q-Analogues of Rational Numbers

Preston Cranford and Eli Fonseca
Mentor: Nick Ovenhouse
TA: Elizabeth Kelley

University of Minnesota Algebraic Combinatorics REU

August, 2020

The q-Integers

The q-Integers

Definition

For each $n \in \mathbb{N}$, define the polynomial $[n]_{q} \in \mathbb{Z}[q]$:

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

The q-Integers

Definition

For each $n \in \mathbb{N}$, define the polynomial $[n]_{q} \in \mathbb{Z}[q]$:

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

Remark: Substituting $q=1$ gives n.

Rational Numbers

Rational Numbers

Main object of study for us is $[x]_{q}$ when $x \in \mathbb{Q}$.

Rational Numbers

Main object of study for us is $[x]_{q}$ when $x \in \mathbb{Q}$.

A first natural guess for the definition is

$$
\left[\frac{a}{b}\right]_{q}:=\frac{[a]_{q}}{[b]_{q}}=\frac{1+q+\cdots+q^{a-1}}{1+q+\cdots+q^{b-1}}
$$

We will use a different definition which uses continued fractions

Continued Fractions

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Example: $\frac{7}{4}=1+\frac{1}{1+\frac{1}{3}}$. So we'd write $\frac{7}{4}=[1,1,3]$.

Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}
$$

We use the notation $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ to denote the expression above.

Example: $\frac{7}{4}=1+\frac{1}{1+\frac{1}{3}}$. So we'd write $\frac{7}{4}=[1,1,3]$.

Remark: These are not unique. For example, $\frac{7}{4}$ is also equal to $[1,1,2,1]$. Requiring an even number of coefficients makes it unique.

Definition of q-Rationals

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\begin{array}{c}
r \\
s
\end{array}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]_{q^{-1}}}}}
$$

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\begin{array}{c}
r \\
s
\end{array}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]_{q^{-1}}}}}
$$

Example: $\frac{7}{3}=[2,3]$.

$$
\left[\frac{7}{3}\right]_{q}=(1+q)+\frac{q^{2}}{1+q^{-1}+q^{-2}}=\frac{1+2 q+2 q^{2}+q^{3}+q^{4}}{1+q+q^{2}}
$$

Definition of q-Rationals

Definition

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$, then define

$$
\left[\begin{array}{c}
r \\
- \\
s
\end{array}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\cdots+\frac{q^{a_{2 n-1}}}{\left[a_{2 n}\right]^{-1}}}}
$$

Example: $\frac{7}{3}=[2,3]$.

$$
\left[\frac{7}{3}\right]_{q}=(1+q)+\frac{q^{2}}{1+q^{-1}+q^{-2}}=\frac{1+2 q+2 q^{2}+q^{3}+q^{4}}{1+q+q^{2}}
$$

Fact: The only time this agrees with the "naive guess" is for $\left[\frac{n+1}{n}\right]_{q}=\frac{[n+1]_{q}}{[n]_{q}}$.

The Desirable Properties

The Desirable Properties

As we saw there are other possible definitions for q-rationals that "work"

The Desirable Properties

As we saw there are other possible definitions for q-rationals that "work"
The continued fraction definition is the "right one" because of the following:

The Desirable Properties

As we saw there are other possible definitions for q-rationals that "work"
The continued fraction definition is the "right one" because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of $\left[\frac{a}{b}\right]_{q}$ satisfies the following order and convergence properties.

The Desirable Properties

As we saw there are other possible definitions for q-rationals that "work"
The continued fraction definition is the "right one" because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of $\left[\frac{a}{b}\right]_{q}$ satisfies the following order and convergence properties.

- Order: Define a relation on rational functions by $\frac{a(q)}{b(q)} \succeq \frac{c(q)}{d(q)}$ if $a(q) d(q)-b(q) c(q)$ has all non-negative coefficients.

$$
\text { If } \frac{a}{b} \geq \frac{c}{d} \text {, then }\left[\frac{a}{b}\right]_{q} \succeq\left[\frac{c}{d}\right]_{q}
$$

The Desirable Properties

As we saw there are other possible definitions for q-rationals that "work"
The continued fraction definition is the "right one" because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction definition of $\left[\frac{a}{b}\right]_{q}$ satisfies the following order and convergence properties.

- Order: Define a relation on rational functions by $\frac{a(q)}{b(q)} \succeq \frac{c(q)}{d(q)}$ if $a(q) d(q)-b(q) c(q)$ has all non-negative coefficients. If $\frac{a}{b} \geq \frac{c}{d}$, then $\left[\frac{a}{b}\right]_{q} \succeq\left[\frac{c}{d}\right]_{q}$
- Convergence: If $\frac{a_{n}}{b_{n}} \rightarrow \lambda \in \mathbb{R}$ irrational, then $\left[\frac{a_{n}}{b_{n}}\right]_{q}$ "converges" in some sense, and moreover the convergence is independent of the sequence

Combinatorial interpretation

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Turns out they count many things!

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Turns out they count many things!

- Perfect matching on snake graphs

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Turns out they count many things!

- Perfect matching on snake graphs
- Angle matching on snake graphs

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Turns out they count many things!

- Perfect matching on snake graphs
- Angle matching on snake graphs
- T-paths

Combinatorial interpretation

Question: Do the coefficients of the numerator and denominator of q-rationals count anything?

Turns out they count many things!

- Perfect matching on snake graphs
- Angle matching on snake graphs
- T-paths
- Lattice paths in snake graphs

From rationals to Binary words

From rationals to Binary words

Given a rational $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$

From rationals to Binary words

Given a rational $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$

Construct a binary word by $W=U^{a_{1}-1} R^{a_{2}} \cdots U^{a_{2 m-1}} R^{a_{2 m}-1}$

From rationals to Binary words

Given a rational $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$

Construct a binary word by $W=U^{a_{1}-1} R^{a_{2}} \cdots U^{a_{2 m-1}} R^{a_{2 m}-1}$

Example: $\frac{7}{3}=[2,3]$ and thus has binary word $W=U R R$.

From Binary Words to Snake Graphs

From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous

From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous

Example: $\frac{7}{3}$ has binary word $U R R$. The resulting snake graph looks like

From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either above (for U) or to the right (for R) of the previous

Example: $\frac{7}{3}$ has binary word $U R R$. The resulting snake graph looks like

In this way we associated a snake graph $G_{r / s}$ to a rational $\frac{r}{s}$

Lattice Paths

Lattice Paths

If G is a snake graph, let $L(G)$ be the set of all paths in G from the south-west corner to the north-east corner using only right and up steps.

Lattice Paths

If G is a snake graph, let $L(G)$ be the set of all paths in G from the south-west corner to the north-east corner using only right and up steps.

Example: The 7 lattice paths in $G_{7 / 3}$ are

Lattice Paths

Lattice Paths

Theorem [Schiffler, Çanakçi]

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]$ then

$$
\left|L\left(G_{r / s}\right)\right|=r \quad \text { and } \quad\left|L\left(\widehat{G}_{r / s}\right)\right|=s
$$

The notation $\widehat{G}_{r / s}$ means the snake graph from the transpose of the word associated to the continued fraction $\left[a_{2}, a_{3}, \ldots, a_{2 m}\right]$.

A Partial Order on Paths

A Partial Order on Paths

There is a partial order on the lattice paths in $G_{r / s}$ so that locally

$$
\square<\square
$$

A Partial Order on Paths

There is a partial order on the lattice paths in $G_{r / s}$ so that locally

Example: $L\left(G_{7 / 3}\right)$

A Partial Order on Paths

There is a partial order on the lattice paths in $G_{r / s}$ so that locally

Example: $L\left(G_{7 / 3}\right)$

Define the height or rank of a lattice path as how many steps it takes to get to it from the minimal path. This make $L(G)$ a ranked poset.

What Do q-Rationals Count?

What Do q-Rationals Count?

Theorem [Claussen]

Let $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$. Then:
(1) The coefficient of q^{k} in $R(q)$ is the number of lattice paths in $G_{r / s}$ of height k.
(2) The coefficient of q^{k} in $S(q)$ is the number of lattice paths in $\widehat{G}_{r / s}$ of height k.

Example

Example

We saw that the poset $L\left(G_{7 / 3}\right)$ is given by

Example

We saw that the poset $L\left(G_{7 / 3}\right)$ is given by

The corresponding height polynomial is $1+2 q+2 q^{2}+q^{3}+q^{4}$ which indeed agrees with the numerator of $\left[\frac{7}{3}\right]_{q}$ from the continued fraction definition

Unimodal sequences

Unimodal sequences

Definition

A sequence of integers $a_{0}, a_{1}, \ldots, a_{n}$ is unimodal if there exits an $s \in \mathbb{N}$ such that

$$
a_{0} \leq \cdots \leq a_{s} \geq a_{s+1} \geq \ldots \geq a_{n}
$$

A polynomial $p(q)=\sum_{i} p_{i} q^{i}$ is said to be unimodal if the p_{i} form a unimodal sequence.

The Problem

The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the lattice path interpretation of q-rationals this is the statement that the height polynomial of lattice paths in any snake graph is unimodal.

The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the lattice path interpretation of q-rationals this is the statement that the height polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary word W is know in some special cases:

The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the lattice path interpretation of q-rationals this is the statement that the height polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary word W is know in some special cases:
(1) W consists only of U 's or only of R 's. It is easy to see that the height polynomial is $[\ell(W)+2]_{q}$

The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the lattice path interpretation of q-rationals this is the statement that the height polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary word W is know in some special cases:
(1) W consists only of U 's or only of R 's. It is easy to see that the height polynomial is $[\ell(W)+2]_{q}$
(0) W is a zigzag word, i.e. there are no consecutive R 's or U 's in W (Fibonacci cubes are unimodal [Munarini and Salvi, 2002])

The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the lattice path interpretation of q-rationals this is the statement that the height polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary word W is know in some special cases:
(1) W consists only of U 's or only of R 's. It is easy to see that the height polynomial is $[\ell(W)+2]_{q}$
(0) W is a zigzag word, i.e. there are no consecutive R 's or U 's in W (Fibonacci cubes are unimodal [Munarini and Salvi, 2002])

- W is a word with isolated U 's with constant row length (up-down posets are unimodal [Emden, 1982])

Notation

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Example: If $W=R U U U U U$ then $W_{U}=R$.

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Example: If $W=R U U U U U$ then $W_{U}=R$.
If W is a binary word then $\ell(W)$ denotes the length of the word.

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Example: If $W=R U U U U U$ then $W_{U}=R$.
If W is a binary word then $\ell(W)$ denotes the length of the word.
If W is a word then \widehat{W} is defined to be the word formed from W by removing the right most letter in W.

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Example: If $W=R U U U U U$ then $W_{U}=R$.
If W is a binary word then $\ell(W)$ denotes the length of the word.
If W is a word then \widehat{W} is defined to be the word formed from W by removing the right most letter in W.

Example: If $W=R U R U R$ then $\widehat{W}=R U R U$.

Notation

Let W_{R} denote the word obtained from W by removing the right most section of R 's. Similarly let W_{U} denote the word obtained from W by removing the right most section of U 's.

Example: If $W=R U U U U U$ then $W_{U}=R$.
If W is a binary word then $\ell(W)$ denotes the length of the word.
If W is a word then \widehat{W} is defined to be the word formed from W by removing the right most letter in W.

Example: If $W=R U R U R$ then $\widehat{W}=R U R U$.
If W is a word then define W^{T}, the transpose, to be the word formed from interchanging R with U in W.

Recurrences

Recurrences

A basic idea for proving unimodality is by induction. Led us to look for recurrences for the height polynomial:

Recurrences

A basic idea for proving unimodality is by induction. Led us to look for recurrences for the height polynomial:

Theorem

If W is a binary word on $\{U, R\}$ then we have the following recurrences for the height polynomial

$$
H(W U)=H(W)+q^{\ell(W)-\ell\left(\widehat{W_{U}}\right)+1} H\left(\widehat{W_{U}}\right)
$$

and

$$
H(W R)=H\left(\widehat{W}_{R}\right)+q H(W)
$$

Code

$$
\begin{aligned}
& \text { def word_to_poly (w): } \\
& \mathrm{H}=1+\mathrm{q} \\
& \text { H_U_hat = } 1 \\
& \text { H_R_hat = } 1 \\
& \text { U_run }=0 \\
& \text { for letter in w: } \\
& \text { def word_to_poly (w): } \\
& \text { if letter }==\text { 'R': } \\
& \text { U_run = } 0 \\
& \text { H_U_hat = H } \\
& \text { H = H_R_hat + q * H } \\
& \text { elif letter == 'U': } \\
& \text { U_run += } 1 \\
& \text { H_R_hat }=\text { H } \\
& \mathrm{H}=\underset{*}{\mathrm{H}} \underset{\mathrm{H}_{-} \mathrm{U}_{-} \text {hat }}{+\mathrm{q}^{\wedge}\left(\mathrm{U}_{-} r u n+1\right)} \\
& \text { else: } \\
& \text { print ("No!!!") } \\
& \text { raise Exception () }
\end{aligned}
$$

return top + bot
for letter in w:

$$
\begin{aligned}
& \text { if letter == 'U': } \\
& \text { bot = top + bot } \\
& \text { elif letter == 'R': } \\
& \text { top = top + bot } \\
& \text { else: } \\
& \text { print ("No!!!") } \\
& \text { raise Exception() }
\end{aligned}
$$

R.<q> = PolynomialRing(QQ)
def word-to-num (w):
top $=1$
bot $=1$

$$
\mathrm{op}+\mathrm{bot}
$$

Symmetry

Symmetry

Proposition

If W is a binary word such that the poset $L\left(G_{W}\right)$ is unimodal then $L\left(G_{W^{T}}\right)$ is also unimodal

Symmetry

Proposition

If W is a binary word such that the poset $L\left(G_{W}\right)$ is unimodal then $L\left(G_{W^{T}}\right)$ is also unimodal

Proof idea: $L\left(G_{W}\right)$ is related to $L\left(G_{W^{T}}\right)$ by inverting the order relation, i.e. $L\left(G_{W^{T}}\right)=L\left(G_{W}\right)^{\text {op }}$. Since inverting the order of the elements in a unimodal sequence preserves the unimodal property the conclusion follows.

Symmetry

Proposition

If W is a binary word such that the poset $L\left(G_{W}\right)$ is unimodal then $L\left(G_{W^{T}}\right)$ is also unimodal

Proof idea: $L\left(G_{W}\right)$ is related to $L\left(G_{W^{T}}\right)$ by inverting the order relation, i.e. $L\left(G_{W^{T}}\right)=L\left(G_{W}\right)^{\mathrm{op}}$. Since inverting the order of the elements in a unimodal sequence preserves the unimodal property the conclusion follows.

Consequence: To prove that all snake graphs are unimodal it is enough to prove that if $H(W)$ is unimodal then $H(W R)$ or $H(W U)$ is also unimodal.

Special Class of Snake Graphs

Special Class of Snake Graphs

A binary word on $\{U, R\}$ is said to be a word with isolated U 's there are no consecutive U 's in W.

Special Class of Snake Graphs

A binary word on $\{U, R\}$ is said to be a word with isolated U 's there are no consecutive U 's in W.

Denote the word $R^{k_{1}} U R^{k_{2}} U \cdots U R^{k_{n}}$ by $I\left(k_{1}, k_{2}, \ldots, k_{n}\right)$.

Special Class of Snake Graphs

A binary word on $\{U, R\}$ is said to be a word with isolated U 's there are no consecutive U 's in W.

Denote the word $R^{k_{1}} U R^{k_{2}} U \cdots U R^{k_{n}}$ by $I\left(k_{1}, k_{2}, \ldots, k_{n}\right)$.

Snake graph corresponding to the word $I(2,3,4)$

Some formula from the recurrences

Some formula from the recurrences

Let $k_{1}, k_{2}, k_{3} \in \mathbb{N}$. Then we have

$$
H\left(I\left(k_{1}\right)\right)=\frac{q^{k_{1}+2}-1}{q-1}=\left[k_{1}+2\right]_{q}
$$

Some formula from the recurrences

Let $k_{1}, k_{2}, k_{3} \in \mathbb{N}$. Then we have

$$
\begin{gathered}
H\left(I\left(k_{1}\right)\right)=\frac{q^{k_{1}+2}-1}{q-1}=\left[k_{1}+2\right]_{q} \\
H\left(I\left(k_{1}, k_{2}\right)\right)=\left[k_{1}+1\right]_{q} q^{k_{2}+2}+\left[k_{1}+2\right]_{q}\left[k_{2}+1\right]_{q} \\
=\frac{-\left(\left(q^{3}-q^{2}+q-q^{k_{1}+4}\right) q^{k_{2}}+q^{k_{1}+2}-1\right)}{q^{2}-2 q+1}
\end{gathered}
$$

Some formula from the recurrences

Let $k_{1}, k_{2}, k_{3} \in \mathbb{N}$. Then we have

$$
\begin{gathered}
H\left(I\left(k_{1}\right)\right)=\frac{q^{k_{1}+2}-1}{q-1}=\left[k_{1}+2\right]_{q} \\
H\left(I\left(k_{1}, k_{2}\right)\right)=\left[k_{1}+1\right]_{q} q^{k_{2}+2}+\left[k_{1}+2\right]_{q}\left[k_{2}+1\right]_{q} \\
=\frac{-\left(\left(q^{3}-q^{2}+q-q^{k_{1}+4}\right) q^{k_{2}}+q^{k_{1}+2}-1\right)}{q^{2}-2 q+1}
\end{gathered}
$$

$$
H\left(I\left(k_{1}, k_{2}, k_{3}\right)\right)=\left[k_{1}+2\right]_{q}\left(\left[k_{2}+1\right]_{q}\left[k_{3}+1\right]_{q}+q^{k_{3}+2}\left[k_{2}\right]_{q}\right)+q^{k_{2}+2}\left[k_{1}+1\right]_{q}\left[k_{3}+2\right]_{q}
$$

$$
=\frac{N_{3}}{q^{3}-3 q^{2}+3 q-1}
$$

with

$$
\begin{aligned}
N_{3} & =\left(q^{3}-q^{2}+q-q^{k_{1}+4}\right) q^{k_{2}}+ \\
& +\left(q^{3}-\left(q^{5}-q^{4}+q^{3}\right) q^{k_{1}}-\left(q^{5}-q^{4}+q^{3}-q^{k_{1}+6}\right) q^{k_{2}}-q^{2}+q\right) q^{k_{3}}+ \\
& +q^{k_{1}+2}-1
\end{aligned}
$$

Geometric Interpretation

Consider the following graph.

Geometric Interpretation

Consider the following graph.

It's height polynomial counts the lattice points of a $(2+1) \times(3+1) \times(5+1)$ hyper-rectangle.

Geometric Interpretation

Consider the following graph.

It's height polynomial counts the lattice points of a $(2+1) \times(3+1) \times(5+1)$ hyper-rectangle.

Theorem

The height sequence of $R^{k_{1}} U R^{k_{2}} \ldots$ is given by

$$
\prod_{i=1}^{n}\left[k_{i}+1\right]_{q}-\sum_{j=1}^{n-1}\left(x^{k_{j+1}-1} \prod_{i \notin\{j, j+1\}}\left[k_{i}+1\right]_{q}\right)+\cdots
$$

Snaking Sequences

Definition

A unimodal sequence $\left(a_{i}\right)$ is said to snake if it has a peak element a_{m} such that

$$
a_{m} \geq a_{m+1} \geq a_{m-1} \geq a_{m+2} \geq a_{m-2} \geq \ldots
$$

or

$$
a_{m} \geq a_{m-1} \geq a_{m+1} \geq a_{m-2} \geq a_{m+2} \geq \ldots
$$

Snaking Sequences

Definition

A unimodal sequence $\left(a_{i}\right)$ is said to snake if it has a peak element a_{m} such that

$$
a_{m} \geq a_{m+1} \geq a_{m-1} \geq a_{m+2} \geq a_{m-2} \geq \ldots
$$

or

$$
a_{m} \geq a_{m-1} \geq a_{m+1} \geq a_{m-2} \geq a_{m+2} \geq \ldots
$$

Conjecture

Not only are the height polynomials of lattice paths unimodal, but they also snake.

Acknowledgements

This research was conducted at the 2020 University of Minnesota, Algebraic Combinatorics REU and is supported by NSF RTG grant DMS-1745638. We thank

Nick Ovenhouse and Elizabeth Kelley for their support.

References

Ilke Canakci and Ralf Schiffler．＂Cluster algebras and continued fractions＂．In：Compositio Mathematica 154.3 （Dec． 2017），pp．565－593．ISSN：1570－5846．DOI： $10.1112 /$ s 0010437×17007631 ．URL：
http：／／dx．doi．org／10．1112／S0010437X17007631．
Ilke Canakci and Ralf Schiffler．＂Snake graphs and continued fractions＂．English．In：European fournal of Combinatorics 86 （May 2020），pp．1－19．ISSN：0195－6698．Doi： $10.1016 / \mathrm{j}$ ．ejc． 2020.103081.
國 Andrew Claussen．Expansion Posets for Polygon Cluster Algebras．2020．arXiv： 2005.02083 ［math．CO］．
Emden Gansner．＂On the lattice of order ideals of an up－down poset＂．In：Discrete Mathematics 39 （Dec．1982）， pp．113－122．doi：10．1016／0012－365X（82）90134－0．
SOPHIE MORIER－GENOUD and VALENTIN OVSIENKO．＂q－DEFORMED RATIONALS AND q－CONTINUED FRACTIONS＂．In：Forum of Mathematics，Sigma 8 （2020）．ISSN：2050－5094．Doi： 10.1017 ／fms 2020 ．9．URL： http：／／dx．doi．org／10．1017／fms．2020．9．
Emanuele Munarini and Norma Zagaglia Salvi．＂On the rank polynomial of the lattice of order ideals of fences and crowns＂．In：Discrete Mathematics（2002），pp．163－177．URL：
https：／／www．sciencedirect．com／science／article／pii／S0012365X02003783．
國 James Propp．＂The Combinatorics of Frieze Patterns and Markoff Numbers＂．In：Integers 20 （2020），A12．
图 The Sage Developers．SageMath，the Sage Mathematics Software System（Version 9．1）． https：／／www．sagemath．org． 2020.
Ralf Schiffler．＂A Cluster Expansion Formula A＂．In：Electr．7．Comb． 15 （Apr．2008）．
國
Toshiya Yurikusa．＂Cluster Expansion Formulas in Type A＂．In：Algebras and Representation Theory 22.1 （Dec． 2017），pp．1－19．ISSN：1572－9079．Doi： 10.1007 ／s10468－017－9755－3．URL： http：／／dx．doi．org／10．1007／s10468－017－9755－3．

Conclusion

Questions?

