Virtual Resolutions of Monomial Ideals

Preston Cranford*, Kedar Karhadkar
Mentors: Jay Yang and Elizabeth Kelley

August 6, 2020

Introduction

Abstract
In the UMN REU, we explored the relationship between the multi-graded regularity and resolution regularity of virtual resolutions of square-free monomial ideals in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times \mathbb{P}^{2}$.

Multigraded Polynomial Rings

Example

The polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ with the "standard grading" is \mathbb{Z}-graded, with $\operatorname{deg}\left(x_{i}\right)=1$. So $\operatorname{deg}\left(x_{1}^{5} x_{2}^{3}\right)=8$

Example

Consider the polynomial ring $k\left[x_{0}, x_{1}, y_{0}, y_{1}, y_{2}\right]$ for $\mathbb{P}^{1} \times \mathbb{P}^{2}$ with $\operatorname{deg}\left(x_{i}\right)=(1,0)$ and $\operatorname{deg}\left(y_{i}\right)=(0,1)$. Then the degrees of the following monomials are

- $\operatorname{deg}\left(x_{0} x_{1}\right)=(2,0)$
- $\operatorname{deg}\left(x_{1}^{2} y_{1} y_{2}\right)=(2,2)$

Minimal Free Resolutions

Let C_{0} be an ideal of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or $\mathbb{P}^{1} \times \mathbb{P}^{2}$.
Definition
A complex $C_{0} \stackrel{d_{0}}{\leftarrow} C_{1} \stackrel{d_{1}}{\leftarrow} C_{2} \stackrel{d_{2}}{\leftarrow} \cdots$ is a minimal free resolution of C_{0} if
(1) C_{i} are free modules,
(2) It is minimal
(3) It is exact

Example of a Resolution

Example

This example is taken from [2]. For I the ideal corresponding to a specific curve in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, we have that the minimal free resolution of I is

$$
\begin{aligned}
& S(-3,-1)^{1} \\
& S \stackrel{\oplus}{\oplus} \quad S(-3,-3)^{3} \\
& S(-2,-2)^{1} \\
& \stackrel{\oplus}{\oplus} \quad S(-3,-5)^{3} \\
& S^{1} \leftarrow S(-2,-3)^{2} \leftarrow \underset{\oplus(-1,-7)^{1}}{\underset{\oplus}{\oplus}+5(-2,-7)^{2}} \leftarrow S(-3,-7)^{1} \leftarrow 0 . \\
& S(-1,-5)^{3} \\
& S(0,-8)^{1} \\
& S(-1,-8)^{2} \\
& S^{1} \leftarrow S^{8} \leftarrow S^{12} \leftarrow S^{6} \leftarrow S^{1} \leftarrow 0 .
\end{aligned}
$$

Virtual Resolutions

Definition
[2] A complex $C_{0} \stackrel{d_{0}}{\longleftarrow} C_{1} \stackrel{d_{1}}{\longleftarrow} C_{2} \stackrel{d_{2}}{\longleftarrow} \cdots$ is a virtual resolution if
(1) C_{i} are free modules,
(2) $H_{i}\left(C_{\bullet}\right)$ is irrelevant for $i>0$.

Remark

For example, for $\mathbb{P}^{1} \times \mathbb{P}^{2}$ the irrelevant ideal is $B=\left\langle x_{0}, x_{1}\right\rangle \cap\left\langle y_{0}, y_{1}, y_{2}\right\rangle$ But if $f \in B$, then f is zero on the coordinates where x_{0} and x_{1} are 0 or where b_{0}, b_{1}, and b_{2} are all zero.

Remark

Over $\mathbb{P}^{\mathbf{n}}$ minimal free resolutions don't accurately reflect the geometry. Virtual free resolutions do.

Example of a Resolution

Example

This example is taken from [2]. For I the ideal corresponding to a specific curve in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, we have that the minimal free resolution of I is

$$
S^{1} \leftarrow S^{8} \leftarrow S^{12} \leftarrow S^{6} \leftarrow S^{1} \leftarrow 0
$$

However there is a virtual resolution of the form

$$
\begin{gathered}
\quad S(-3,-1)^{1} \\
S^{1} \leftarrow S(-2,-2)^{1} \leftarrow S(-3,-3)^{3} \leftarrow 0 \\
S(-2,-3)^{2} \\
S^{1} \leftarrow S^{4} \leftarrow S^{3} \leftarrow 0 .
\end{gathered}
$$

Squarefree Monomial Ideals

Squarefree monomial ideals are a special case of monomial ideas where none of the variables show up in a generator with degree higher than 1.

Definition (Stanley-Reisner Correspondence)
For a simplicial complex Δ on n vertices, define $I_{\Delta} \subset k\left[x_{1}, \ldots, x_{n}\right]$ to be the ideal generated by the minimal non-faces.

Example

$$
I_{\Delta}=\left(x_{1} x_{3}, x_{1} x_{5}, x_{1} x_{6}, x_{2} x_{4}, x_{2} x_{5}, x_{2} x_{6}, x_{4} x_{5}, x_{4} x_{6}\right)
$$

Saturation

Definition

The saturation of an ideal I by an ideal B is given by

$$
I: B^{\infty}:=\left\{r \in S: r \cdot B^{k} \subset I \text { for } k \text { sufficiently large }\right\}
$$

Example

$$
I=\quad B=\quad I: B^{\infty}=
$$

Special Case of Virtual Resolutions

Lemma
The minimal free virtual resolution of I is the minimal free resolution of it's B-saturation.

Proposition
Subvarieties of a product of projective spaces correspond to homogeneous B-saturated radical ideals in the homogeneous coordinate ring

$\left\{\right.$ Varieties in $\left.\mathbb{P}^{\mathbf{n}}\right\} \leftrightarrow\{$ homogeneous B-saturated radical ideals $\}$

Remark

All monomial ideals are homogeneous and a monomial ideal is radical if and only if it is squarefree.

Multigraded and Resolution Regularity

For a module M, we have a minimal free resolution $M \leftarrow F_{1} \leftarrow \cdots$ of M.
Definition ([1])
The mutli-graded regularity $\operatorname{reg}(M)$ of M is an infinite set in \mathbb{N}^{r}.

Definition ([3])
The resolution regularity res-reg (M) of M is a vector in \mathbb{N}^{r} given by

$$
\operatorname{res}-\operatorname{reg}(M)_{l}=\max \left\{\mathbf{a}_{l}: \mathbf{a}+i \cdot e_{l} \text { is the degree of a generator in } F_{i}\right\}
$$

Remark ([4])
The resolution regularity gives a bound on the multigraded regularity. But in general, it does not give the whole multigraded regularity.

Resolution Regularity

$\operatorname{res-reg}(M)_{l}=\max \left\{\mathbf{a}_{l}: \mathbf{a}+i \cdot e_{l}\right.$ is the degree of a generator in $\left.F_{i}\right\}$

Example

$$
\begin{aligned}
& S(-3,-1)^{1} \\
& S(-2,-2)^{1} \\
& S(-3,-3)^{3} \\
& S \stackrel{\oplus}{ }{ }^{\oplus} \quad S(-3,-5)^{3} \\
& S^{1} \leftarrow S(-\underset{\oplus}{\oplus}-3)^{2} \leftarrow \begin{array}{c}
S(-2,-5)^{6} \\
S(-1,-7)^{1}
\end{array} \leftarrow S(-\underset{\oplus}{\oplus}-7)^{2} \leftarrow S(-3,-7)^{1} \leftarrow 0 . \\
& \begin{array}{ccc}
S(-1,-5)^{3} & S(-1,-7) & S(-2,-8)^{1}
\end{array} \\
& S(0,-8)^{1} \\
& \operatorname{res-reg}(S / I)=(2,7)
\end{aligned}
$$

A Problem to Consider

Question
 How is $\operatorname{reg}\left(S /\left(I: B^{\infty}\right)\right)$ related to res-reg (S / I) ?

Calculating Resolution Regularity in M2

Macaulay2 has a package for multigraded regularity. We made code for resolution regularity.

```
resRegularityHelper = (r,l) -> (
max for k in keys betti r list (
    k#1#1 - k#0
    )
)
```

```
resRegularity = (r) -> (
    d := degreeLength ring r;
    for l from O to (d-1) list (
        resRegularityHelper(r,l)
        )
    )
```


Enumerating $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Δ_{I}	$\overline{\Delta_{I} \backslash \Delta_{B}}$	reg $I: B^{\infty}$	res-reg I
$\{12\}$	$\{\emptyset\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{12\}$	$\{13\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{13,13\}$	$\{13\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{13,14\}$	$\{13,14\}$	$\{\{0,1\}\}$	$\{0,1\}$
$\{13,34\}$	$\{13\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{12,34\}$	$\{23\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{13,24\}$	$\{13,24\}$	$\{\{0,1\},\{1,0\}\}$	$\{1,1\}$
$\{12,13,14\}$	$\{13,14\}$	$\{\{0,1\}\}$	$\{0,1\}$
$\{12,13,23\}$	$\{13,23\}$	$\{\{1,0\}\}$	$\{1,0\}$
$\{12,13,24\}$	$\{13,24\}$	$\{\{0,1\},\{1,0\}\}$	$\{0,1\}$
$\{12,13,34\}$	$\{13\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{12,13,1,23\}$	$\{13,14,23\}$	$\{1,1\}$	$\{1,1\}$
$\{12,13,24,34\}$	$\{13,24\}$	$\{\{0,1\},\{1,0\}\}$	$\{0,0\}$
$\{12,13,23,34\}$	$\{13,23\}$	$\{\{1,0\}\}$	$\{1,0\}$
$\{13,14,23,24\}$	$\{13,14,23,24\}$	$\{1,1\}\}$	$\{1,1\}$

Enumerating $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Δ_{I}	$\overline{\Delta_{I} \backslash \Delta_{B}}$	reg $I: B^{\infty}$	res-reg I
$\{13,23,24\}$	$\{13,23,24\}$	$\{1,1\}\}$	$\{1,1\}$
$\{12,13,14,23,24\}$	$\{13,14,23,24\}$	$\{1,1\}\}$	$\{1,1\}$
$\{12,13,14,23,34\}$	$\{13,14,23\}$	$\{1,1\}\}$	$\{1,1\}$
$\{12,13,14,23,24,34\}$	$\{13,14,23,24\}$	$\{\{1,1\}\}$	$\{1,1\}$
$\{123\}$	$\{123\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{123,14\}$	$\{123,14\}$	$\{\{0,1\}\}$	$\{0,1\}$
$\{123,34\}$	$\{123\}$	$\{\{0,0\}\}$	$\{0,0\}$
$\{123,14,34\}$	$\{123,14\}$	$\{00,1\}\}$	$\{0,1\}$
$\{123,14,24\}$	$\{123,14,24\}$	$\{\{1,1\}\}$	$\{1,1\}$
$\{123,124\}$	$\{123,124\}$	$\{0,1\}\}$	$\{0,1\}$
$\{123,124,34\}$	$\{123,124\}$	$\{0,1\}\}$	$\{0,1\}$
$\{123,134\}$	$\{123,134\}$	$\{0,0\}\}$	$\{0,0\}$
$\{123,134,24\}$	$\{123,134,24\}$	$\{0,1\}\}$	$\{0,1\}$
$\{123,124,134\}$	$\{123,124,134\}$	$\{00,0\}\}$	$\{0,1\}$
$\{123,124,134,234\}$	$\{123,124,134,234\}$	$\{\{1,1\}\}$	$\{1,1\}$

Example in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\operatorname{reg}(I)=\mathbb{N}^{2} \backslash\{(0,0)\}
$$

The following resolution regularities are $(0,1)$ and $(1,0)$.

Random $\mathbb{P}^{1} \times \mathbb{P}^{2}$ in M 2

We made code to test random examples for ideals in $\mathbb{P}^{1} \times \mathbb{P}^{2}$.

```
X = toricProjectiveSpace(1)**toricProjectiveSpace(2)
R = ring X
P=newRing(R,DegreeRank=>1)
phi=map(R,P)
L={...}--degrees of minimial generators of ideal.
I = randomSquareFreeMonomialIdeal(L,P)
print resolutionInformation phi(I);
```


Further Directions

One might use a combinatorial interpretation of local cohomology to give a cominatorial interpretation of multigraded regularity. There already exists one for resolution regularity [5].

Proposition [6]
Let $\Sigma \subset \Delta$ be simplicial complexes, and let $\mathbf{a} \in \mathbb{Z}, F_{+}=\operatorname{supp}_{+}(\mathbf{a})$ and $F_{-}=\operatorname{supp}_{-}$(a) Then

$$
\left.H_{J}^{i}(k[\Delta]] \cong \tilde{H}^{i-1}\left(\left\|\operatorname{star}_{\Delta}\left(F_{+}\right)-\right\| \Sigma \mid, \| \operatorname{del}_{\text {star }_{\Delta}\left(F_{+}\right)}\left(F_{-}\right)\right)\|-\| \Sigma \mid\right)
$$

where $\|\Delta\|$ denotes the geometric realization of Δ.

Acknowledgements

This research was conducted 2020 REU UMN supported by NSF RTG grant DMS-1745638. We thank Jay Yang and Elizabeth Kelley for their support.

References

[1] Diane Maclagan and Gregory G. Smith, Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math. 571 (2004), 179-212, DOI 10.1515/crll.2004.040. MR2070149
[2] Christine Berkesch, Daniel Erman, and Gregory G. Smith, Virtual Resolutions for a Product of Projective Spaces (2017), available at 1703.07631.
[3] Jessica and Tuyl Sidman Adam, Multigraded regularity: Syzygies and fat points, Beitrage zur Algebra und Geometrie 47 (2004).
[4] Diane and Smith Maclagan Gregory, Uniform bounds on multigraded regularity, Journal of Algebraic Geometry 14 (2003), DOI 10.1090/S1056-3911-04-00385-6.
[5] Christopher and Mermin Francisco Jeffrey and Schweig, A Survey of Stanley-Reisner Theory, Springer Proceedings in Mathematics and Statistics 76 (2014), 209-234, DOI 10.1007/978-1-4939-0626-05.
[6] Victor and Welker Reiner Volkmar, Local Cohomology Of Stanley-Reisner Rings With Supports In General Monomial Ideals, Journal of Algebra 244 (2001), DOI 10.1006/jabr.2001.8932.

Conclusion

Questions?

