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Abstract

The alcove walk model gives a combinatorial method for computing intersections of
subsets of the affine flag variety. Work by Beazley-Brubaker [4] expanding upon work
of Parkinson-Ram-Schwer [1] has shown that we can define the Whittaker function
in terms of the alcove walk model. In this paper we prove results on folding in the
alcove walk model: namely how crossings change sign after folding, the independence of
the existence of a folded walk on the reduced expression we choose, and the maximum
number of allowed folds in the alcove model for any particular simple Lie algebra. Lastly
we describe the triple intersections on which the Whittaker function is supported given
a weight.
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1 Introduction

Given a field K and a simple complex Lie algebra g, we can construct a Chevalley group
G(K). For any field, we can define subgroups B,U+, U−,K, I of G, and G decomposes into
double cosets for pairs of these subgroups [1]:

G =
⊔
w∈W

BwB K =
⊔
w∈W

IwI

G =
⊔
w∈W̃

IwI G =
⊔

λ∈Q∨+

KtλK

G =
⊔

µ∈Q∨
U±tµK G =

⊔
v∈W̃

U±vI

1
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We are particularly interested in double intersections of the form U−tλK ∩ U+tµK which
further decompose into triple intersections of the form U−tλwI ∩ IvI ∩ U+tµw

′I. Labelled
folded alcove walks are the combinatorial tools we use to enumerate the points of this triple
intersection in the affine flag variety G/I. We demonstrate how steps in a walk change
after folding which depends only on the action of the finite Weyl group. We also prove
that the existence of a labelled folded walk of type v ending in w is independent of the
reduced expression that we choose for v. Finally, for any simple Lie algebra, we show that
the maximum number of folds in a given walk is equal to the length of the long element w0

in the finite Weyl group.
These alcove walks can also be used to compute the Whittaker function of an antidom-

inant weight λ ∈ Q∨ in a way that is independent of Cartan type. We comment on the
triple intersections which gives non-trivial contribution to the Whittaker function for any
particular weight for the Lie algebra sl3.

2 Background

2.1 Root systems and Weyl groups

Here we introduce some introductory theory of finite root systems and finite Weyl groups.
Let h∗R be a finite dimensional vector space over R with (·, ·) the inner product induced by
the Killing form. If α ∈ h∗R, let Hα denote the hyperplane perpendicular to α:

Hα := 〈β ∈ h∗R | 〈β, α〉 = 0〉.

If α and β are elements of h∗R, then define

〈β, α〉 = 2
(β, α)

(α, α)

Then
sα(β) := β − 〈β, α〉α

is the reflection over Hα. In particular, sα ∈ GL(h∗R) is diagonalizable with exactly one
eigenvalue not equal to 1. A root system R is a finite set of nonzero elements of h∗R such
that

1. R ∩ Rα = {α,−α} for all α ∈ R.

2. sα(R) = R for all α ∈ R.

3. 〈β, α〉 is integral for all α, β ∈ R.

We will assume R is irreducible; that is no subset of R is also a root system. Then there is
a subset ∆ ⊂ R called simple roots which form an integral basis for R. Moreover, if

α =
∑
αi∈∆

kiαi

with ki ∈ Z for all i then ki ≥ 0 or ki ≤ 0 for all i. We say α is positive or negative
respectively. There is a disjoint decomposition

R = R+ ∪R−.

where R+ is the set of positive roots and R− is the set of negative roots. The Weyl group
W is defined by

W := 〈si | αi ∈ ∆〉

where si = sαi .
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Remark 2.1. Property (2) of a root system is often phrased by saying thatR isW -invariant.

If α is a root, then we say

α∨ =
2α

(α, α)

is the coroot of α. The set of coroots R∨ form a root system called the dual root system
of R, but we will not need this fact. Instead, Let Q∨ be the Z-linear span of R∨ called the
weight lattice. Since R has integral basis ∆ , we have a decomposition

Q∨ =
∑
αi∈∆

Zα∨i .

2.2 The affine Weyl group

The Weyl groups W can be extended to an infinite group Waff by introducing translates of
hyperplanes. We will see that the affine Weyl group Waff induces a tessellation of h∗R into
alcoves. Let W be a Weyl group and R its associated root system. Let δ : h∗R → R be the
(non-linear) functional with δ(λ) = 1 for all λ ∈ h∗R. The affine root system is Raff = R+Zδ.
The affine hyperplane Hα+jδ is defined by

Hα+jδ := {β ∈ h∗R | 〈β, α〉 = j}.

If we normalize the length of the roots so that the short roots have length 1, then Hα+jδ is
the hyperplane Hα shifted by j in the direction of α. The affine reflection across Hα+jδ is

sα+jδ(β) := β − (〈β, α〉+ j)α∨.

We let α0 = −ϕ+ δ where ϕ is the highest root. The affine Weyl group Waff is defined by

Waff := 〈si | 0 ≤ i ≤ n〉

where n = |∆| is the number of simple roots of R so that W embeds in Waff as the subgroup
〈si | 1 ≤ i ≤ n〉. If tµ : h∗R → h∗R is the translation by µ:

tµ∨(λ) := λ+ µ∨,

then sα+kδ = t−κα∨sα and we have an isomorphism Waff
∼= W nQ∨.

2.3 The sl3 case

We will from now most examples will come from sl3. However, most of our results for alcove
walks hold for general simple Lie algebras. The finite root system for sl3 is type A2 so α1, α2

are the simple roots and the root system takes the form

α2α1

ϕ

The finite Weyl group W is isomorphic to the symmetric group S3 and the affine Weyl group
Waff is isomorphic to the affine symmetric group S̃3. Write

Waff = 〈s0, s1, s2 | s2
i = (sisj)

3 = 1 for 0 ≤ i < j ≤ 2〉

so that W ⊂Waff embeds as the subgroup generated by s1 and s2. The coroot lattice is

Q∨ = Zα∨1 + Zα∨2 .
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3 The Alcove Walk Model

3.1 The alcove model and actions on alcoves

The alcoves are the open connected components of

h∗R \

 ⋃
−αi+jδ∈R̃Ire

H−αi+jδ

 where H−αi+jδ = {x∨ ∈ h∗R | 〈x∨, αi〉 = j}

There is a natural left action of Waff on alcoves defined on generators where si acts by
reflecting an alcove A across the hyperplane Hαi . Each alcove is a fundamental region for
action of Waff and this action is simply transitive (see [1] (5.16) and (5.17)). We identify
1 ∈Waff with the fundamental alcove

1 = {β ∈ h∗R | 〈β, αi〉 > 0 for all 0 ≤ i ≤ 2},

so there is a bijection
Waff ←→ {alcoves} (1)

Under (1), we will write w both for elements of Waff and alcoves. In our setting, the alcove
model is the infinite diagram

Hϕ+δ

Hϕ

Hα0

+

−

+

−

+

−

H−α1+δ Hα1 Hα1+δ

+ −+ − + −

Hα2+δ Hα2
H−α2+δ

− +− + − +

s1

1

s2

s2s1

w0

s1s2

where we have suppressed some of the alcove labels and hyperplanes for simplicity . The
centres of hexagons are in bijective correspondence with elements of the coroot lattice Q∨,
so if we identify W with the corresponding alcoves in (1),⋃

λ∨∈Q∨
tλ∨W

is a mutually disjoint open cover for the alcoves. Hence to each alcove (or walk) w there
corresponds a unique λ∨ such that w ∈ tλ∨(W ), and we say the alcove (or walk) w belongs
to λ∨. We also assign an orientation to the hyperplanes such that
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1. 1 lies on the positive side of Hα for every α ∈ R+.

2. Hαi+jδ and Hαi have parallel orientations for 0 ≤ i ≤ 2,

and we say the hyperplanes have parallel periodic orientation (see [1]) in accordance with
property (2). Observe that the chambers of hR correspond to the alcoves of W with the
dominant chamber corresponding to the fundamental alcove and the antidominant chamber
corresponding to w0.

Words w in the generators si can be viewed as walks starting from 1 to w and we will
refer to elements of w ∈ Waff as walks in the alcove model. When we do so, we will always
assume w is a minimal (or reduced) expression unless otherwise specified. In particular,
folded walks will often not be reduced.

Remark 3.1. Elements w ∈ Waff have three meanings. They are either elements of Waff,
alcoves in the alcove model, or walks in the alcove model from 1 to w . In the third case,
we additionally assume w is minimal. From context it will always be clear which meaning
we are referring to.

Example 3.1. Consider the reduced expression w = s1s2s0s1.

Hϕ+δ

Hϕ

Hα0

+

−

+

−

+

−

H−α1+δ Hα1 Hα1+δ

+ −+ − + −

Hα2+δ Hα2
H−α2+δ

− +− + − +

The walk w is the path given by moving across the sequence of alcoves 1, s1, s1s2, s1s2s0,
and then into w. On the other hand, the alcove w is obtained from the action of Waff on 1
by applying the reflections s1s2s0s1 from right to left.

In general, if
w = si1si2 · · · si`(w)

,

then we say the action of si1 · · · sik−1
on sik is step k in the walk. Geometrically, the k-th

step of the walk can be viewed as the segment of the path from the alcove si1 · · · sik−1
to

si1 · · · sik :
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Hsik ···si1

si1 · · · sik−1 si1 · · · sik
(2)

The head of w at step k is the subwalk consisting of steps i1, . . . , ik−1 , and the tail of
the walk at step k is the subwalk consisting of steps ik+1, . . . , i`(w) starting at the alcove
si1 · · · sik .

The hyperplanes are defined such that each step in a walk w moves further away from the
fundamental alcove with respect to the inner product 〈·, ·〉 on hR. We define the inversion
set R(w) := {β1, . . . , β`} to be the ordered set of hyperplanes crossed by the walk w .
Since each step of the walk crosses a hyperplane, the k-th element of the inversion set is
precisely the hyperplane crossed in the walk at step k. Unfortunately, it’s not obvious how
to compute R(w) from the expression for w in terms of the si. We will introduce another
action on alcoves from which it is clear how to obtain w by walking across a sequence of
hyperplanes. We say that a hyperplane

H±αi+jδ

is of type i. In particular every hyperplane is of type 0, 1, or 2 (`(w0) types) . The closure
of every alcove w intersects a unique hyperplane of type i on its boundary for 0 ≤ i ≤ 2.
Accordingly, we say w is bounded by hyperplanes of type 0 ≤ i ≤ 2. Define actions σi for
0 ≤ i ≤ 2 on the fundamental alcove 1 such that σi takes 1 to the alcove obtained by step
the hyperplane of type i that bounds it. Define

V := 〈σ0, σ1, σ2〉

be the group generated by these actions and extend this action to V by composition. Ob-
serve V has relations similar to Waff including modified braid relations:

σ2
0 = 1, σ2

1 = 1, σ2
2 = 1,

σ2σ0σ1 = σ1σ0σ2, σ1σ2σ0 = σ0σ2σ1, σ0σ1σ2 = σ2σ1σ0.

V acts simply transitively on the alcoves and there are bijections

Waff ←→ {alcoves} ←→ V,

but V is not isomorphic to Waff since the σi are not reflections over fixed hyperplanes.
However, V enjoys the property that the alcove σ = σi1σi2 · · ·σik is obtained by walking
across the sequence of hyperplanes of type i1, i2, . . . , ik, read from left to right, starting from
the fundamental alcove 1.

Example 3.2. Consider again the walk w = s1s2s0s1. In the σi, w corresponds to σ1σ1σ1σ0.
Indeed, w in Example 3.1 is obtained by walking across the sequence of hyperplanes of type
1, 0, 1, 0.

There is an explicit bijection between Waff and V .

Proposition 3.1. The bijection ψ : Waff → V is given on W by

ψ(1) := 1,

ψ(s1) := σ1,

ψ(s2) := σ2,

ψ(s1s2) := σ1σ0,

ψ(s2s1) := σ2σ0,

ψ(w0) = σ1σ0σ2,
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and extends to Waff by setting

ψ(s0) := σ0,

ψ(s1s0) := σ1σ2,

ψ(s2s0) := σ2σ1,

ψ(s1s2s0) := σ1σ0σ1,

ψ(s2s1s0) := σ2σ0σ2,

ψ(w0s0) := σ1σ0σ2σ0.

Proof. Since every alcove can be viewed as a product of elements in W and Ws0, ψ is
surjective. If ψ(w1) = ψ(w2), then ψ(w1) and ψ(w2) are the same word in the σi up to the
braid relations

σ0σ1σ2 = σ2σ1σ0, σ1σ2σ0 = σ0σ2σ1, and σ2σ0σ1 = σ1σ0σ2.

As ψ(w0) = σ1σ0σ2, ψ takes braid relations to braid relations so w1 and w2 differ up to braid
relations in the si. Hence w1 and w2 represent the same element in Waff. The bijectivity of
ψ follows.

3.2 Positive and negative folding

As in [1] , the elements of

IwI = {xi1(c1)n−1
i1
xi2(c2)n−1

i2
· · ·xi`(c`)n

−1
i`
I | c1, . . . , c` ∈ Fq}

are in bijection with walks to w with edges labeled by c1, . . . , c` in Fq. Positively and
negatively folded walks to v1 and v2 with edges labels in Fq are in bijection with elements of
U−v1I and U+v2I respectively. Therefore to describe Iwahori double and triple intersections
it is necessary to understand how folding a labeled walk w in the alcove model alters the
walk. Our main tool is a rewritten group relation which we will refer to as the main folding
law:

xα(c)n−1
α = x−α(c−1)xα(−c)hα∨(c). (3)

which allows us to rewrite elements of IwI as elements in U−v1I or U+v2I (see [1] equation
(7.6)). Geometrically, the main folding law takes steps of the form

Hvαi

+ −
c

or

Hvαi

− +

c

and replaces them with folded steps:

Hvαi

+ −

c−1
or

Hvαi

− +

c−1

(4)

In the first case, we say the fold is positive and in the second we say the fold is negative
. If w is a labeled walk that folds positively (resp. negatively) at step k then the folded
walk w′ as a word is obtained from w by removing the letter sik . Unless otherwise specified,
we will assume we always fold positively or always fold negatively and it will be clear to
which case we are referring. The positively folded walk w+ (resp. negatively folded walk
w−) corresponding to w is the walk obtained by folding at every possible step . Since w+

and w− are obtained by removing letters from w it is not true that w+ and w− are always
minimal expressions. Accordingly, when we refer to folded walks we mean walks with steps
of the forms in (4).
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Remark 3.2. It is necessary to assume that the label of the step is nonzero in order for
c−1 to be defined. That is, folding cannot occur at steps with edge label 0.

Example 3.3. If the walk w = s1s2s0s1 has labels (0, 0, c, 0) with c ∈ F∗q . Then the only
folding allowed occurs at step 3 and it is a positive fold. Thus w = w− and w+ = s1s2s1.
The negatively folded walk w+ is

Hϕ+δ

Hϕ

Hα0

+

−

+

−

+

−

H−α1+δ Hα1 Hα1+δ

+ −+ − + −

Hα2+δ Hα2
H−α2+δ

− +− + − +

We will be slightly terse and consider walks w that fold either positively or negatively
at step k. Here it is implicit that the walk is labeled and step k in the walk is of the form

Hvαi

± ∓
ck

with ck nonzero. In this sense, we can avoid explicitly mentioning the labels.
We say a walk w is of positive (resp. negative) type v if w+ = v (resp. w− = v) in Waff

. Then from [1] (see Theorem (7.1)) we have

P(w)v :=
{

labeled walks to w
of positive type v

}
←→ U−vI ∩ IwI. (5)

Since positive and negative folding are the same up to a change in sign, by following the
same reasoning as in [1] there is an analogous result for negative type:

N (w)v :=
{

labeled walks to w
of negative type v

}
←→ U+vI ∩ IwI. (6)

How the sets P(w)v1 and N (w)v2 interact is critical to understanding the Iwahori triple
intersections.

3.3 Combinatorics of hyperplanes and walks

The parallel periodic orientation of the hyperplanes encodes combinatorial information
about walks in the alcove model, and quite often heavily restricts the possible types of
folded walks that can occur. We start with a lemma that tells us how folding affects the
tail of a walk.
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Lemma 3.1. If w is a walk with a positive (resp. negative) fold at step k across the
hyperplane H±αi+jδ, then the folded walk wf is obtained from w by introducing a folded
step at step k and reflecting the tail across H±αi+jδ where w = usikv.

Proof. Write w = usikv so that v is the tail. By applying u−1 to the left-hand side of w,
the claim is equivalent to showing that v and siv are reflections of each other across Hαi .
The claim follows since siv is obtained from v by reflecting over Hαi .

We can partition the set of hyperplanes by parallelism. Furthermore, each set of this
partition is indexed by a positive root α, which we will call the “type” of the hyperplane.
Observe that a minimal alcove walk crosses hyperplanes of type α in exactly one orientation:
either from the negative side to the positive side, or vice versa. Thus we can identify each step
in the walk −→w with a root: if step k in −→w crosses a hyperplane of type α from the negative
side to the positive side, then we say it has “shape” α, and if it crosses the hyperplane in the
other orientation, then we say it has shape −α. Positive folding only occurs at steps whose
shape is a negative root since these are exactly the steps that cross a hyperplane from the
positive side to the negative side. Similarly, negative folding occurs at steps whose shape is
a positive root.

For example in sl3

+

− and
+

−

these are steps of shape ∓ϕ. Similarly, the steps of shape ∓α1 are

+ −
and

+ −

and the steps of shape ∓α2 are

and

+− +−

Now we know that folding a minimal walk −→v at step k across a hyperplane H±α+jδ reflects
the steps in the tail of our walk over this hyperplane. Therefore, we can compute the new
shapes of the steps in the tail: we simply apply the reflection sα to these steps (which
correspond to roots) in order to get their shapes after folding.

We now have the machinery to show that the number of folds which can occur in a walk
is heavily restricted by W for all simple Lie algebras g.

Lemma 3.2. If a minimal walk −→v ends in a chamber w · C where w ∈ W and C is the
dominant chamber, then the steps of −→v have shape w ·R+.

Proof. Minimal walks −→v that end in C have steps of shape R+ by our definition of shapes
and our orientation of the hyperplanes. Thus a minimal walk ending in w · C has steps of
shape w ·R+.

Theorem 3.1. Suppose −→v is a labeled walk ending in the chamber w · C. Then the
maximum number of folds that can occur in the positive folded walk is the length of a
reduced expression for w in terms of the simple reflections of W . Similarly the maximum
number of folds in a negatively folded walk of type v is the length of a reduced expression
for w0w.

Proof. The argument is analogous for negatively folded walks, so we prove the theorem for
positively folded walks.
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By the previous lemma, we know that the steps of −→v have shapes lying in the set w ·R+.
By [2] Proposition 5.6, we know that the number of negative roots contained in the set
w ·R+ is equal to the length of a reduced expression for w in terms of the simple reflections.
Furthermore, we can only positively fold at steps whose shape is a negative root, and we
can compute the shapes of steps after a fold at a hyperplane of type β by applying sβ to
the steps in the tail. In the tail, the steps of the walk have shape sβw ·R+.

Thus we have proven the theorem once we show that sβw has length less than w where
−β is a negative root in w ·R+. We can explicitly write down the negative roots of w ·R+

which are:

si1 · · · sin−1
(−αin)

si1 · · · sin−2
(−αin−1

)

...

− αi1

Say −β = si1 · · · sik−1
(−αik). Then

sβ = (si1 · · · sik−1
)sik(si1 · · · sik−1

)−1

since this is a reflection that takes β to −β. Finally observe that

sβw = si1 · · · sik−1
sik+1

· · · sin

Therefore the maximum number of folds in a positively folded walk is l(w).

Corollary 3.1. The maximum number of folds (positive or negative) in a particular alcove
model is equal to the length of the long element of the Weyl group for that Lie algebra.

We can put a partial ordering on the sets {±ϕ,±α1,±α2} given by the action of the si:

(ϕ, α1, α2)

(ϕ, α1,−α2) (ϕ,−α1, α2)

(−ϕ, α1,−α2) (−ϕ,−α1, α2)

(−ϕ,−α1,−α2)

The ordering is such that positive folding corresponds to moving up the ordering and nega-
tive folding corresponds to moving down. This embodies the fact that no positive folding
can occur in (ϕ, α1, α2) and no negative folding can occur in (−ϕ,−α1,−α2). Theorem 3.1
then loosely says there are at most `(w0) elements in any saturated chain of this ordering.

Since walks in the alcove model are not in bijection with elements of Waff it is natural
to wonder if two different reduced expressions for the same word fold to different alcoves.
This is possible if we are given the freedom to choose labels.

Proposition 3.2. If w is a labeled walk that positively (resp. negatively) folds to some
alcove, then any other reduced expression w′ positively (resp. negatively) folds using the
same number of folds to the same alcove for a possibly different labeling.

Proof. The claim is analogous for negative folds so assume all folds are positive. We will
prove by strong induction on `(w). This is allowed since the length of a word is independent
of its reduced expression. If `(w) = 1, then the reduced expression is unique and the claim
follows. So suppose that the claim holds for all walks of length at most n and all labelings.



UMN REU 2020 11

If `(w) = n + 1. Write w = vsi and w′ = v′sj . By the induction hypothesis choose a
labeling for v′ such that v and v′ both positively fold using the same number of folds to
the same alcove. If i = j, then we are done. If i 6= j, then w = usisjsi and w′ = u′sjsisj
where usisj = v and u′sjsi = v′ because w and w′ have equivalent expressions up to braid
relations . By the induction hypothesis choose labels for u′ such that u and u′ both fold to
the same alcove using the same number of folds. If we do not fold in the tail of u then we
are done since the braids sisjsi and sjsisj are walks to the same alcove. If we fold in the
tail of u, then since the induction is strong we can choose labels for the tail of u′ such that
both tails fold to the same alcove . In all cases we can find labels for w′ such that w′ and
w fold to the same alcove.

Example 3.4. Consider the two walks w = s2s0s1s0s2 and w′ = s2s1s0s1s2. They are
walks to the same alcove since they differ by the braid s0s1s0 = s1s0s1. We have colored w
and w′ by red and blue respectively:

Hϕ+δ

Hϕ

Hα0

+

−

+

−

+

−

H−α1+δ Hα1
Hα1+δ

+ −+ − + −

Hα2+δ Hα2 H−α2+δ

− +− + − +

v

Let the labels for w be (c1, c2, 0, 0, c5) with c1, c2, c5 ∈ F∗q . Consider the negatively folded
walk. Then the only fold in w occurs at step 2 and folding reflects the red braid to the blue
braid with an addition step into v. Choosing the c4 label for w′ nonzero means we fold at
step 4 and indeed folding here reflects the blue tail of w′ to the additional red step into v.
Thus w′ folds to the same alcove as w with labels (c1, c2, 0, 0, c5) given c4 6= 0.

3.4 Iwahori triple intersections and double Iwasawa cells

Throughout, we have assumed that our loop group G has two Iwahori decompositions

G =
⊔
v∈W̃

U−vI and G =
⊔
v∈W̃

U+vI

where the Iwahori subgroup I we have chosen is the same for both decompositions. Here
we prove that we can actually do so.
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Proposition 3.3. Let K = C((t)) , let O = C((t)) be the ring of integers in K, and let k be
the residue field O/p. Let B(k) ≤ G(k) be the Borel subgroup of upper-triangular matrices
. Let K = G(O), and let f be the map from K to G(k) given by sending t to 0, and let
I ≤ K be the inverse image of B(k) under this map.

Then I = U+(O)T (O)U−(p). Now let g ∈ G. Then because we have the Iwasawa
decomposition

G =
⊔

tλ∈Q∨
U+tλK

we can write
g = tλua where u ∈ U+ and a ∈ K =

⊔
w∈W

IwI

Then we can write a as
a = (u+tu−)wi = u+wi

′

which gives us the Iwahori decomposition since moving a torus element t past the elements
of U+ leaves them in U+

G =
⊔
v∈W̃

U+vI

Recall the main folding law

xα(c)n−1
α = x−α(c−1)xα(−c)hα∨(c) where c ∈ O×

which can be rewritten as

n−1
α x−α(c) = xα(±c)n−1

α = x−α(±c−1)xα(∓c)hα∨(±c).

Let g ∈ G. Because we have the Iwasawa decomposition of G with respect to U−, we can
write

g = tλua where u ∈ U− and a ∈ K =
⊔
w∈W

IwI

and we can write a = u+wi
′ as before. We have finished the proof once we can show that g

is in U−vI for some v ∈ W̃ .
Now by [3] Lemma 18 Corollary 2, every element of U+ can be written uniquely as a

product of elements of the one parameter subgroups Xα for α a positive root, once we pick
an ordering on the positive roots. If w = si1 · · · sik is a reduced expression in terms of the
simple reflections, then n−1

i1
· · ·n−1

ik
is a representative of w in G(K). We wish to move these

n−1
ij

past the xα’s in u+. However,

xα(c)n−1
β = n−1

β xsβα(c)

and it is possible that xsβα(c) does not lie in I. Thus we apply the following algorithm: the

first step consists of ordering R+ so that αi1 comes first. Then start moving n−1
i1

past the
elements xα in u+, which leaves them in I. If the product u+ contains an element from Xi1 ,
then apply the main folding law, so that x−α(c−1) lies in U− and move the torus element
hα∨i1

(c) to the right since it lies in I. Otherwise we do not have to apply the main folding

law, and we proceed with the next step.
Assume we have done this successfully for m steps, so we have

g = tλu′(n−1
j1
· · ·n−1

j`
)u′+(n−1

im+1
· · ·n−1

ik
)i′′

Now for the m + 1 step, order R+ so that αim+1
comes first, and write u′+ as a product

of elements in Xα with this ordering. Start moving n−1
im+1

past the x’s as before. If we do

need to apply the main folding law, then we need to move x−αim+1
(c) past the n−1

j ’s on the

left. Now it is possible that as we move x−αim+1
(c) to the left, that at some point, we have
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the situation n−1
β x−β(c′) for β a positive root. Since U− =

∏
α∈R+ X−α, we need to apply

the main folding law again. Now we have gotten rid of n−1
β and can proceed with moving

x−β(c′) to the left. Move the other terms from this application of the main folding law to
the right, and if need be repeatedly apply the main folding law. Proceeding in this way, we
can eventually write g as an element of U−vI for some v ∈ W̃ , and so we finally have the
Iwahori decomposition

G =
⊔
v∈W̃

U−vI

The reason for going through all of that trouble is the following. For two weights λ, µ ∈
Q∨, we can define the double Iwasawa cell

Cλµ = U−tλK ∩ U+tµK

and write it as a triple intersection

Cλµ = U−tλ(tw∈W IwI) ∩ U+tµ(tw∈W IwI) =
⋃

w,w′∈W
v∈W̃

U−tλwI ∩ IvI ∩ U+tµw′I

Proposition 3.4. Let w be a walk that belongs to λ∨ = k1α
∨
1 + k2α

∨
2 . Then w+ (resp.

w−) belongs to some weight µ∨ = m1α
∨
1 +m2α

∨
2 such that |m1| ≤ |k1| and |m2| ≤ |k2|.

Proof. We will prove the slightly stronger claim where w is assumed to be a walk starting
at any alcove in W , and we will prove by strong multidimensional induction on k1 and k2.
If k1 = k2 = 0 then w ∈ W and the claim follows since W is closed under multiplication
by s1 and s2 and folding corresponds to removing a letter s1 or s2. Suppose that λ∨ =
(n + 1)α∨1 + (n + 1)α∨2 and the claim holds for all walks belonging to ν∨ = nα∨1 + nα∨2 .
Write w = vi1 · · · vil (with l ≤ `(w0) by Theorem 3.1) where the last step of each vij is a
fold. For each fold, applying a sufficient translation sends the start of the tail to an alcove
in W and then the claim holds by the strong induction hypothesis . Thus w+ belongs to
µ∨ = m1α

∨
1 + m2α

∨
2 such that |m1| ≤ |k1| and |m2| ≤ |k2|. The induction for negative k1

and k2 is analogous finishing the proof.

Since there are finitely many weights with coefficients bounded in absolute value so that
by Proposition 3.4, finitely many translates tλ∨(W ) may give contributions to the Iwahori
triple intersection.
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Proposition 3.5. Let λ, µ be weights Q∨ with λ antidominant. Then U−tλK ∩ U+tµK
is nonempty when λ � µ with respect to the usual ordering on weights. There is a
stratification on the intersection above given by

U−tλK ∩ U+tµK =
⋃
v∈W̃

 ⋃
w,w′∈W

U−tλwI ∩ IvI ∩ U+tµw′I

 .

In the alcove walk model for g, the fundamental domains for the translation subgroup T ≤ W̃
are the hexagons whose centers correspond bijectively to elements of T . Thus it suffices to
show that given λ and µ, there exists a labelled positively folded walk of type v to an alcove
in tλ which is also a labelled negatively folded walk of type v to an alcove in tµ.

Informally, if λ � µ, then there is a sequence of affine reflections that take tλ to tµ.
Folding a walk at step k corresponds to reflecting the remaining steps of the walk (which we
will call the tail) across the hyperplane at which we have folded. Thus a walk to an alcove
in tµ can be folded positively to an alcove in tλ where the folds kill off the coefficients k1, k2

in k1α
∨
1 + k2α

∨
2 = λ− µ.

Now suppose that µ1, µ2 are two weights for g in Q∨ such that µ1 − µ2 = kα∨i . Then
there are 2k hyperplanes of type i between µ1 and µ2, thought of as centers of hexagons
in the alcove walk model, including the one containing µ2. This is because there are 2
hyperplanes of type i between 0 and α∨i . Also notice that the image of tµ1 under reflection
across the kth hyperplane of type i between the two weights is tµ2 .

Proof. We are now ready to prove the claim. Assume that λ is antidominant and λ − µ
equals k1α

∨
1 or k2α

∨
2 where ki is a positive integer in each case. Let v be a minimal walk

to an alcove in tµ, and forget about the labels for now. Notice that by our assumptions, we
cross hyperplanes of type i from the positive side to the negative side, which means that we
are able to fold positively at steps of shape −αi. Since λ is antidominant and λ � µ, we
actually cross all 2k hyperplanes of type i separating the two weights except possibly the
one containing µ, so if we positively fold v at the step crossing the kth hyperplane, then the
tail of v lies in an alcove of tλ.

Now suppose that λ− µ = k1α1 + k2α2 where both coefficients are positive integers. µ
lies in a chamber where we can either fold at steps of shape −α1 or −α2. Without loss of
generality, suppose that µ lies in the s1s2 chamber or the antidominant chamber so that
we are able to postively fold at steps of shape −α1. Then if µ′ = µ+ k1α

∨
1 , then there are

2k1 hyperplanes of type 1 between µ and µ′, and we can fold v at the step that crosses the
k1th hyperplane between the two weights so that the tail of v lands in an alcove in tµ

′
. Now

λ − µ′ = k2α
∨
2 , and we have a walk to w̃ ∈ tµ′ (not necessarily minimal) whose tail (steps

after the fold) has steps of shape α1,−α2, ϕ. The tail crosses all 2k2 hyperplanes of type 2
between λ and µ′ (because the angle between α1 and α2 lies in [π/2, π) and our assumptions
about the ordering λ � µ′ � µ) . Thus we can fold the tail of w̃ at the step where it crosses
the k2th hyperplane of type 2 between λ and µ′ to obtain a positively folded path of type v
to an alcove in tλ. We now address the labels. The only constraints in the negatively folded
walk to v come from positive crossings. In the above example, these positive crossings (if
any) come at steps of shape α2. Steps of shape R+ don’t have any constraints on the labels
in the positively folded walk, so we can make them 0 so that the labellings are compatible
with the negatively folded walk. Because s1(α2) = ϕ is a positive crossing, there is no
problem after the first fold at the hyperplane of type 1. For the rest of the labels, use the
contraints forced by the positively folded walk.

Proposition 3.6. Suppose that we have a minimal walk to an alcove w in tµ. Then any
positively folded walk of type w ends in an alcove v contained in tν such that ν � µ.

Proof. We proceed by induction on the number of folds. If we don’t fold at all, then w ends
in w contained in tµ and µ � µ. Now suppose that the conclusion holds for positively folded
walk of type w where we have folded k times for 0 ≤ k ≤ n− 1.
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Say we have a positively folded walk of type w ending in v where we have folded n times.
Let w′ be the same folded walk of type w without the nth fold. Then w′ lies in a hexagon
tµ
′

and µ′ � µ. v lies in a hexagon tν , and all that’s left to show is that ν � µ′. We know
that v is got from w′ by folding at a step k after the n−1th fold, and that this step k looks
like −αi for some αi ∈ R+. Because folding at this step k corresponds to reflecting the tail
of w′ across a hyperplane of type i, we actually know that ν − µ′ = mα∨i for some positive
integer m. Thus ν � µ.

By a similar argument, we know that any negatively folded walk of type v ∈ tν ending in
an alcove w ∈ tµ satisfies ν � µ . Thus if there exists an alcove v ∈ tν such that v positively
folds to tλw and negatively folds to tµw′, then we have λ � ν � µ. Therefore the double
Iwasawa cell Cλµ := U−tλK ∩ U+tµK is nonempty if and only if λ � µ for g = sl3.

4 Whittaker Functions

4.1 Definitions

Let g be a simple Lie algebra and λ an antidominant weight for g. Let G be the loop group
given by the field Fq((t)) and Lie algebra g. Then the Whittaker coefficient W (tλ) can be
defined as in [4] by

W (tλ) =

∫
U−

vK(utλ)ψ(u) du

This integral is evaluated over the double Iwasawa cells Cλµ defined earlier, and each

utλ = u′tµk ∈ U+AK

The stratification of the double Iwasawa cells into triple intersections allows us to rein-
terpret the Whittaker coefficient formula in terms of alcove walks. We normalize the volume
form so that I has integral 1, which allows us to write

W (tλ) =
1

vol(K)

∑
µ∈Q∨
w,w′∈W
v∈W̃

χ(tµ)

∫
U−tλwI∩IvI∩U+tµw′I

ψ(u) du

Here we slightly abuse notation: we consider the points in the triple intersection as points
in the affine flag variety G/I and take ψ to mean the function that takes the unipotent part
of an element and then evaluates the character.

In order to compute the Whittaker coefficient in terms of alcove walks, follow this pro-
cedure:

1. First find all labelled walks v that can positively fold to an alcove in λ′ = w0 · λ. (In

the alcove model, the fundamental domain for the translation subgroup T ≤ W̃ is the
closure of the union of the alcoves for W . Thus λ′ can be identified with the alcoves
tλ
′ ·W .)

2. Then for each labelled walk v from the first step, find all the alcoves tµw′ that v can
negatively fold to.

3. Let (v, l, tλ
′
w, tµw′) be a tuple that denotes a labelled walk to v positively folding to

tλ
′
w and negatively folding to tµw′ . Evaluate the character ψ on the unipotent part

of this tuple which corresponds to a point in G/I, and then sum over the possible
labellings, i.e. the tuples which have the same first, third, and fourth entries . This
sum is the integral in the formula written above.
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4. w0 · µ is an integer combination of the simple coroots, and χ(tµ) is equal to the
product of indeterminates zi where the power of zi in the product is the coefficient of
α∨i . Multiply the integral from the previous step by χ(tµ).

5. Finally, divide the expression by

vol(K) =
∑
w∈W

ql(w)

ForG = SL2(Fq((t))), Beazley and Brubaker proved that this computation gives Tokuyama’s
formula bijectively (see [4]). However, Tokuyama’s formula is only valid for Cartan types
An. There are other similar formulas for the other Cartan types, but the advantage of the
alcove walk formulation is that it is independent of Cartan type and of any ordering on the
positive roots.

4.2 Support on U−v1I ∩ IwI ∩ U+v2I

Since the alcove walk formulation requires us to sum over all v in the affine Weyl group,
it may appear that our sum is infinite. However in practice, taking the character and
integrating over all l in the tuples (v, l, tλ

′
w, tµw′) makes the integral 0 for all but finitely

many v.
Explicitly ψ can be taken to be the following. If q = pn for p prime, then let ψ0 be the

character on Fq((t)) which sends Fq[[t]] to 1, and sends at−k where a = c1+c2α1+· · ·+cnαn−1

to ζc1 · · · ζcn where k > 0 and ζ is a pth root of unity. Then define the character ψ on U−

by

ψ(A) = ψ0

(
n−1∑
i=1

ai+1,i

)
Now if the positively folded walk of type v positively crosses a hyperplane corresponding to
a simple root α with label α + kδ for k > 0, and the allowed labels on this crossing are all
elements of Fq, then the integral for this walk is 0, since the sum of all pth roots of unity is
0. What this means pictorially is that v cannot lie in a weight ν that is “too far” from λ,
since this increases the likelihood of such a positive crossing mentioned previously.
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