Virtual Resolutions of Monomial Ideals

Preston Cranford*, Kedar Karhadkar Mentors: Jay Yang and Elizabeth Kelley

August 6, 2020

Abstract

In the UMN REU, we explored the relationship between the multi-graded regularity and resolution regularity of virtual resolutions of square-free monomial ideals in $\mathbb{P}^1 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^2$.

Multigraded Polynomial Rings

Example

The polynomial ring $k[x_1, \ldots, x_n]$ with the "standard grading" is \mathbb{Z} -graded, with $\deg(x_i) = 1$. So $\deg(x_1^5 x_2^3) = 8$

Example

Consider the polynomial ring $k[x_0, x_1, y_0, y_1, y_2]$ for $\mathbb{P}^1 \times \mathbb{P}^2$ with $\deg(x_i) = (1, 0)$ and $\deg(y_i) = (0, 1)$. Then the degrees of the following monomials are

- $\deg(x_0x_1) = (2,0)$
- $\deg(x_1^2y_1y_2) = (2,2)$

Let C_0 be an ideal of $\mathbb{P}^1 \times \mathbb{P}^1$ or $\mathbb{P}^1 \times \mathbb{P}^2$.

Definition

A complex $C_0 \xleftarrow{d_0} C_1 \xleftarrow{d_1} C_2 \xleftarrow{d_2} \cdots$ is a <u>minimal free resolution</u> of C_0 if

- **0** $C_i \text{ are free modules, }$
- It is minimal
- It is exact

Example of a Resolution

Example

This example is taken from [2]. For I the ideal corresponding to a specific curve in $\mathbb{P}^1 \times \mathbb{P}^2$, we have that the minimal free resolution of I is

$$S(-3,-1)^{1} \oplus S(-3,-3)^{3} \oplus S(-3,-3)^{3} \oplus S(-3,-5)^{3} \oplus S(-2,-2)^{1} \oplus S(-2,-5)^{6} \oplus S(-3,-5)^{3} \oplus S(-2,-3)^{2} \leftarrow S(-2,-7)^{2} \leftarrow S(-3,-7)^{1} \leftarrow 0.$$

$$\oplus S(-1,-5)^{3} \oplus S(-1,-7)^{1} \oplus S(-2,-8)^{1} \oplus S(-2,-8)^{1}$$

Definition

[2] A complex $C_0 \xleftarrow{d_0} C_1 \xleftarrow{d_1} C_2 \xleftarrow{d_2} \cdots$ is a <u>virtual resolution</u> if

- **0** $C_i \text{ are free modules, }$
- 2 $H_i(C_{\bullet})$ is irrelevant for i > 0.

Remark

For example, for $\mathbb{P}^1 \times \mathbb{P}^2$ the irrelevant ideal is $B = \langle x_0, x_1 \rangle \cap \langle y_0, y_1, y_2 \rangle$ But if $f \in B$, then f is zero on the coordinates where x_0 and x_1 are 0 or where b_0 , b_1 , and b_2 are all zero.

Remark

Over $\mathbb{P}^{\mathbf{n}}$ minimal free resolutions don't accurately reflect the geometry. Virtual free resolutions do.

Example of a Resolution

Example

This example is taken from [2]. For I the ideal corresponding to a specific curve in $\mathbb{P}^1 \times \mathbb{P}^2$, we have that the minimal free resolution of I is

$$S^1 \leftarrow S^8 \leftarrow S^{12} \leftarrow S^6 \leftarrow S^1 \leftarrow 0.$$

However there is a virtual resolution of the form

$$S(-3,-1)^{1} \oplus S(-3,-3)^{3} \leftarrow 0.$$

$$S^{1} \leftarrow S(-2,-2)^{1} \leftarrow S(-3,-3)^{3} \leftarrow 0.$$

$$G^{1} \leftarrow S^{4} \leftarrow S^{3} \leftarrow 0.$$

Squarefree Monomial Ideals

Squarefree monomial ideals are a special case of monomial ideas where none of the variables show up in a generator with degree higher than 1.

Definition (Stanley-Reisner Correspondence)

For a simplicial complex Δ on n vertices, define $I_{\Delta} \subset k[x_1, \ldots, x_n]$ to be the ideal generated by the minimal non-faces.

Example

$$I_{\Delta} = (x_1 x_3, x_1 x_5, x_1 x_6, x_2 x_4, x_2 x_5, x_2 x_6, x_4 x_5, x_4 x_6)$$

Saturation

Definition

The saturation of an ideal I by an ideal B is given by

$$I: B^{\infty} := \left\{ r \in S: r \cdot B^k \subset I \text{ for } k \text{ sufficiently large} \right\}$$

Example

Preston Cranford*, Kedar Karhadkar

Virtual Resolutions of Monomial Ideals

Special Case of Virtual Resolutions

Lemma

The minimal free virtual resolution of I is the minimal free resolution of it's B-saturation.

Proposition

Subvarieties of a product of projective spaces correspond to homogeneous B-saturated radical ideals in the homogeneous coordinate ring

 $\{Varieties in \mathbb{P}^n\} \leftrightarrow \{homogeneous B\text{-saturated radical ideals}\}$

Remark

All monomial ideals are homogeneous and a monomial ideal is radical if and only if it is squarefree.

Multigraded and Resolution Regularity

For a module M, we have a minimal free resolution $M \leftarrow F_1 \leftarrow \cdots$ of M. Definition ([1])

The mutli-graded regularity reg(M) of M is an infinite set in \mathbb{N}^r .

Definition ([3])

The resolution regularity $\operatorname{res-reg}(M)$ of M is a vector in \mathbb{N}^r given by

 $\operatorname{res-reg}(M)_l = \max \{ \mathbf{a}_l : \mathbf{a} + i \cdot e_l \text{ is the degree of a generator in } F_i \}$

Remark ([4])

The resolution regularity gives a bound on the multigraded regularity. But in general, it does not give the whole multigraded regularity.

res-reg $(M)_l = \max \{ \mathbf{a}_l : \mathbf{a} + i \cdot e_l \text{ is the degree of a generator in } F_i \}$

Example

 $\operatorname{res-reg}(S/I)=(2,7)$

A Problem to Consider

Question

How is $reg(S/(I:B^{\infty}))$ related to res-reg(S/I)?

Calculating Resolution Regularity in M2

Macaulay2 has a package for multigraded regularity. We made code for resolution regularity.

```
resRegularityHelper = (r,1) -> (
    max for k in keys betti r list (
        k#1#1 - k#0
resRegularity = (r) \rightarrow (
    d := degreeLength ring r;
    for 1 from 0 to (d-1) list (
        resRegularityHelper(r,1)
        )
```

Enumerating $\mathbb{P}^1 \times \mathbb{P}^1$

Δ_I	$\overline{\Delta_I \setminus \Delta_B}$	$\operatorname{reg} I: B^{\infty}$	$\operatorname{res-reg} I$
{12}	$\{\emptyset\}$	{{0,0}}	{0,0}
{13}	{13}	{{0,0}}	{0,0}
{12,13}	{13}	{{0,0}}	{0,0}
{13,14}	{13,14}	$\{\{0,1\}\}$	$\{0,1\}$
{13,34}	{13}	{{0,0}}	{0,0}
{12,34}	{23}	{{0,0}}	{0,0}
{13,24}	{13,24}	$\{\{0,1\},\{1,0\}\}$	$\{1, 1\}$
$\{12, 13, 14\}$	{13,14}	$\{\{0,1\}\}$	$\{0,1\}$
{12,13,23}	{13,23}	$\{\{1,0\}\}$	{1,0}
{12,13,24}	{13,24}	$\{\{0,1\},\{1,0\}\}$	$\{0,1\}$
{12,13,34}	{13}	{{0,0}}	{0,0}
{12,13,14,23}	{13,14,23}	$\{1, 1\}$	$\{1, 1\}$
{12,13,24,34}	{13,24}	$\{\{0,1\},\{1,0\}\}$	{0,0}
{12,13,23,34}	{13,23}	$\{\{1,0\}\}$	{1,0}
$\{13, 14, 23, 24\}$	{13, 14, 23, 24}	$\{\{1,1\}\}$	$\{1, 1\}$
Preston Cranford*, Kedar Karhadkar	Virtual Resolutions of Monomial	Ideals Aug	gust 6, 2020 15 / 22

Enumerating $\mathbb{P}^1\times\mathbb{P}^1$

$\{13,23,24\}$ $\{13,23,24\}$ $\{\{1,1\}\}$ $\{$	$1,1\}$
$ \{12,13,14,23,24\} \qquad \{13,14,23,24\} \qquad \{\{1,1\}\} \qquad \{$	$1,1\}$
$\{12,13,14,23,34\} \qquad \{13,14,23\} \qquad \{\{1,1\}\} \qquad \{$	$1,1\}$
$ \{12,13,14,23,24,34\} \ \ \{13,14,23,24\} \ \ \{\{1,1\}\} \ \ \{$	$1,1\}$
{123} {123} {{0,0}} {	0,0}
$\{123,14\} \qquad \{123,14\} \qquad \{\{0,1\}\} \qquad \{$	0,1}
{123,34} {123} {{0,0}} {	0,0}
$\{123,14,34\} \qquad \{123, 14\} \qquad \{\{0,1\}\} \qquad \{$	0,1}
$\{123,14,24\} \qquad \{123,14,24\} \qquad \{\{1,1\}\} \qquad \{$	$1,1\}$
$\{123,124\} \qquad \{123,124\} \qquad \{\{0,1\}\} \qquad \{$	0,1}
$\{123, 124, 34\} \qquad \{123, 124\} \qquad \{\{0, 1\}\} \qquad \{$	0,1}
$\{123,134\} \qquad \{123,134\} \qquad \{\{0,0\}\} \qquad \{$	0,0}
$\{123,134,24\} \qquad \{123, 134, 24\} \qquad \{\{0,1\}\} \qquad \{$	0,1}
$\{123, 124, 134\} \qquad \{123, 124, 134\} \qquad \{\{0, 0\}\} \qquad \{$	0,1}
$ \{123, 124, 134, 234\} \ \ \{123, 124, 134, 234\} \ \ \{\{1,1\}\} \ \ \{$	1,1}

Preston Cranford*, Kedar Karhadkar

Virtual Resolutions of Monomial Ideals

16 / 22

Example in $\mathbb{P}^1 \times \mathbb{P}^1$

The following resolution regularities are (0,1) and (1,0).

We made code to test random examples for ideals in $\mathbb{P}^1 \times \mathbb{P}^2$.

```
X = toricProjectiveSpace(1)**toricProjectiveSpace(2)
R = ring X
P=newRing(R,DegreeRank=>1)
phi=map(R,P)
L={...}--degrees of minimial generators of ideal.
I = randomSquareFreeMonomialIdeal(L,P)
print resolutionInformation phi(I);
```

One might use a combinatorial interpretation of local cohomology to give a cominatorial interpretation of multigraded regularity. There already exists one for resolution regularity [5].

Proposition [6]

Let $\Sigma \subset \Delta$ be simplicial complexes, and let $\mathbf{a} \in \mathbb{Z}$, $F_+ = \text{supp}_+(\mathbf{a})$ and $F_- = \text{supp}_-(\mathbf{a})$ Then

$$H^i_J(k[\Delta]] \cong \tilde{H}^{i-1}(||\mathsf{star}_\Delta(F_+) - ||\Sigma|, ||\mathsf{del}_{\mathsf{star}_\Delta(F_+)}(F_-))|| - ||\Sigma|)$$

where $||\Delta||$ denotes the geometric realization of Δ .

This research was conducted 2020 REU UMN supported by NSF RTG grant DMS-1745638. We thank Jay Yang and Elizabeth Kelley for their support.

References

- Diane Maclagan and Gregory G. Smith, *Multigraded Castelnuovo-Mumford* regularity, J. Reine Angew. Math. 571 (2004), 179–212, DOI 10.1515/crll.2004.040. MR2070149
- [2] Christine Berkesch, Daniel Erman, and Gregory G. Smith, *Virtual Resolutions for a Product of Projective Spaces* (2017), available at 1703.07631.
- [3] Jessica and Tuyl Sidman Adam, *Multigraded regularity: Syzygies and fat points*, Beitrage zur Algebra und Geometrie **47** (2004).
- [4] Diane and Smith Maclagan Gregory, Uniform bounds on multigraded regularity, Journal of Algebraic Geometry 14 (2003), DOI 10.1090/S1056-3911-04-00385-6.
- [5] Christopher and Mermin Francisco Jeffrey and Schweig, A Survey of Stanley–Reisner Theory, Springer Proceedings in Mathematics and Statistics 76 (2014), 209-234, DOI 10.1007/978-1-4939-0626-05.
- [6] Victor and Welker Reiner Volkmar, Local Cohomology Of Stanley-Reisner Rings With Supports In General Monomial Ideals, Journal of Algebra 244 (2001), DOI 10.1006/jabr.2001.8932.

Conclusion

Questions?