex.

Definition

A frieze pattern that has a dissected annulus interpretation is called *realizable*. If a vertex is adjacent to polygons of size p_1, \ldots, p_n , we associate to it the weighted count $\sum_{i=1}^n \lambda_{p_i}$ in the quiddity row.

Proposition (Realizability test)

In a quiddity row, $m_{i-1,i+1} = \sum_{p \in A_i} \lambda_p$. If there exists a pair of neighboring quiddity entries that doesn't share a common λ_p in their sums, this frieze pattern is not realizable.

Entries in the quiddity row record information of subgons that incident with vertices, but some of them are trivial.

$$(\sum_{q\in A}\lambda_q+\lambda_p, \ \lambda_p, \ \lambda_p, \ \lambda_p+\sum_{q\in B}\lambda_q)$$

Definition

A frieze pattern whose quiddity row does not contain terms in the form of λ_p is said to be *reduced*.

The Reduction Algorithm

Let $q = (a_1, a_2, \ldots, a_n)$ be a quiddity sequence.

Definition (cut)

We can delete p - 2 consecutive λ_p from q through a *cut*.

$$(a_i, \lambda_p, \dots, \lambda_p, a_{i+p-1}) \longrightarrow (a_i - \lambda_p, a_{i+p-1} - \lambda_p)$$

Definition (shrink)

We can delete $k consecutive <math>\lambda_p$ from q through a *shrink*.

$$(a_i, \lambda_p, \ldots, \lambda_p, a_{i+k-1}) \longrightarrow (a_i - \lambda_p + \lambda_{p-k}, a_{i+k-1} - \lambda_p + \lambda_{p-k})$$

cut

Infinite Frieze Patterns and Dissections on Annuli

Lemma

If a frieze is realizable, then its reduced frieze is realizable.

Note: the converse is not true.

Proposition

Let \mathcal{F} be a reduced frieze, $m_{i:1,i+1} = \sum_{p \in A_i} \lambda_p$, $i \in \mathbb{Z}$ be its quiddity row. \mathcal{F} is realizable if and only if there exists a sequence of n numbers $p_1, p_2, ..., p_n$ such that

- $p_i \in A_i \cap A_{i+1}$ for all $i \in [n]$;
- If $p_{i-1} = p_i$ numerically, there are at least two copies of p_i in A_i .

In plain words, \mathcal{F} is realizable iff we can determine all the shapes of its outer subgons.

Dissection of annulus corresponding to $q = \ldots 1 + 2\sqrt{2}, 2 + 2\sqrt{2}, \ldots$

Period 2 quiddity sequence:

 $q = \dots 1 + \sqrt{3}, \ 1 + \sqrt{2}, \ 1 + \sqrt{3}, \ 1 + \sqrt{2}, \ 1 + \sqrt{3}, \ \dots$

- Neighboring entries share 1, but only one copy of it.
- It passes the realizability test but is not realizable by a normal dissection on annulus.

Definition

A quotient dissection on an annulus can be obtained by identifying neighbouring outer subgons of same shapes on the normal dissection.

Proposition

Let \mathcal{F} be a reduced frieze. If \mathcal{F} passes the realizability test, then \mathcal{F} is realizable either by a normal dissection or by a quotient dissection on annulus.

Basic idea: Add copies of λ_p to the quiddity row until it becomes realizable and then identify the added subgons to obtain a quotient dissection.

Example of Friezes Realizable by Quotient Dissection

• Period 2 frieze:

 $q = \dots 1 + \sqrt{3}, \ 1 + \sqrt{2}, \ 1 + \sqrt{3}, \ 1 + \sqrt{2}, \ 1 + \sqrt{3}, \ \dots$

- Neighboring entries share 1, but only one copy of it.
- $q' = \ldots 2 + \sqrt{3}, 2 + \sqrt{2}, 2 + \sqrt{3}, 2 + \sqrt{2}, 2 + \sqrt{3}, \ldots$

Frieze Patterns and Polygon Dissections

2 Dissected Annuli Realizations of Type $\Lambda_{p_1,...,p_s}$ Friezes

3 Nontrivial Entries in a Realizable Frieze

4 Combinatorial Interpretation of The Growth Coefficients

5 Future Discussion

Definition

A path from vertex *i* to vertex *j*, $w_{i,j}$ would be a sequence of subgons: $w_{i,j} = (p_i, p_{i+1}, p_{i+2}, ..., p_{j-1}, p_j)$ such that p_i incident with vertex v_i on the universal cover of the annulus. We will use $Path_{i,i}$ to denote the set of all path from v_i to v_i .

• Path of length 0 would have weight 1. $wt((p_i)) = \lambda_{|p_i|}$;

•
$$wt((p_i,...,p_j)) = \begin{cases} \lambda_{|p_i|} wt((p_{i+1},...,p_j)) & \text{if } p_i \neq p_{i+1} \\ \lambda_{|p_i|} wt((p_{i+1},...,p_j)) - wt((p_{i+2},...,p_j)) & \text{if } p_i = p_{i+1} \end{cases}$$

• Chebyshev polynomial: $U_{k+1}(x) = U_1(x)U_k(x) - U_{k-1}(x)$.

•
$$wt(w) = \prod_{\text{Distinct } p \in w} U_k(p)$$

Theorem

Every nontrivial entry in a realizable infinite frieze pattern satisfies that

$$m_{i-1,j+1} = \sum_{w \in Path_{i,j}} wt(w)$$

•
$$m_{i-1,j+1} = m_{i-1,i+1}m_{i,j+1} - m_{i+1,j+1};$$

• $\sum_{w \in Path_{i,j}} wt(w) = \sum_{w \in Path_{i,i}} wt(w) \sum_{w \in Path_{i+1,j}} wt(w) - \sum_{w \in Path_{i+2,j}} wt(w)$

Nontrivial Entries in a Realizable Frieze-Example

<i>v</i> ₁	<i>v</i> ₂	wt(w)	V1	V1	
			<i>v</i> ₂	V21	$U_2(\lambda_3)=0$
v ₂	V2	$U_1(\lambda_3)U_1(\lambda_3) = 1$	b	С	$\sqrt{6}$
a ₁	С	$\sqrt{3}$	b	d	$\sqrt{2}$
a ₁	d	1	d	a ₂	1
b	a ₂	$\sqrt{2}$	d	С	$\sqrt{3}$

We can only choose a p-gon in skeletal dissection up to p-1 consecutive times.

For $k \leq p - 1$, $U_k(\lambda_p) \geq 0$.

Lemma

Polygon paths on skeletal dissections of annuli always have non-negative weights.

Corollary

All nontrivial entries in a realizable skeletal frieze are positive.

We can have negatively-weighted path in non-skeletal dissections.

 $(a_1, a_1, a_1) \in Path_{2,4} wt((a_1, a_1, a_1)) = -1$

Nontrivial Entries in Friezes Realizable by Quotient Dissections

$$w = (a, a, a, \dots, a, a, a) \in Path_{1,n}$$

 $wt(w) = U_n(1)$

08/07/20 24 / 31

D Frieze Patterns and Polygon Dissections

2 Dissected Annuli Realizations of Type $\Lambda_{p_1,...,p_s}$ Friezes

3 Nontrivial Entries in a Realizable Frieze

Combinatorial Interpretation of The Growth Coefficients

5 Future Discussion

Theorem (Growth Coefficient Theorem, BFPT)

Given an infinite frieze pattern with period n, the growth coefficient $s_k := m_{i,i+kn+1} - m_{i+1,i+kn}$ is constant for each $k \ge 1$.

Definition

The annulus weight of a path is defined as: $wt_A(w) = \prod_{p \in U} U_{N(p)}(\lambda_{|p|})$ where U is the set of all distinct subgons in w, N(p) is the number of times where p is used in w.

Theorem

Let \mathcal{F} be a realizable skeletal infinite frieze pattern of period n and let s_1 denote its principle growth coefficient, then

$$s_1 = \sum_{w \in Path_{i+1,i+n}} wt_A(w)$$

Frieze Patterns and Polygon Dissections

- 2 Dissected Annuli Realizations of Type $\Lambda_{p_1,...,p_s}$ Friezes
- 3 Nontrivial Entries in a Realizable Frieze
- 4 Combinatorial Interpretation of The Growth Coefficients

5 Future Discussion

Corollary

A realizable skeletal frieze is positive.

Conjecture

In realizable non-skeletal friezes, for every negatively weighted path, we can find a corresponding positively weighted path that cancels the negative terms. Hence, every realizable infinite frieze is positive.

Conjecture

A frieze that fails the realizability test would contain negative entries.

Realizability $\xrightarrow{?}$ Positivity; Unrealizability $\xrightarrow{?}$ Negativity What about the infinite frieze that are realizable by quotient dissections? Much appreciation to Esther Banaian Libby Farrell REU at University of Minnesota National Science Foundation(DMS-1745638)

08/07/20 30 / 31

Thank you!

08/07/20 31 / 31