q-Analogues of Rational Numbers

Nick Ovenhouse

TA: Elizabeth Kelley

University of Minnesota

June, 2020
Minnesota REU

Outline

(1) q-Analogues
(2) Definition

3 How to Compute
(4) What Does it Count?
(5) Cluster Algebras
(6) q-Real Numbers

The q-Integers

The q-Integers

Definition

For each $n \in \mathbb{N}$, define the polynomial $[n]_{q} \in \mathbb{Z}[q]$:

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

The q-Integers

Definition

For each $n \in \mathbb{N}$, define the polynomial $[n]_{q} \in \mathbb{Z}[q]$:

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

Remark: Substituting $q=1$ gives n.

Rational Numbers

Rational Numbers

Question: What about $[x]_{q}$ for $x \in \mathbb{Q}$? Can we make sense of this?

Rational Numbers

Question: What about $[x]_{q}$ for $x \in \mathbb{Q}$? Can we make sense of this?

There are conceivably many definitions that "work". The question is what properties do we want it to satisfy?

Rational Numbers

Question: What about $[x]_{q}$ for $x \in \mathbb{Q}$? Can we make sense of this?

There are conceivably many definitions that "work". The question is what properties do we want it to satisfy?

Here are two properties that might be desirable:

Rational Numbers

Question: What about $[x]_{q}$ for $x \in \mathbb{Q}$? Can we make sense of this?

There are conceivably many definitions that "work". The question is what properties do we want it to satisfy?

Here are two properties that might be desirable:

- Order: Define a partial order on rational functions by $\frac{a(q)}{b(q)}>\frac{c(q)}{d(q)}$ if $a(q) d(q)-b(q) c(q)$ has all positive coefficients. If $\frac{a}{b}>\frac{c}{d}$, we might expect $\left[\frac{a}{b}\right]_{q}>\left[\frac{c}{d}\right]_{q}$.

Rational Numbers

Question: What about $[x]_{q}$ for $x \in \mathbb{Q}$? Can we make sense of this?

There are conceivably many definitions that "work". The question is what properties do we want it to satisfy?

Here are two properties that might be desirable:

- Order: Define a partial order on rational functions by $\frac{a(q)}{b(q)}>\frac{c(q)}{d(q)}$ if $a(q) d(q)-b(q) c(q)$ has all positive coefficients. If $\frac{a}{b}>\frac{c}{d}$, we might expect $\left[\frac{a}{b}\right]_{q}>\left[\frac{c}{d}\right]_{q}$.
- Convergence: If $\frac{a_{n}}{b_{n}} \rightarrow \lambda \in \mathbb{R}$ irrational, we might expect $\left[\frac{a_{n}}{b_{n}}\right]_{q}$ to "converge" in some sense, and moreover be independent of the sequence.

First Naive Attempt

First Naive Attempt

A first natural guess might be to define

$$
\left[\frac{a}{b}\right]_{q}:=\frac{[a]_{q}}{[b]_{q}}=\frac{1+q+\cdots+q^{a-1}}{1+q+\cdots+q^{b-1}}
$$

First Naive Attempt

A first natural guess might be to define

$$
\left[\frac{a}{b}\right]_{q}:=\frac{[a]_{q}}{[b]_{q}}=\frac{1+q+\cdots+q^{a-1}}{1+q+\cdots+q^{b-1}}
$$

But ... it does not satisfy our two desirable properties.

First Naive Attempt

A first natural guess might be to define

$$
\left[\frac{a}{b}\right]_{q}:=\frac{[a]_{q}}{[b]_{q}}=\frac{1+q+\cdots+q^{a-1}}{1+q+\cdots+q^{b-1}}
$$

But ... it does not satisfy our two desirable properties.

Exercise 9.1: Find an example where this definition does not satisfy the order property. That is, find two fractions $\frac{a}{b}>\frac{c}{d}$ where $[a]_{q}[d]_{q}-[b]_{q}[c]_{q}$ has some negative coefficient.

Outline

(1) q-Analogues

(2) Definition

3 How to Compute

4 What Does it Count?
(5) Cluster Algebras
(6) q-Real Numbers

Continued Fractions

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Example: $\frac{7}{4}=1+\frac{1}{1+\frac{1}{3}}$. So we'd write $\frac{7}{4}=[1,1,3]$.

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Example: $\frac{7}{4}=1+\frac{1}{1+\frac{1}{3}}$. So we'd write $\frac{7}{4}=[1,1,3]$.

Remark: These are not unique. For example, $\frac{7}{4}$ is also equal to $[1,1,2,1]$. Requiring an even number of coefficients makes it unique.

Definition of q-Rationals

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]_{q^{-1}}}}}
$$

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\begin{array}{r}
r \\
-
\end{array}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]_{q}-1}}}
$$

Example: $\frac{7}{3}=[2,3]$.

$$
\left[\frac{7}{3}\right]_{q}=1+q+\frac{q^{2}}{1+q^{-1}+q^{-2}}=\frac{1+2 q+2 q^{2}+q^{3}+q^{4}}{1+q+q^{2}}
$$

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\begin{array}{c}
\frac{r}{s}
\end{array}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]} q^{-1}}}
$$

Example: $\frac{7}{3}=[2,3]$.

$$
\left[\frac{7}{3}\right]_{q}=1+q+\frac{q^{2}}{1+q^{-1}+q^{-2}}=\frac{1+2 q+2 q^{2}+q^{3}+q^{4}}{1+q+q^{2}}
$$

Fact: The only time this agrees with the "naive guess" is for $\left[\frac{n+1}{n}\right]_{q}=\frac{[n+1]_{q}}{[n]_{q}}$.

The Desirable Properties

The Desirable Properties

Theorem

This definition of $\left[\frac{a}{b}\right]_{q}$ does satisfy the order and convergence properties.

Outline

(1) q-Analogues

(2) Definition
(3) How to Compute

4 What Does it Count?
(5) Cluster Algebras
(6) q-Real Numbers

A Combinatorial Method of Computation

A Combinatorial Method of Computation

Given $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, we construct a triangulated polygon $T_{r / s}$:

A Combinatorial Method of Computation

Given $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, we construct a triangulated polygon $T_{r / s}$:

Example: $\frac{7}{3}=[2,3]$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

A Combinatorial Method of Computation

Definition

The Farey sum of two rational numbers is

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}
$$

Label the left two vertices of $T_{r / s}$ by $\frac{0}{1}$ and $\frac{1}{0}$.
Going left to right, for each triangle, label the third vertex as the Farey sum of the previous two.
Example: $\frac{7}{3}$

$$
T_{7 / 3}=
$$

The q-Version

The q-Version

For each top vertex in $T_{r / s}$, label the diagonals with increasing powers of q going counter-clockwise:

The q-Version

For each top vertex in $T_{r / s}$, label the diagonals with increasing powers of q going counter-clockwise:

Example: $\frac{7}{3}$

The q-Version

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$. In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

The q-Version

As before, start by labeling the left two vertices by $\frac{0}{1}$ and $\frac{1}{0}$.
In each triangle, the two edges incident to the third vertex will be labelled by 1 and q^{k} for some k. Label the third vertex by the weighted Farey sum:

Example: $\left[\frac{7}{3}\right]_{q}$

Exercise 9.2

Exercise 9.2

Exercise 9.2:

(a) What does $T_{r / s}$ look like for $[1,1, \ldots, 1]$?

Exercise 9.2

Exercise 9.2:

(a) What does $T_{r / s}$ look like for $[1,1, \ldots, 1]$?
(b) Prove that $[1,1, \cdots, 1]$ is always a ratio of Fibonacci numbers.

Exercise 9.2

Exercise 9.2:

(a) What does $T_{r / s}$ look like for $[1,1, \ldots, 1]$?
(b) Prove that $[1,1, \cdots, 1]$ is always a ratio of Fibonacci numbers.
(c) Use the triangulation method to compute $\left[\frac{5}{3}\right]_{q}$ and $\left[\frac{8}{5}\right]_{q}$.

Outline

(1) q-Analogues

(2) Definition
(3) How to Compute
(4) What Does it Count?

(5) Cluster Algebras

(6) q-Real Numbers

From Triangulations to Binary Words

From Triangulations to Binary Words

From the triangulation $T_{r / s}$, we construct a binary word in the alphabet $\{R, U\}$ as follows.

From Triangulations to Binary Words

From the triangulation $T_{r / s}$, we construct a binary word in the alphabet $\{R, U\}$ as follows.

Ignore the first and last triangles. For the others, label their boundary edges U if they are on the bottom, and R if they are on the top.

From Triangulations to Binary Words

From the triangulation $T_{r / s}$, we construct a binary word in the alphabet $\{R, U\}$ as follows.

Ignore the first and last triangles. For the others, label their boundary edges U if they are on the bottom, and R if they are on the top.

Example: $T_{7 / 3}$

From Binary Words to Snake Graphs

From Binary Words to Snake Graphs

From a binary word, we construct a graph $G_{r / s}$, called a snake graph, as follows.

From Binary Words to Snake Graphs

From a binary word, we construct a graph $G_{r / s}$, called a snake graph, as follows.
Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous.

From Binary Words to Snake Graphs

From a binary word, we construct a graph $G_{r / s}$, called a snake graph, as follows.
Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous.

Example: $\frac{7}{3}$ has binary word $U R R$. So the snake graph looks like

From Binary Words to Snake Graphs

From a binary word, we construct a graph $G_{r / s}$, called a snake graph, as follows.
Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous.

Example: $\frac{7}{3}$ has binary word $U R R$. So the snake graph looks like

Caution: In the literature, "snake graph" refers to a slightly different, but related, construction. The construction above is called the "dual snake graph" corresponding to a triangulation.

Lattice Paths

Lattice Paths

If G is a snake graph, let $L(G)$ be the set of all paths in G from the south-west corner to the north-east corner using only right and up steps.

Lattice Paths

If G is a snake graph, let $L(G)$ be the set of all paths in G from the south-west corner to the north-east corner using only right and up steps.

Theorem [Schiffler, Çanakçi]

$$
\left|L\left(G_{r / s}\right)\right|=r \quad \text { and } \quad\left|L\left(\widehat{G}_{r / s}\right)\right|=s
$$

The notation $\widehat{G}_{r / s}$ means the snake graph from the continued fraction $\left[a_{2}, a_{3}, \ldots, a_{n}\right]$.

Lattice Paths

If G is a snake graph, let $L(G)$ be the set of all paths in G from the south-west corner to the north-east corner using only right and up steps.

Theorem [Schiffler, Çanakçi]

$$
\left|L\left(G_{r / s}\right)\right|=r \quad \text { and } \quad\left|L\left(\widehat{G}_{r / s}\right)\right|=s
$$

The notation $\widehat{G}_{r / s}$ means the snake graph from the continued fraction $\left[a_{2}, a_{3}, \ldots, a_{n}\right]$.

Example: The 7 lattice paths in $G_{7 / 3}$ are

A Partial Order on Paths

A Partial Order on Paths

There is a partial order on the lattice paths in $G_{r / s}$ so that locally

$$
\square<\square
$$

A Partial Order on Paths

There is a partial order on the lattice paths in $G_{r / s}$ so that locally

$$
\square<\square
$$

Example: $L\left(G_{7 / 3}\right)$

What Do q-Rationals Count?

What Do q-Rationals Count?

Define the height or rank of a lattice path as how many steps it takes to get to it from the minimal path.

What Do q-Rationals Count?

Define the height or rank of a lattice path as how many steps it takes to get to it from the minimal path.

Theorem

Let $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$. Then:
(1) The coefficient of q^{k} in $R(q)$ is the number of lattice paths in $G_{r / s}$ of height k.
(2) The coefficient of q^{k} in $S(q)$ is the number of lattice paths in $\widehat{G}_{r / s}$ of height k.

What Do q-Rationals Count?

Define the height or rank of a lattice path as how many steps it takes to get to it from the minimal path.

Theorem

Let $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$. Then:
(1) The coefficient of q^{k} in $R(q)$ is the number of lattice paths in $G_{r / s}$ of height k.
(2) The coefficient of q^{k} in $S(q)$ is the number of lattice paths in $\widehat{G}_{r / s}$ of height k.

REU Exercise 9.3: Write down all the lattice paths in $G_{8 / 5}$ and draw the Hasse diagram.
(It should agree with Exercise 9.2(d)!)

What Else Do They Count?

What Else Do They Count?

Some Suggested Presentations:

- T-paths:

Schiffler, R. "A cluster expansion formula (A_{n} case)". The Electronic fournal of Combinatorics 15.1 (2008) R64

What Else Do They Count?

Some Suggested Presentations:

- T-paths:

Schiffler, R. "A cluster expansion formula (A_{n} case)". The Electronic fournal of Combinatorics 15.1 (2008) R64

- Perfect matchings:

Çanakçi, I., Schiffler, R., "Cluster algebras and continued fractions". Compositio Mathematica 154.3 (2018): 565-593

What Else Do They Count?

Some Suggested Presentations:

- T-paths:

Schiffler, R. "A cluster expansion formula (A_{n} case)". The Electronic fournal of Combinatorics 15.1 (2008) R64

- Perfect matchings:

Çanakçi, I., Schiffler, R., "Cluster algebras and continued fractions". Compositio Mathematica 154.3 (2018): 565-593

- Angle matchings:

Yurikusa, T., "Cluster expapansion formulas in type A". Algebras and Representation Theory 22.1 (2019): 1-19

What Else Do They Count?

Some Suggested Presentations:

- T-paths:

Schiffler, R. "A cluster expansion formula (A_{n} case)". The Electronic fournal of Combinatorics 15.1 (2008) R64

- Perfect matchings:

Çanakçi, I., Schiffler, R., "Cluster algebras and continued fractions". Compositio Mathematica 154.3 (2018): 565-593

- Angle matchings:

Yurikusa, T., "Cluster expapansion formulas in type A". Algebras and Representation Theory 22.1 (2019): 1-19

- All of the above:

Claussen, A., "Expansion Posets for Polygon Cluster Algebras". arxiv:2005.02083 (2020)

Outline

(1) q-Analogues

(2) Definition
(3) How to Compute

4 What Does it Count?
(5) Cluster Algebras
(6) q-Real Numbers

The Cluster Algebra of a Polygon

The Cluster Algebra of a Polygon

- Consider an n-gon

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}
- Label the diagonals x_{1}, \ldots, x_{n-3}

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}
- Label the diagonals x_{1}, \ldots, x_{n-3}

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}
- Label the diagonals x_{1}, \ldots, x_{n-3}

- The cluster algebra is a subring of $\mathcal{F}=\mathbb{Q}\left(x_{1}, \ldots, x_{n-3}, e_{1}, \ldots, e_{n}\right)$.

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}
- Label the diagonals x_{1}, \ldots, x_{n-3}

- The cluster algebra is a subring of $\mathcal{F}=\mathbb{Q}\left(x_{1}, \ldots, x_{n-3}, e_{1}, \ldots, e_{n}\right)$.
- The boundary labels e_{1}, \ldots, e_{n} are the "frozen" variables

The Cluster Algebra of a Polygon

- Consider an n-gon
- Choose a triangulation
- Label the edges e_{1}, \ldots, e_{n}
- Label the diagonals x_{1}, \ldots, x_{n-3}

- The cluster algebra is a subring of $\mathcal{F}=\mathbb{Q}\left(x_{1}, \ldots, x_{n-3}, e_{1}, \ldots, e_{n}\right)$.
- The boundary labels e_{1}, \ldots, e_{n} are the "frozen" variables
- The quiver is ...

Mutations are "Flips"

$$
x_{1}^{\prime}=\frac{e_{1} e_{4}+e_{5} x_{2}}{x_{1}}
$$

Snake Graphs

Snake Graphs

Construct the snake graph from a triangulation as we described before.

Snake Graphs

Construct the snake graph from a triangulation as we described before.

$$
\mathrm{wt}(p)=e_{1} e_{4} x_{2}^{2} x_{3}
$$

Each lattice path p corresponds to a monomial, called the weight of the path, denoted $\mathrm{wt}(p)$.

Snake Graphs

Construct the snake graph from a triangulation as we described before.

$$
\mathrm{wt}(p)=e_{1} e_{4} x_{2}^{2} x_{3}
$$

Each lattice path p corresponds to a monomial, called the weight of the path, denoted $\mathrm{wt}(p)$.

Theorem

The cluster variable of the "longest edge" (crossing all diagonals) is

$$
\frac{1}{x_{1} x_{2} \cdots x_{n}} \sum_{p} \mathrm{wt}(p)
$$

Term Count

Term Count

Corollary

The cluster variable of the longest edge in $T_{r / s}$ has exactly r terms.

Term Count

Corollary

The cluster variable of the longest edge in $T_{r / s}$ has exactly r terms.

REU Exercise 8.3: Consider the cluster variable represented by the blue arc on the previous slide.

Term Count

Corollary

The cluster variable of the longest edge in $T_{r / s}$ has exactly r terms.

REU Exercise 8.3: Consider the cluster variable represented by the blue arc on the previous slide.
(a) Compute the Laurent polynomial expression for this cluster variable using the formula in the theorem on the previous slide.

Term Count

Corollary

The cluster variable of the longest edge in $T_{r / s}$ has exactly r terms.

REU Exercise 8.3: Consider the cluster variable represented by the blue arc on the previous slide.
(a) Compute the Laurent polynomial expression for this cluster variable using the formula in the theorem on the previous slide.
(b) Compute the same expression using a sequence of mutations (you should get the same answer!).

The F-Polynomial

The F-Polynomial

Label the faces of the snake graph by y_{1}, \ldots, y_{n}, and label the lattice paths by monomials in the y 's:

Relation with q-Rationals

Relation with q-Rationals

Theorem

Consider the cluster variable of the "longest edge" in $T_{r / s}$.

Relation with q-Rationals

Theorem

Consider the cluster variable of the "longest edge" in $T_{r / s}$.
(a) $R(q)=F(q, q, \ldots, q)$

Relation with q-Rationals

Theorem

Consider the cluster variable of the "longest edge" in $T_{r / s}$.
(a) $R(q)=F(q, q, \ldots, q)$
(b) The coefficient of q^{k} in the numerator of $\left[\frac{r}{s}\right]_{q}$ counts the number of terms of degree k in the F-polynomial of the corresponding cluster variable.

Some REU Problems

Some REU Problems

REU Problem 9.0: (Tie-in with Gregg's Problem) Is there a combinatorial description of the L's from Gregg's talk related to the q-rationals?

Some REU Problems

REU Problem 9.0: (Tie-in with Gregg's Problem) Is there a combinatorial description of the L 's from Gregg's talk related to the q-rationals?

REU Problem 9.1: ("Unimodality") It is conjectured that the numerators (and denominators) of the q-rationals are unimodal. Any progress towards proving this would be nice, even for some non-trivial class of specific examples.

In light of Chris' talk, you could also try to prove log-concavity.

Outline

(1) q-Analogues

(2) Definition
(3) How to Compute

4 What Does it Count?
(5) Cluster Algebras
(6) q-Real Numbers

Infinite Continued Fractions

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Then the sequence x_{n} converges to a real number, denoted by the infinite continued fraction $\left[a_{1}, a_{2}, \ldots\right]$.

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Then the sequence x_{n} converges to a real number, denoted by the infinite continued fraction $\left[a_{1}, a_{2}, \ldots\right]$.

Fact: Infinite continued fractions with coefficients that eventually repeat are exactly the quadratic irrationals.

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Then the sequence x_{n} converges to a real number, denoted by the infinite continued fraction $\left[a_{1}, a_{2}, \ldots\right]$.

Fact: Infinite continued fractions with coefficients that eventually repeat are exactly the quadratic irrationals.

Examples:

- $\sqrt{2}=[1,2,2,2, \ldots]$

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Then the sequence x_{n} converges to a real number, denoted by the infinite continued fraction $\left[a_{1}, a_{2}, \ldots\right]$.

Fact: Infinite continued fractions with coefficients that eventually repeat are exactly the quadratic irrationals.

Examples:

- $\sqrt{2}=[1,2,2,2, \ldots]$
- $\sqrt{3}=[1,1,2,1,2,1,2, \ldots]$

Infinite Continued Fractions

There is a notion of infinite continued fractions. For an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$, define a sequence of rational numbers (called convergents):

$$
x_{n}:=\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

Then the sequence x_{n} converges to a real number, denoted by the infinite continued fraction $\left[a_{1}, a_{2}, \ldots\right]$.

Fact: Infinite continued fractions with coefficients that eventually repeat are exactly the quadratic irrationals.

Examples:

- $\sqrt{2}=[1,2,2,2, \ldots]$
- $\sqrt{3}=[1,1,2,1,2,1,2, \ldots]$
- $\varphi=\frac{1}{2}(1+\sqrt{5})=[1,1,1,1, \ldots]$

Convergence Property

The first few convergents of $\sqrt{2}=[1,2,2,2, \ldots]$ are $\frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \ldots$

Convergence Property

The first few convergents of $\sqrt{2}=[1,2,2,2, \ldots]$ are

$$
\frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \ldots
$$

The q-versions are

$$
\begin{aligned}
& {\left[\frac{3}{2}\right]_{q}=1+q^{2}-q^{3}+q^{4}-q^{5}+\cdots} \\
& {\left[\frac{7}{5}\right]_{q}=1+q^{3}-2 q^{5}+q^{6}+3 q^{7}+\cdots} \\
& {\left[\frac{17}{12}\right]_{q}=1+q^{3}-2 q^{5}+2 q^{6}-q^{8}+\cdots} \\
& {\left[\frac{41}{29}\right]_{q}=1+q^{3}-2 q^{5}+q^{6}+4 q^{7}-5 q^{8}-7 q^{9}+\cdots}
\end{aligned}
$$

Convergence Property

The first few convergents of $\sqrt{2}=[1,2,2,2, \ldots]$ are

$$
\frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \ldots
$$

The q-versions are

$$
\begin{aligned}
& {\left[\frac{3}{2}\right]_{q}=1+q^{2}-q^{3}+q^{4}-q^{5}+\cdots} \\
& {\left[\frac{7}{5}\right]_{q}=1+q^{3}-2 q^{5}+q^{6}+3 q^{7}+\cdots} \\
& {\left[\frac{17}{12}\right]_{q}=1+q^{3}-2 q^{5}+2 q^{6}-q^{8}+\cdots} \\
& {\left[\frac{41}{29}\right]_{q}=1+q^{3}-2 q^{5}+q^{6}+4 q^{7}-5 q^{8}-7 q^{9}+\cdots}
\end{aligned}
$$

The coefficients eventually "stabilize". The terms in blue remain the same in all later terms in the sequence.

Another REU Problem

Another REU Problem

REU Problem 9.3: (Very open-ended) Almost nothing is known about the coefficients of these power series for " q-real numbers", except for a few select specific examples computed in the original paper. Is there a pattern to these coefficients that can be predicted? Is there a combinatorial interpretation? Is it related to cluster algebras and snake graphs (see below)?

Another REU Problem

REU Problem 9.3: (Very open-ended) Almost nothing is known about the coefficients of these power series for " q-real numbers", except for a few select specific examples computed in the original paper. Is there a pattern to these coefficients that can be predicted? Is there a combinatorial interpretation? Is it related to cluster algebras and snake graphs (see below)?

More Further Reading:

- Section 7 of the paper "Cluster Algebras and Continued Fractions" (mentioned earlier)

Extra Reading

Here are some more papers that could be used for a presentation in weeks 3 and 4:

- Morier-Genoud, S., Ovsienko, V., " q-Deformed Rationals and q-Continued Fractions". Forum of Mathematics, Sigma Vol. 8 (2020)
- Morier-Genoud, S., Ovsienko, V., "On q-Deformed Real Numbers". Experimental Mathematics (2019): 1-9

