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The q-Integers

De�nition

For each n ∈ N, de�ne the polynomial [n]q ∈ Z[q]:

[n]q = 1 + q + q2 + · · ·+ qn−1

Remark: Substituting q = 1 gives n.
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Rational Numbers

Main object of study for us is [x]q when x ∈ Q.

A �rst natural guess for the de�nition is[a
b

]
q
:=

[a]q
[b]q

=
1 + q + · · ·+ qa−1

1 + q + · · ·+ qb−1

We will use a di�erent de�nition which uses continued fractions
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

a1 +
1

a2 +
1

a3+
1

···+ 1

an−1
+ 1

an

We use the notation [a1, a2, . . . , an] to denote the expression above.

Example: 7

4
= 1 + 1

1+ 1

3

. So we’d write
7

4
= [1, 1, 3].

Remark: These are not unique. For example,
7

4
is also equal to [1, 1, 2, 1]. Requiring

an even number of coe�cients makes it unique.
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De�nition of q-Rationals

De�nition

If
r
s = [a1, a2, . . . , a2n], then de�ne[ r

s

]
q
:= [a1]q +

qa1

[a2]q−1 + q−a
2

···+ qa2n−1

[a
2n]q−1

Example: 7

3
= [2, 3].[
7

3

]
q
= (1 + q) +

q2

1 + q−1 + q−2
=

1 + 2q + 2q2 + q3 + q4

1 + q + q2

Fact: The only time this agrees with the “naive guess” is for

[ n+1

n

]
q =

[n+1]q
[n]q

.
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The Desirable Properties

As we saw there are other possible de�nitions for q-rationals that “work”

The continued fraction de�nition is the “right one” because of the following:

Theorem [Morier-Genoud, Ovsienko]

The continued fraction de�nition of

[ a
b

]
q satis�es the following order and

convergence properties.

Order: De�ne a relation on rational functions by
a(q)
b(q) �

c(q)
d(q) if

a(q)d(q)− b(q)c(q) has all non-negative coe�cients.

If
a
b ≥

c
d , then

[ a
b

]
q �

[ c
d

]
q

Convergence: If
an
bn
→ λ ∈ R irrational, then

[
an
bn

]
q

“converges” in some sense,

and moreover the convergence is independent of the sequence
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Combinatorial interpretation

Question: Do the coe�cients of the numerator and denominator of q-rationals

count anything?

Turns out they count many things!

Perfect matching on snake graphs

Angle matching on snake graphs

T -paths

Lattice paths in snake graphs
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From rationals to Binary words

Given a rational
r
s = [a1, . . . , a2m]

Construct a binary word by W = U a1−1Ra2 · · ·U a2m−1Ra2m−1

Example: 7

3
= [2, 3] and thus has binary word W = URR.

Cranford & Fonseca (UMN) q-rationals August, 2020 8 / 27



From rationals to Binary words

Given a rational
r
s = [a1, . . . , a2m]

Construct a binary word by W = U a1−1Ra2 · · ·U a2m−1Ra2m−1

Example: 7

3
= [2, 3] and thus has binary word W = URR.

Cranford & Fonseca (UMN) q-rationals August, 2020 8 / 27



From rationals to Binary words

Given a rational
r
s = [a1, . . . , a2m]

Construct a binary word by W = U a1−1Ra2 · · ·U a2m−1Ra2m−1

Example: 7

3
= [2, 3] and thus has binary word W = URR.

Cranford & Fonseca (UMN) q-rationals August, 2020 8 / 27



From rationals to Binary words

Given a rational
r
s = [a1, . . . , a2m]

Construct a binary word by W = U a1−1Ra2 · · ·U a2m−1Ra2m−1

Example: 7

3
= [2, 3] and thus has binary word W = URR.

Cranford & Fonseca (UMN) q-rationals August, 2020 8 / 27



From Binary Words to Snake Graphs

From a binary word we construct a snake graph, as follows

Start with a square. For each letter in the binary word, add another square either

above (for U ) or to the right (for R) of the previous

Example: 7

3
has binary word URR. The resulting snake graph looks like

G
7/3 =

In this way we associated a snake graph Gr/s to a rational
r
s
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Lattice Paths

If G is a snake graph, let L(G) be the set of all paths in G from the south-west corner

to the north-east corner using only right and up steps.

Example: The 7 lattice paths in G
7/3

are
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Lattice Paths

Theorem [Schi�er, Çanakçi]

If
r
s = [a1, a2, . . . , a2m] then∣∣L(Gr/s)

∣∣ = r and

∣∣∣L(Ĝr/s)
∣∣∣ = s

The notation Ĝr/s means the snake graph from the transpose of the word associated

to the continued fraction [a2, a3, . . . , a2m].
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A Partial Order on Paths

There is a partial order on the lattice paths in Gr/s so that locally

<

Example: L(G
7/3

)

De�ne the height or rank of a lattice path as how many steps it takes to get to it

from the minimal path. This make L(G) a ranked poset.
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What Do q-Rationals Count?

Theorem [Claussen]

Let

[ r
s

]
q =

R(q)
S(q) . Then:

1 The coe�cient of qk in R(q) is the number of lattice paths in Gr/s of height k.

2 The coe�cient of qk in S(q) is the number of lattice paths in Ĝr/s of height k.

Cranford & Fonseca (UMN) q-rationals August, 2020 13 / 27



What Do q-Rationals Count?

Theorem [Claussen]

Let

[ r
s

]
q =

R(q)
S(q) . Then:

1 The coe�cient of qk in R(q) is the number of lattice paths in Gr/s of height k.

2 The coe�cient of qk in S(q) is the number of lattice paths in Ĝr/s of height k.

Cranford & Fonseca (UMN) q-rationals August, 2020 13 / 27



Example

We saw that the poset L(G
7/3

) is given by

The corresponding height polynomial is 1 + 2q+ 2q2 + q3 + q4
which indeed agrees

with the numerator of

[
7

3

]
q from the continued fraction de�nition
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Unimodal sequences

De�nition

A sequence of integers a0, a1, . . . , an is unimodal if there exits an s ∈ N such that

a0 ≤ · · · ≤ as ≥ as+1 ≥ . . . ≥ an

A polynomial p(q) =
∑

i piq
i

is said to be unimodal if the pi form a unimodal

sequence.
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The Problem

Conjecture [Morier-Genoud, Ovsienko]

The numerator and denominator of any q-rational are unimodal. In terms of the

lattice path interpretation of q-rationals this is the statement that the height

polynomial of lattice paths in any snake graph is unimodal.

The unimodality of the height polynomial of a snake graph associated to a binary

word W is know in some special cases:

1 W consists only of U ’s or only of R’s. It is easy to see that the height

polynomial is [`(W ) + 2]q
2 W is a zigzag word, i.e. there are no consecutive R’s or U ’s in W (Fibonacci

cubes are unimodal [Munarini and Salvi, 2002])

3 W is a word with isolated U ’s with constant row length (up-down posets are

unimodal [Emden, 1982])
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Notation

Let WR denote the word obtained from W by removing the right most section of R’s.

Similarly let WU denote the word obtained from W by removing the right most

section of U ’s.

Example: If W = RUUUUU then WU = R.

If W is a binary word then `(W ) denotes the length of the word.

If W is a word then Ŵ is de�ned to be the word formed from W by removing the

right most letter in W .

Example: If W = RURUR then Ŵ = RURU .

If W is a word then de�ne W T
, the transpose, to be the word formed from

interchanging R with U in W .
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Recurrences

A basic idea for proving unimodality is by induction. Led us to look for recurrences

for the height polynomial:

Theorem

If W is a binary word on {U , R} then we have the following recurrences for the

height polynomial

H(WU ) = H(W ) + q`(W)−`(ŴU )+1H(ŴU )

and

H(WR) = H(ŴR) + qH(W )
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and

H(WR) = H(ŴR) + qH(W )
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Code

R.<q> = PolynomialRing(QQ)
def word-to-num (w):
top = 1
bot = 1

for letter in w:
if letter == ’U’:

bot = top + bot
elif letter == ’R’:

top = top + bot
else:

print ("No!!!")
raise Exception()

return top + bot

def word_to_poly (w):
H = 1 + q
H_U_hat = 1
H_R_hat = 1
U_run = 0

for letter in w:
if letter == ’R’:

U_run = 0
H_U_hat = H
H = H_R_hat + q * H

elif letter == ’U’:
U_run += 1
H_R_hat = H
H = H + q^(U_run + 1)

* H_U_hat
else:

print ("No!!!")
raise Exception ()

return H
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Symmetry

Proposition

If W is a binary word such that the poset L(GW ) is unimodal then L(GW T ) is also

unimodal

Proof idea: L(GW ) is related to L(GW T ) by inverting the order relation, i.e.

L(GW T ) = L(GW )op
. Since inverting the order of the elements in a unimodal

sequence preserves the unimodal property the conclusion follows.

Consequence: To prove that all snake graphs are unimodal it is enough to prove

that if H(W ) is unimodal then H(WR) or H(WU ) is also unimodal.
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Special Class of Snake Graphs

A binary word on {U , R} is said to be a word with isolated U ’s there are no

consecutive U ’s in W .

Denote the word Rk1URk2U · · ·URkn
by I(k1, k2, . . . , kn).

Snake graph corresponding to the word I(2, 3, 4)
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Some formula from the recurrences

Let k1, k2, k3 ∈ N. Then we have

H(I(k1)) =
qk1+2 − 1

q − 1

= [k1 + 2]q

H(I(k1, k2)) = [k1 + 1]qqk2+2 + [k1 + 2]q[k2 + 1]q

=
−((q3 − q2 + q − qk1+4)qk2 + qk1+2 − 1)

q2 − 2q + 1

H(I(k1, k2, k3)) = [k1 + 2]q([k2 + 1]q[k3 + 1]q + qk3+2[k2]q) + qk2+2[k1 + 1]q[k3 + 2]q

=
N3

q3 − 3q2 + 3q − 1

with

N3 = (q3 − q2 + q − qk1+4)qk2+

+ (q3 − (q5 − q4 + q3)qk1 − (q5 − q4 + q3 − qk1+6)qk2 − q2 + q)qk3+

+ qk1+2 − 1
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Geometric Interpretation

Consider the following graph.

It’s height polynomial counts the lattice points of a (2 + 1)× (3 + 1)× (5 + 1)
hyper-rectangle.

Theorem

The height sequence of Rk1URk2 · · · is given by

n∏
i=1

[ki + 1]q −
n−1∑
j=1

xkj+1−1

∏
i/∈{j,j+1}

[ki + 1]q

+ · · ·
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Snaking Sequences

De�nition

A unimodal sequence (ai) is said to snake if it has a peak element am such that

am ≥ am+1 ≥ am−1 ≥ am+2 ≥ am−2 ≥ . . .

or

am ≥ am−1 ≥ am+1 ≥ am−2 ≥ am+2 ≥ . . .

Conjecture

Not only are the height polynomials of lattice paths unimodal, but they also snake.
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Conclusion

Questions?
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