Alcove Walks
Mentor: Andy Hard
TA: Emily Tibor
(Super-mentor: Ben Bratakere)
Plan: We will use the combin atorial method of alcove walks to understand geometrically-interesting "cells" of matrix groups. (Intersection U'vInIwI of double coset]
Part I: The algebra

1) The flag variety

A Lie group is a group that is also a $\underbrace{\text { manifold. }}$
(locally like Euclitan space)

- They're every where
(connections to nearly every area of math $\&$ physics)
- Most Lie groups are matrix groups e.g. $G L_{n}, S L_{n}, S O_{n}, S_{p_{n}}$, over \mathbb{R} or \mathbb{C}
- Beautiful, detailed structures

Miracle: much of the structure holds over any field ("Chevalley Groups")

For today: $G=S L_{n}$
(Let's agree that some def's \& all examples will have $G=S L_{3}$)

Let B be the subgroup of upper triangular matrices (Borel subgroup):

$$
B=\left[\begin{array}{lll}
* & * & * \\
& * & * \\
& & *
\end{array}\right]
$$

Quotient G/B: flag variety
A flag is a sequence of subspaces

$$
\{0\}=V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \ldots \subseteq V_{n}=V
$$

where $\operatorname{dim} V_{i}=i$.
Flag variety: one of the most important objects in algebra
However: Bis not normal, So G / B is not a group!

Brilliant "fix": in stead of left cosets, Let's consider double cosets.

Given $g \in G, B_{g} B=\left\{g^{\prime} \in G \mid g^{\prime}=b, g b_{2}, b_{1}, b_{2} \in B\right\}$.
Double cosets are disjoint, so we can write:
Bruhat decomposition: $G=\bigsqcup_{\omega \in W_{W}} B \omega B$ Set of representatives
Key fact: Turns out W is a group, called the Weyl group for G.

$$
\text { (For } G=S L_{n}, W=S_{n} \text {). }
$$

So, $G / B=\bigsqcup_{w \in W} \underbrace{B w B / B}_{\text {union of left }}$ B coset

Upshot: every element $g B$ of G / B corresponds to a anighe $\omega \in W$ and a (usually nonunique $b \in B): g B=b \omega B$
\#coolconnection to Sunita's project: membership in double Bruhat cells BuB gives a criterion for total positivity!
2) The affine flag variety Going to step it up!

Field has been arbitrary up to now, but from now on, let
$G=S L_{n}(F)$, where $F=\mathbb{C}((t))$
F is the fraction field of $\theta=\mathbb{C}[t]]$.
θ has unique maximal ideal (t), and there is a map $\theta \rightarrow \mathbb{C}$ setting $t=0$.

$$
e \cdot 9 \cdot 1+2 t+3 t^{2}+4 t^{3}+\ldots \mapsto 1
$$

This induces a map $S L_{n}(\theta) \xrightarrow{\phi} S L_{n}(\mathbb{C})$.
Iwahori subgroup:

$$
\begin{aligned}
& I=\left\{g \in S L_{n}(\theta) \mid \phi(g) \in B\right\} . \\
& I=\left[\begin{array}{lll}
\theta & \theta & \theta \\
(t) & \theta & \theta \\
(t) & (t) & \theta
\end{array}\right]
\end{aligned}
$$

The affine flag variety is G / I.
Again, not a group, but:

Iwahori decomposition:

$$
G=\bigsqcup_{\omega \in \tilde{\omega}} I \omega I,
$$

and \tilde{W} is a group, called the affine Weal group.

Example: Let $g=\left[\begin{array}{lll}1 / t & 2 t & 2 t^{2} \\ & t & t^{2} \\ & & 1\end{array}\right]$
Then $g \in B$, so

$$
g=\left[\begin{array}{ccc}
1 / t & 2 t & 2 t^{2} \\
& t & t^{2} \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right] .
$$

Also,

$$
g=\left[\begin{array}{ccc}
1 / t & 2 t & \\
& t & \\
\varepsilon_{B} & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & t \\
& & 1
\end{array}\right]
$$

Notice that the elements of W are the same.
Now, $g \notin I$, but

$$
g=\left[\begin{array}{lll}
1 & 2 & 2 t^{2} \\
& 1 & t^{2} \\
& & 1
\end{array}\right]\left[\begin{array}{cc}
t^{-1} & \\
& t \\
& \\
& \\
& 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]
$$

Now, Let's explore $W, \tilde{W} \ldots$
3) Weal group \& affine Weyl group Let $G=S L_{3}$, so $W=S_{3}, \widetilde{W}=\tilde{S}_{3}$
Note that $s_{1}=(12), s_{2}=(23) \in s_{3}$ have order 2 .

$$
s_{3}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1, s_{1} s_{2} s_{1}=s_{1} s_{1} s_{2}\right\rangle
$$

(Coxeter presentation) rel in)

$$
\begin{aligned}
& \text { Pictorially: } \\
& \Delta=a l \text { cove } \\
& \text { Similarly, } \\
& S_{3} \longleftrightarrow\{a l \text { coves }\} \\
& =S_{1} \\
& -s_{2} \\
& \tilde{S}_{3}=\left\langle s_{0}, s_{1}, s_{2} \mid s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1, \begin{array}{l}
s_{0} s_{1} s_{1} s_{0}=s_{1} s_{1} s_{0} s_{1} \\
s_{1} s_{1} s_{0}=s_{2} s_{1} s_{2} \\
s_{1} s_{1}=s_{1}=s_{2} s_{1} s_{2}
\end{array}\right\rangle
\end{aligned}
$$

b) Prove that S_{3} bijects with the alcoves in the first diagram.
c) Prove that \tilde{S}_{3} bijects with the alcoves in the second diagram. You inst proved that \widetilde{S}_{3} is infinite!
4) Steinberg generators

First another de composition:
Let $U^{-}=\left[\begin{array}{ccc}1 & & \\ * & 1 & \\ * & * & 1\end{array}\right]$.
Then,

$$
G=\bigsqcup_{\omega \in \tilde{W}_{\sim} \text { affine } W_{\text {esl group }} U^{-} \omega I}
$$

Let's get more precise information about the elements of U^{-}, I, \widetilde{W}

Steinberg generators:

$$
\begin{aligned}
& \left.\begin{array}{l}
x_{2}(c)=\left[\begin{array}{lll}
1 & & \\
x_{2}^{\prime \prime}(c)
\end{array}\right] \quad x_{-2_{2}}(c)=\left[\begin{array}{lll}
1 & & \\
& 1 & c \\
& & 1
\end{array}\right] \\
\\
\\
\\
\end{array} \quad 1.1\right]
\end{aligned}
$$

Let $n_{i}(c):=x_{i}(c) x_{-\alpha_{i}}\left(-c^{-1}\right) x_{i}(c)$,

$$
n_{i}:=n_{i}(1), \quad h_{i}(c)=n_{i}(c) n_{i}^{-1}
$$

REU Exercise 7.2:
a) Show that $x_{i}\left(c_{1}\right) x_{i}\left(c_{2}\right)=x_{i}\left(c_{1}+c_{2}\right)$
b) Compute $n_{i}, h_{i}(c), i=0,1,2$

Which of the x_{α}, n_{i}, h_{i} are in U^{-}?
Which are in I?
c) Prove that (up to flipping signs)
n_{0}, n_{1}, n_{2} satisfy the same relations as s_{0}, s_{1}, s_{2}
d) Solve the following equation for $i, j=0,1,2$:

$$
n_{i}^{-1} x_{j}(c)=x_{?}(?) \ldots x_{?}(?) n_{i}^{-1}
$$

e) Prove symbolically that if $(\neq 0)$,

$$
x_{i}(c) n_{i}^{-1}=x_{-\alpha_{i}}\left(c^{-1}\right) x_{i}(-c) h_{i}(c)
$$

(c) $\binom{$ Folding }{ Law }
f) Use parts d, e to show that when $j \neq i$,

$$
n_{j}^{-1} x_{i}(c) n_{i}^{-1} \in U^{-} n_{j}^{-1} I .
$$

Part II : The alcove walk model

$$
\underset{(v \in \widetilde{W})}{U^{-}} I=\{\underbrace{x x_{1}\left(d_{1}\right) \ldots x_{\gamma_{k}}\left(d_{k}\right)}_{\in U^{-}} \underbrace{n_{1}}_{v=s_{j_{1}}-s_{j_{k}}^{-1}} \ldots n_{j_{j}}^{-1} I \mid d_{1}, \ldots, d_{k} \in \mathbb{C}\}
$$

Theorem 1 (Parkinson-Ram-Schwer 'O8): Let $\omega=s_{i_{1}} \ldots s_{i_{\ell}} \in \tilde{W}$ be a reduced expression. Then in $G / I_{\text {, }}$,

$$
I_{w} I=\left\{x_{i_{1}}\left(c_{1}\right) n_{i_{1}}^{-1} \ldots x_{i_{l}}\left(c_{l}\right) n_{i_{l}}^{-1} I \mid c_{1}, \ldots, c_{l} \in \mathbb{C}\right\}
$$

1) Alcove walks

(Labelled) alcove walk: A shortest path walk to w, where every edge is labelled by an element of \mathbb{C}.

Corollary (PRS '08):

$$
I_{\omega} I / I \longleftrightarrow\left\{\begin{array}{l}
\text { labelled alcove } \\
\text { walks from } \\
1 \text { to } w
\end{array}\right\}
$$

2) Folded alcove walks

Let the "sun" be at the top of the page. The positive side of each edge is the side that the sun hits.

We look at positively-folded alcove walks: (edge-labels are implied)

This is a positively folded alcove walk of type w ending in V.

Theorem 2(PRS'08): In G/I, there is a bijection:

$$
\left.\left(U \vee I \cap I_{w}\right)\right)_{I} \leftrightarrow\left\{\begin{array}{l}
\text { labelled positively folded } \\
\text { alcove walks of type } w \\
\text { which end in } v
\end{array}\right\}
$$

Proof technique: Apply the main folding law repeatedly to an element of $I_{\omega I}$.

REU Exercise 7.3 : Let $\omega=s_{2} s_{1} s_{0} s_{1} s_{2}, v=s_{2} s_{0} s_{1} s_{2}$
(a) How many alcove walks of type w are there?
(b) Describe the elements of $I_{\omega} I$. (UseThm I).
(c) How many positively folded alcove walks of type w ending in v are there?
(d) Describe the elements of $U^{-} V I \cap I \omega I$ using (b), (c), Thai 2, and the following lated restrictions:

3) Triple intersections

Theorem 3 (PRS, Beazley - Brubaker):
a) $U^{+} v I \cap I \omega I \leftrightarrow\left[\begin{array}{l}\text { labelled negatively folded } \\ U^{+}=\left[\begin{array}{ll}1 & * \\ 1 & * \\ & 1\end{array}\right] \\ \text { ending walks of type } \omega\end{array}\right\}$
b) The triple intersection

Theorem 4 (Beazley-Brubaker): When $G=S L_{2}$, the above bijection allows us to evaluate a certain number theoretic "special function" on $S L_{2}$ in terms of Gelfand - Tsetlin patterns. ($\left.\begin{array}{l}\text { Cool connection } \\ \text { to Ben's project }\end{array}\right)$
REU Problem 7: (Also: a Igetraic interpretation of the san).
a) For $G=S L_{3}$, given $\omega, v_{1}, v_{2} \in \tilde{W}$, when is $U^{-} v_{1} I \cap I \omega I \cap U_{V_{2}}^{+} I$ nonempty?
b) Figure out a combinatorial formula for its size (ie. measure)
c) Can we do the same thing for other Chevalley groups ($S L_{4}$? $S L_{n}$? L_{n} ?), or for other double coset decompositions?
d) Can we use our results on triple intersections to compute certain special functions on G?

