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Abstract

For a matroid, the augmented Bergman complex is a simplicial complex introduced in recent work of
Braden, Huh, Matherne, Proudfoot and Wang [3, 4]. It may be viewed as a hybrid between two other
well-studied pure shellable simplicial complexes: the independent set complex and the Bergman complex.

We show that the augmented Bergman complex itself is shellable, via two different shelling orders.
We explain how the description of its homotopy type derived from the two shellings fits with a known
convolution formula counting bases of the matroid. We also identify concretely the representation of the
automorphism group of the matroid on the homology of the augmented Bergman complex, and generalize
this description to other types of closures beyond matroid closures.
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1 Introduction

Let M be a matroid on ground set E with rank function r : 2E → Z≥0 and closure function cl : 2E → F ,
where F denotes the lattice of flats. For a flat F ∈ F , we denote the restriction of M by F as M |F and the
contraction of M by F as M/F . We will also assume that M is an ordered matroid, that is, there is some
linear ordering ω on its ground set E. For more details confer the reference by Oxley [9].

There are various well-studied shellable simplicial complexes that one can associate to M ; see the survey
chapter by Björner [2] as a general reference, and for terminology not defined here. Two among these
complexes are the complex of independent sets I(M), and the Bergman complex Berg(M) := ∆(F \ {∅, E})
which is the order complex constructed from the nonempty, proper flats of the lattice of flats F .

Here we study the following “hybrid” of these two complexes, which plays an important role in recent
work of Braden, Huh, Matherne, Proudfoot and Wang [3, 4].

Definition. Given a matroid M on ground set E = {1, 2, . . . , n}, the augmented Bergman complex is the
abstract simplicial complex on vertex set

{y1, . . . , yn} ∪ {xF : proper flats F ( E}

whose simplices are the subsets
{yi}i∈I ∪ {xF1 , xF2 , . . . , xF`} (1)
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for which I ∈ I(M) and I ⊆ F1 ( F2 ( · · · ( F`. We will often abuse notation and write

T = I ⊆ F1 ( F2 ( · · · ( F`

for a face T of the complex.

This complex, which we will hereafter denote as AugBerg(M), is pure of dimension r(M)−1, and contains
as full-dimensional subcomplexes both

• the independent set complex I(M), as the simplices in (1) with ` = 0, and

• the cone Cone(Berg(M)) = ∆(F \ {E}) over the Bergman complex Berg(M) with cone vertex x∅, as
the simplices in (1) with I = ∅.

Example. Let M1 be uniform matroid of rank 2 on ground set E = {1, 2, 3}, which has three bases B =
{{1, 2}, {1, 3}, {2, 3}}. Figure 1 below depicts its lattice of flats F on the left, and the simplicial complex
AugBerg(M) on the right. In this case, AugBerg(M) is a 1-dimensional complex, that is a graph.
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Figure 1: F(M1) and AugBerg(M1)

We recall that a theorem of Provan and Billera [10] shows that I(M) is shellable, and hence homotopy
equivalent to a wedge of spheres of dimension r(M)− 1. In fact, the number of spheres in this wedge is the
evaluation TM (0, 1) of the Tutte polynomial TM (x, y), or the number of bases of M having internal activity
zero with respect to ω; see Björner [2, §7.3].

Similarly, a theorem of Garsia [6] shows that Berg(M) is shellable, and thus homotopy equivalent to
a wedge of spheres of dimension r(M) − 2. The number of spheres in this wedge is the Tutte polynomial
evaluation TM (1, 0), or the number of bases of M having external activity zero; see Björner [2, §7.4, 7.6]

In Section 2, we will show that AugBerg(M) is shellable via at least two different orders, one order
(Theorem 2.1) which shells the subcomplex Cone(Berg(M)) first and adds in the facets of I(M) last; the
other (Theorem 2.2) shells the subcomplex I(M) first and adds in the facets of Cone(Berg(M)) last.

Consequently, AugBerg(M) is homotopy equivalent to a wedge of spheres of dimension r(M) − 1. In
Section 3, we will show that these two shellings give rise to two different descriptions for the number of
spheres in this wedge, the first shelling showing (Corollary 3.2) that the number of spheres is

TM (1, 1) = #{bases of M} (2)

and the second shelling showing (Corollary 3.5) that the number of spheres is∑
F∈F(M)

TM |F (0, 1) · TM/F (1, 0)

=
∑

F∈F(M)

#{bases of M |F of internal activity zero} ·#{bases of M/F of external activity zero},
(3)

where M |F and M/F are the matroids obtained from M by restriction to F and contraction on F , respec-
tively. The concordance between (2) and (3) are well-known convolution formulas [5, 7]. The definitions of
internal and external activity are in Section 3.
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The simplicity of expression (2) for the number of (r(M)− 1)-dimensional spheres in the homotopy type
of AugBerg(M) is connected to a stronger statement about its equivariant structure as a representation of
the automorphism group G = Aut(M) for the matroid M . In Section 4, we will give a simple description
(Theorem 4.1) of the action of G on the integral homology group H̃r(M)−1(AugBerg(M),Z): it is a signed
permutation representation, in which Z-basis elements [B] indexed by the ordered bases of the matroid M
permuted up to (explicit) signs.

2 Shellability of AugBerg(M)

Recall that a pure simplicial complex ∆ is shellable if there exists an ordering T1, T2, . . . , Tt
1 of its facets so

that one of the following equivalent conditions holds:

(a) For each j ≥ 2, the facet Tj intersects the subcomplex generated by the already shelled facets
T1, . . . , Tj−1 in a subcomplex that is pure of codimension one inside Tj .

(b) For each pair of facets Ti, Tj where i < j, there is a facet Tk with k < j and an element v ∈ Tj such
that Ti ∩ Tj ⊆ Tk ∩ Tj = Tj − {v}.

Although the first definition may seem more intuitive, we will mostly use definition (b) in our proofs.

Remark. There is a weaker condition on pure simplicial complexes than shellability, known as gallery-
connectedness or being connected in codimension one. This means that any pair of facets T, T ′ can be
connected by a sequence of facets T = T0, T1, . . . , Tm = T ′ where Ti, Ti+1 share a codimension one face for
i = 0, 1, 2, . . . ,m − 1. It was shown that AugBerg(M) is connected in codimension one in [4, Prop. 2.3],
leading one to speculate that it might be shellable.

We now construct a shelling order of AugBerg(M) that first processes the facets of Cone(Berg(M)) and
finishes with the facets of I(M). Using the notation from (1), the general approach will be to shell the facets
in increasing order based on the rank of I, where ties are broken by leveraging the existence of a shelling
order for the Bergman complex of any matroid.

Theorem 2.1. There exists a shelling of AugBerg(M) that begins with the facets of Cone(Berg(M)) and
ends with the facets of I(M).

Proof. We begin by defining our shelling order. As setup, fix some arbitrary ordering (e.g. lexicographical)
for every collection of independent sets of the same rank. Suppose we now have two facets of AugBerg(M)
given by

Ti = I ⊆ Fi,1 ( Fi,2 ( · · · ( Fi,m and Tj = J ⊆ Fj,1 ( Fj,2 ( · · · ( Fj,n. (4)

If #I < #J , then Ti comes before Tj in the shelling order. If #I = #J and I 6= J , then Ti comes before Tj
if and only if I comes before J in our fixed ordering of rank #I independent sets.

We consider the final case where I = J . Since Ti and Tj are both facets, it must be that Fi,1 = Fj,1 as
they are closures of the same set. So, all flats of Ti and Tj are contained in the interval [F1, E] of F , where
F1 := Fi,1 = Fj,1. To know when Ti is shelled before Tj and vice versa, it suffices to exhibit an ordering for
the maximal chains of [F1, E] that do not contain E and have minimal flat F1. But Cone(Berg(M/F1)) is
shellable, and since the interval [F1, E] is isomorphic to the lattice of flats of M/F1, the shelling order for
Cone(Berg(M/F1)) can be lifted up to M to obtain the ordering we so desire. Having covered all cases, we
now have an ordering T1, T2, . . . on all facets of AugBerg(M), which we now prove is a shelling order.

As indicated at the beginning of this section, we must show that for facets Ti and Tj where i < j, there
is a facet Tk where k < j and an element v ∈ Tk such that Ti ∩ Tj ⊆ Tk ∩ Tj = Fj − {v}. Using the same
notation as earlier in the problem, there are two cases to consider.

Case 1: I 6= J . Letting K = I ∩ J , we have that #K < #J . Using the independent set exchange
property, we can add elements from J to K to make a set K ′ such that #K ′ = #J − 1. We can then let

Tk = K ′ ⊆ cl(K ′) ( Fj,1 ( · · · ( Fj,n.

1We use T for a facet instead of F to avoid confusing with flats.
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Since #K ′ < #J , Tk comes earlier than Tj in our ordering and one can easily verify that Ti ∩ Tj ⊆ Tk ∩ Tj ,
and that the latter set is equal to Tj \ {yi}, where i is the lone element of J \K ′.

Case 2: I = J . As argued previously, we have F1 := Fi,1 = Fj,1. This case then falls under jurisdiction
of the shelling order derived from Cone(Berg(M/F1)). In particular, we can contract the chain of flats
corresponding to both Ti and Tj by F1. Shellability of Cone(Berg(M/F1)) guarantees that it contains a
chain of flats in M/F1 that once lifted back up to M gives precisely the desired Tk after inserting I at the
beginning of the chain.

We have thus produced a shelling order that begins by shelling the facets with an empty associated
independent set, or Cone(Berg(M)), and ends by shelling the facets associated to the bases of M , or I(M).

The next theorem shells the two subcomplxes of AugBerg(M) in the opposite order.

Theorem 2.2. There exists a shelling of AugBerg(M) that begins with the facets of I(M) and ends with
the facets of Cone(Berg(M)).

Proof. As in the previous proof, let Ti and Tj be facets defined by (4). Now, if #I > #J , then Ti comes
before Tj in our shelling order. If #I = #J and I 6= J , then Ti comes before Tj if and only if I comes
before J in a lexicographical ordering of rank #I independent sets based on our order ω. Again, the trickier
case is when I = J , but fortunately we can use precisely the same rule that was used to handle this case in
Theorem 2.1. We now prove that this order given by T1, T2, . . . , Tt is a shelling. Letting Ti and Tj be facets
with i < j, there are three cases to handle.

Case 1: I 6= J and Fi,1 6= Fj,1. Pick some i ∈ Fj,2 \Fj,1. Then we can let Tk = J ∪{yi} ⊆ Fj,2 ( · · ·Fj,n.
This facet comes earlier than Tj in the shelling order since #(J ∪{yi}) > #J , and satisfies Ti ∩Tj ⊆ Tk ∩Tj
by construction. Finally, Tk ∩ Tj = Tj \ {xFj,1}.

Case 2: I 6= J and Fi,1 = Fj,1. Define F1 := Fi,1 = Fj,1. It must be the case that #I = #J as
their closures are the same set, and moreover I comes before J lexicographically as i < j. It is known
that given an order on the ground set, the lexigraphical ordering of the bases gives a shelling order of the
independence complex of a matroid; see Björner [2, §7.3]. But both I and J are bases of the matroid M |F1 ,
so by shellability we are given a set K such that I ∩ K ⊆ J ∩ K = J \ {v} for some v ∈ J . Letting
Tk = K ⊆ F1 ( Fj,2 ( · · · ( Fj,n finishes the job.

Case 3: I = J . This is handled in the exact same manner as in Theorem 2.1.

We have thus produced a shelling order that begins by by shelling the bases of M , or I(M), and concludes
by shelling the facets with an empty independent set, or Cone(Berg(M)).

3 Homotopy type of AugBerg(M)

Here we use the shelling from Theorems 2.1 and 2.2 to describe the homotopy type of AugBerg(M).
We start off with a quick definition that appears in [2, §7.2].

Definition. Let ∆ be a shellable simplicial complex with shelling order T1, T2, . . . , Tt on its facets. The
restriction of a facet Ti is defined by

R(Ti) = {x ∈ Ti : Ti \ {x} ∈ ∆i−1},

where ∆i−1 is the subcomplex generated by the first i− 1 facets in the shelling order.

Related to this definition is a useful result that relates shellability to homotopy type, which can be found
in [2, §7.7].

Lemma 3.1. Let ∆ be a shellable d-dimensional simplicial complex. Suppose that there are p facets T where
R(T ) = T , or equivalently, T ⊆ R(T ). Then ∆ has the homotopy type of a wedge of p copies of the d-sphere.

Intuitively, one can interpret a facet T where R(T ) = T as one that “caps off” a d-sphere. With that
being said, we are ready to move onto our first main result of the section.

4



Corollary 3.2. The complex AugBerg(M) is a wedge of TM (1, 1) copies of the d-sphere, where d is its
dimension and TM is the Tutte polynomial of M .

Proof. It is well known that TM (1, 1) gives the number of bases of M . By Lemma 3.1, it suffices to show
that this is equal to the number of facets T of AugBerg(M) for which R(T ) = T , where we take our shelling
to be that of Theorem 2.1. We will do this by proving that facets {yi}i∈B given by the bases B of M are
precisely those that satisfy the desired condition.

Take a facet T in AugBerg(M) of the form

T = I ⊆ F1 ( F2 ( · · · ( F`,

and suppose first that I is not a basis. We need to find an element of T that is not in R(T ); we claim that
F1 is such an element. To show this, observe that removing F1 from T results in the chain

I ( F2 ( · · · ( F`.

This chain must be contained in a previously shelled facet in order for xF1
to be in R(T ). But there are only

two ways to complete it to a facet at all, as the chain F2 ( · · · ( F` is saturated. We can either increase the
cardinality of I by one or insert a flat of rank #I sandwiched between I and F2.

In the first case, we would have a facet whose associated independent set has larger cardinality than that
of T . By our shelling order, such a facet has not yet been shelled, and hence cannot be used to show that
xF1 ∈ R(T ). The second case is also not allowed, for the only flat of rank #I that contains I is its closure
F1, and the resulting facet would correspond to T itself. Hence xF1

6∈ R(T ).
Suppose now that I is a basis. We need to show that T ⊆ R(T ). To do so, pick any vertex v ∈ T , and

notice that v = yi for some i ∈ I. Consider the facet T ′ = I \ {yi} ⊆ cl(I \ {yi}). Since #(I \ {yi}) < #I,
the facet T ′ was shelled before T , and the fact that T \ {yi} is contained in T ′ immediately implies that
yi ∈ R(T ), proving the result.

We can prove an analogous result using the shelling order given by Theorem 2.2. An immediate corollary
is an equivalent expression for the number of bases in M , which can also be found in [7, §2].

For starters, we give a few definitions. Every element x ∈ B, where B is a basis for the matroid M ,
gives rise to a unique basic bond. The element x is internally active in B if x is the smallest element in the
bond under ω; otherwise, x is internally passive. Dually, for x ∈ E \ B, there exists a unique associated
basic circuit. Then x is externally active if it is the smallest element in the circuit under ω; otherwise, it is
internally active. More details can be found in [2, §7.3]. With this out of the way, we cite a useful lemma.

Lemma 3.3. Let M be an ordered matroid. If we shell the independent set complex I(M) in lexicographic
order, then R(B) = IP (B) for any basis B, where IP (B) is the collection of elements that are internally
passive with respect to B.

This next lemma relates the facets of Berg(M) with bases that are externally passive.

Lemma 3.4. Let M be an ordered matroid with ground set E. Associate to each facet T of Berg(M) a label
λ(T ) given by the shelling order of Berg(M) seen in [6]. That is, for a facet

T = F1 ( F2 ( · · · ( Fr(M)−1,

we have the labeling

λ(T ) = (min(F1 \ cl(∅)),min(F2 \ F1), . . . ,min(E \ Fr(M)−1)).

Take the elements of λ(T ) as a set B, which is a basis for M . Then λ(T ) is strictly decreasing and B has
no external activity 0. Moreover, all such bases of M with no external activity arise in this manner.

Proof. Suppose that λ(T ) is strictly decreasing, i.e., x1 > x2 > . . . > xr where λ(T ) = (x1, . . . , xr). If B = E
then we are done, so suppose we are in the other case and pick some x ∈ E \B, letting Fi is the first flat in
T to contain x, extending T to E if necessary. Then the basic circuit of B ∪ x must contain xi, and by the
construction of λ(T ), we have xi < x, and hence x is externally passive. So, B has no external activity.
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Consider now a basis B = {x1, . . . , xr} with no external activity, and assume without loss of generality
that x1 > x2 > · · · > xr. It suffices to show that there exists a facet T with label λ(T ) = (x1, . . . , xr).
Suppose for contradiction that as we try to construct such a facet, the label between flats Fi and Fi+1

cannot be xi+1 and instead must be chosen to be x < xi+1. Then the basic circuit of B ∪ x must be
contained in Fi+1. Since x1 > x2 > · · ·xr, we have that x is less than all of x1, . . . , xi+1, showing that it is
externally active, a contradiction.

Armed with these two lemmas, we proceed to the proof of the second main theorem of this section.

Corollary 3.5. The complex AugBerg(M) is a wedge of p copies of the d-sphere, where

p =
∑

flats F of M

|bases B1 of M |F with internal activity zero |

× |bases B2 of M/F with external activity zero |

and d is the dimension of AugBerg(M).

Proof. As with the previous proof, Lemma 3.1 allows us to reduce to problem into proving that p is equal
to the number of facets T such that R(T ) = T , where in this case take our shelling order to be given by
Theorem 2.2.

We can partition the facets of AugBerg(M) by the closure of their associated independent set, which is
of course always a flat of M . Let’s fix such a flat F , and consider which of the facets T that have the form

T = I ⊂ F ( F2 ( · · · ( F`

satisfy the inclusion T ⊆ R(T ). To understand this, start by picking some vertex v ∈ T .
We first consider the case where v = xF ; this implies that F 6= E. We will show that xF ∈ R(T ), always.

Start by picking some element y ∈ F2 − F and consider the facet T ′ defined by the chain of inclusions

T ′ = I ∪ {yi} ⊆ F2 ( · · · ( F`.

Since #(I ∪ yi) > #I, the facet T ′ comes before T in the shelling order and contains T \ {xF }.
Suppose now that v = yi for some i ∈ I. For a previous facet to contain T \ {yi}, it must be of the

form T ′ = (T \ {yi}) ∪ v′. Notice that v′ cannot be a flat, for then T ′ would have an independent set of
greater cardinality than that of T , and must come later in the shelling order. So, v′ = yi′ for some i′ ∈ F \ I,
and moreover, for yi to be in R(T ), we also require that yi′ ∈ F \ I, for otherwise the chains of flats in T
and T ′ would not align. In other words, we can view I and (I \ {yi}) ∪ {yi′} as bases of M |F . Since we
lexicographically shell facets with independent sets of the same cardinality, an application Lemma 3.3 via
the induced linear order on M |F from ω shows that yi ∈ R(T ) if and only if yi is internally passive with
respect to I.

Consider the final case where v is some xFk in T . Recall that for a fixed independent set I whose closure
is F , we shell the facets associated to it in the order induced from the shelling of Berg(M/Fk). By the
properties of this shelling given as seen in [6] and [2, §7.6], we can conclude that xFk ∈ R(T ) if and only if
min(Fk \ Fk−1) > min(Fk+1 \ Fk), where F0 = cl(∅) and F`+1 = E.

Putting everything together, we see that for R(T ) = T , we need I, a basis of M |F , to have no internal
activity, and Lemma 3.4 implies that the chain of flats F ( F2 ( · · · ( F` must be uniquely associated with
a basis of M/F with no external activity. Mixing and matching all possible bases for M |F and M/F for our
given flat F yields the result.

Remark. It was proven in [7] that the complex of independent sets I(M) has a remarkable property: when
one views its simplicial boundary maps {∂i}i=1,2,... as matrices, and forms the combinatorial Laplacian
matrices ∂Ti ∂i, they will have only only integer eigenvalues.

One might therfore ask whether AugBerg(M) also has this property. Sadly, this fails already for the
Boolean matroid M of rank 2, for which AugBerg(M) is a 5-cycle graph. One can check that its Laplacian
matrix ∂T1 ∂1 has characteristic polynomial x(x2 − 5x+ 5)2, whose eigenvalues are not all integers.
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4 Equivariant description of the homology

We want to discuss how symmetries of the matroid M act on the homology of AugBerg(M).

Definition. An automorphism of a matroid M on ground set E is a bijection σ : E → E that sends
independent sets I 7→ σ(I) to independent sets (or equivalently sends flats F 7→ σ(F ) to flats, or equivalently
sends bases B 7→ σ(B) to bases, etc.) The set Aut(M) of all such automorphisms forms a (finite) subgroup
of the symmetric group SE , which acts on AugBerg(M) via simplicial automorphisms, that is taking faces
to faces. It therefore induces a group of homeomorphism on the geometric realization ‖AugBerg(M)‖ as a
topological space, and on its homology groups with any coefficients.

We claim that the shelling in Theorem 2.1 leads to a very explicit description of the action of G := Aut(M)
on this homology. To this end, recall that when computing simplicial homology H̃∗(∆,Z) for a simplicial
complex ∆ using oriented simplicial chains2, the dth chain group C̃d(∆,Z) has the following description. One
fixes for each d-dimensional simplex σ having vertex set {v0, v1, . . . , vd} a reference ordering (v0, v1, . . . , vd),
and then C̃d(∆,Z) is a free abelian group having one Z-basis element [v0, v1, . . . , vd], called an oriented
simplex, for each such σ, in which one considers for any permutation w in the symmetric group Sd+1 that

[vw(0), vw(1), . . . , vw(d)] = sgn(w) · [v0, v1, . . . , vd]

where sgn(w) ∈ {+1,−1} is the usual sign of the permutation w.
Note that when G is a group of symmetries of the simplicial complex ∆, if some subset {σ1, . . . , σt}

of d-simplices happens to be setwise stable under the action of G, then the Z-span of their basis elements
{[σ1], . . . , [σt]} within C̃d(∆,Z) is a free abelian subgroup that carries a signed permutation representation
of G. In other words, each element g in G permutes them up to sign: g([σ]) = ±[σ′] if g(σ) = σ′.

Remark. The above signed permutation representation on the Z-span of {[σ1], . . . , [σt]} inside C̃d(∆,Z) may
alternatively be viewed as a direct sum

⊕
σ sgnσ ↑GGσ of induced representations. Here σ runs through any

choice of G-orbit representatives for {σ1, . . . , σt}, with Gσ the subgroup of G that setwise stabilizes the vertex
set {v0, v1, . . . , vd} of σ, and sgnσ : Gσ → {+1,−1} is the one-dimensional character sending w permuting
{v0, v1, . . . , vd} to the sign of the permutation sgnσ(w).

Theorem 4.1. For ∆ = AugBerg(M), the representation of G = Aut(M) on the top homology group
H̃r(M)−1(∆,Z) is isomorphic to the signed permutation representation of G on the Z-span inside C̃d(∆,Z)
of the oriented simplices {[B] : bases B of M}.

Example. For the uniform matroid M of rank 2 on E = {1, 2, 3} considered in Example 1, the set of
bases is B = {{1, 2}, {1, 3}, {2, 3}}. Hence ∆ = AugBerg(M) has H̃1(∆,Z) ∼= Z3 with Z-basis given by
{[y1, y2], [y1, y3], [y2, y3]}, in which [yi, yj ] = −[yj , yi]. The matroid M has automorphism group G = S3

acting on the vertices via g(yi) = yg(i). Theorem 4.1 then tells us, for example, that the transposition

g = (1, 3) in S3 acts on H̃1(∆,Z) sending

g([y1, y3]) = [y3, y1] = −[y1, y3],

g([y1, y2]) = [y3, y2] = −[y2, y3].

Example. When M is the Boolean matroid of rank n, its collection of bases B = {E} contains only one
element E = {1, 2, . . . , n}. Then ∆ = AugBerg(M) is an (n− 1)-sphere that turns out to be isomorphic to
the boundary of the stellohedron; see [4, Footnote 7]. The examples with n = 2, 3 are depicted in Figure 2.

The set of bases B = {E} gives rise to one oriented (n−1)-simplex [E]. HereG = Aut(M) is the symmetric
group permuting Sn, and it acts on the homology group H̃n−1(∆,Z) ∼= Z via the sign representation:
g([E]) = sgn(g) · [E] for every permutaion g in Sn.

Remark. The explicitness of the description in Theorem 4.1 stands in stark contrast to our understanding
in general of the representations of G = Aut(M) on the homology of I(M) and of Berg(M). Both of these
homology representations have explicit descriptions only for very special cases of matroids. Their difficulty
is partly reflected in the fact that the sets of bases of M having internal activity zero, or external activity
zero, which indexed bases for their homology, are not setwise stable under automorphisms of M . Both of
these sets require an ordering of the ground set E in order to define them.

2See, for example, Munkres [8, §1.5].
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Figure 2: The stellohedra AugBerg(M) for the Boolean matroids M of rank n = 2 and n = 3.

We claim Theorem 4.1 follows immediately from the following general lemma.

Lemma 4.2. Let ∆ be a simplicial complex and B a collection of facets of ∆ with the property that the
subcomplex ∆′ := ∆ \ B obtained by removing all of the facets in B is contractible. Then ∆ is homotopy
equivalent to a wedge of spheres

∨
σ∈B Sdim(σ).

Furthermore, for any subgroup G of simplicial automorphisms of ∆ that preserves B setwise, the repre-
sentation of G on H̃i(∆,Z) is the signed permutation representation on the Z-span of the oriented simplices
{[σ] : σ ∈ B,dim(σ) = i} within C̃i(∆,Z).

In particular, Lemma 4.2 applies to any pure shellable simplicial complex ∆, in which B is the collection
of facets F which are equal to their own restriction face R(F ), that is, R(F ) = F . In this case, ∆′ = ∆ \ B
is also shellable, and homotopy equivalent to a zero-fold wedge of spheres, that is, it is contractible.

Proof of Lemma 4.2. (cf. proof of [2, Theorem 7.7.2]) The homotopy-theoretic assertion is standard, and
follows, for example from [1, Lemma 10.2]. For the homology assertion, start with the long exact sequence
in integral homology for the pair (∆,∆′),

· · · → H̃i(∆
′)→ H̃i(∆)→ H̃i(∆,∆

′)→ H̃i−1(∆′)→ · · ·

In light of the contractibility of ∆′, this gives isomorphisms

H̃i(∆) ∼= H̃i(∆,∆
′).

On the other hand, since each simplex σ in B = ∆\∆′ is a facet of ∆, lying in no higher-dimensional faces, the
boundary maps in the complex C̃∗(∆,∆

′) computing H̃∗(∆,∆
′) are all zero. Hence H̃i(∆,∆

′) = C̃i(∆,∆
′)

for all i. Furthermore, our assumptions on G imply that all of these isomorphisms commute with the
G-action, and its action on C̃i(∆,∆) matches the signed permutation representation in the lemma.

Remark. Theorem 4.1 is also extremely closely related to a representation-theoretic decomposition of the
special case i = r(M) − 1 in [7, Thm. 19]. In that result, each of the oriented chain groups C̃i of the
independent set complex I(M), regarded as a representation of the automorphism group G = Aut(M) is
decomposed into a direct sum of induced representations, in which the direct sum is indexed by pairs of flats
F ⊂ F ′ in which r(F ′) = i+ 1. When i = r(M)− 1, this chain group C̃i is the same as the G-representation
in Theorem 4.1, and the sum becomes a sum over all flats F . Each of the induced representations in the sum
will come from a tensor product of representations for the subgroup GF of G stabilizes the flat F , acting on
the homology of I(M |F ) and of Berg(M/F ). This description can be shown to agree with a finer analysis
of the shelling in Theorem 2.2.
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5 Augmented Bergman complexes for other closures

One can view a matroid M on E in terms of the matroid closure operator 2E
f−→ 2E that maps a subset

A ⊆ E to the smallest flat F = f(A) in F which contains A. This is an instance of a more general notion.

Definition. Given a set E, a map 2E
f−→ 2E is called a closure operator on E if it satisfies three axioms:

for all subsets A,B ⊆ E,

(C1.) A ⊆ f(A)

(C2.) A ⊆ B implies f(A) ⊆ f(B)

(C3.) f(f(A)) = f(A)

In this context there are analogues of I(M),Berg(M),AugBerg(M), which we introduce next.

Definition. Given a closure operator f on E, define its poset of closed sets

F := {F ⊆ E : f(F ) = F}

partially ordered via inclusion.

Proposition 5.1. Given a closure operator f on E, and any two closed sets F,G in F , their intersection
F ∩G also lies in F . Hence F always has well-defined meets F ∧G := F ∩G. Whenever E is finite, F also
has well-defined joins F ∨G := ∧H≥F,GH, so that it becomes a lattice.

Proof. We check for F,G closed that f(F ∩G) = F ∩G. Note f(F ∩G) ⊇ F ∩G holds by Axiom C1.
For the reverse inclusion, note that F ∩ G ⊆ F,G implies f(F ∩ G) ⊆ f(F ), f(G) by Axiom C2. Also

f(F ) = F and f(G) = G by Axiom C3. Hence f(F ∩G) ⊆ F,G, and therefore f(F ∩G) ⊆ F ∩G.

Definition. Given a closure operator f on E, define a subset I ⊆ E to be independent if f(I \ {i}) ( f(I)
for all i ∈ I. Let I(f) denote the collection of all independent subsets I ⊆ E.

The empty set ∅ is vacuously independent. We next check that I(f) always forms a simplicial complex.

Proposition 5.2. For any closure operator f on E, if J ⊆ I ⊆ E has I independent, then J is independent.

Proof. Suppose there exists j in J with f(J \{j}) = f(J). We show this gives f(I\{j}) = f(I), contradicting
our assumption that I is independent. To see this, note Axiom C2 gives one of the inclusions f(I\{j}) ⊆ f(I),
so we only need argue the reverse inclusion. Since I \ {j} ⊇ I \ J, J \ {j}, Axiom C2 implies

f(I \ {j}) ⊇ f(I \ J) ⊇ I \ J

using Axiom C1 for the last inclusion, and also

f(I \ {j}) ⊇ f(J \ {j}) = f(J) ⊇ J

using our assumption about j for the above equality. Hence f(I \{j}) ⊇ I \J, J , and therefore f(I \{j}) ⊇ I.
But then using Axiom C3 followed by Axiom C2, one obtains the desired reverse inclusion:

f(I \ {j}) = f(f(I \ {j})) ⊇ f(I).

In light of Propositions 5.1 and 5.2, it seems reasonable, given any closure relation f on a finite set
E, to regard the order complex Berg(f) := ∆(F \ {f(∅), E}) of the proper part of the lattice F as a
reasonable generalization of the Bergman complex of a matroid, and to regard the simplicial complex I(f)
as a reasonable generalization of the independent sets complex of a matroid. However, in neither case should
one expect these complexes to be pure, nor shellable, nor even homotopy equivalent to wedges of spheres. It
is not hard to show that Berg(f) is not always pure, and can have the homotopy type of any finite simplicial
complex. Small examples show that I(f) also can be non-pure and non-shellable.
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{1, 2, 3, 4, 5}

{1, 2} {1, 3} {2, 3} {4, 5}

∅

{1} {2} {3} {4}

F

y1

y2 y3

y4

y5

I(f)

x1 x12

x2

x23x3

x13

Berg(f)

x4

x45

∆′′ − {x∅}
π−→ Berg(f)

x1

x13

y1

x12

x3
y3 y2 x2

x23

x4 y4

x45
y5

y13 y12

y23

Figure 3: (a) The closed sets F for a closure operator f : 2E → 2E with E = {1, 2, 3, 4, 5}.
(b) The independent set complex I(f).
(c) The Bergman complex Berg(f).
(d) The complex ∆′ − {x∅} = AugBerg(f) \ B \ {x∅} obtained from ∆′ by deleting the vertex x∅.

(e) Its homeomorphic subdivided complex ∆′′ \ {x∅}, and the retraction ∆′′ \ {x∅}
π−→ Berg(f) from (7).
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Example. Consider the closure operator f : 2E → 2E with E = [5] = {1, 2, 3, 4, 5} whose poset of closed
sets F is depicted in Figure 5(a). The closure f(A) for any set A can be inferred from F , since f(A) is the
smallest closed set containing A, or the intersection of all closed sets containing A. Parts (b),(c) of the figure
depict, repsectively, the complex of independent sets I(f) on vertex set {yi}i∈E , and the Bergman complex
Berg(f) on vertex set {xF }F∈F\{∅,E}.

Definition. Given a closure operator f on a finite set E = {1, 2, . . . , n}, define AugBerg(f) to be the
simplicial complex on vertex set

{y1, . . . , yn} ∪ {xF : F ∈ F \ {E}}

whose simplices are the subsets
{yi}i∈I ∪ {xF1

, xF2
, . . . , xF`} (5)

for which I ∈ I(f) and I ⊆ F1 ( F2 ( · · · ( F`.

This complex AugBerg(f) need not be pure. Nevertheless, it does contain contains as subcomplexes both

• the independent set complex I(f), as the simplices in (5) with ` = 0, and

• the cone Cone(Berg(f)) = ∆(F \ {E}) over the Bergman complex Berg(f) with cone vertex xf(∅), as
the simplices in (5) with I = ∅.

In spite of all of our caveats about bad behavior of Berg(f) and I(f), we claim that Theorem 4.1 about
the topology of AugBerg(f) has a simple generalization. To state it, we introduce two further definitions.

Definition. For any closure f on E, define the set B of bases

B := {B ∈ I(f) : f(B) = E}.

Also define the automorphism group Aut(f) to be the subgroup of permutations g in the symmetric group
SE that commute with the closure f , meaning f(g(A)) = g(f(A)) for all A ⊆ E.

Theorem 5.3. Let f be a closure operator on a finite set E, and let ∆ = AugBerg(f).
Then ∆ is homotopy equivalent to a wedge of spheres

∨
bases B∈B S#B−1.

Furthermore, the group G = Aut(f) acting on any homology group H̃i(∆,Z) is isomorphic to the signed
permutation representation of G on the Z-span inside C̃i(∆,Z) of the oriented simplices

{[B] : bases B ∈ B with #B − 1 = i}.

Proof. In light of Lemma 4.2, it suffices to show that ∆ = Berg(f) has the subcomplex ∆′ := ∆ \ B
contractible. Our strategy introduces another simplicial complex ∆′′, and shows it has these two properties:

(a) ∆′′ is a subdivision of ∆′, and hence homeomorphic to it.

(b) ∆′′ is homotopy equivalent to the subcomplex Cone(Berg(f)) = ∆(F \ {E}) inside AugBerg(f).

Since cones are contractible, this would suffice to show that ∆′′ (and hence also ∆′) is contractible.
We define ∆′′ as the simplicial complex on vertex set

{yI : I ∈ I(f) \ B} ∪ {xF : F ∈ F \ {E}}

whose simplices are the subsets

{yI1 , yI2 , · · · , yIk} ∪ {xF1
, xF2

, . . . , xF`} (6)

for which I1 ( I2 ( · · · ( Ik ⊆ F1 ( F2 ( · · · ( F`(( E).
One can check assertion (a) as follows. The typical simplex of ∆′ from (5) is subdivided in ∆′′ by all of

the simplicies from (6) which have the property that Ik ⊆ I ⊆ F1.

One can check assertion (b) as follows. Define a simplicial map ∆′′
π−→ ∆(F \ {E}) via the following

map on vertices:
xF 7−→ xF for F ∈ F \ {E}
yI 7−→ xf(I) for I ∈ I(f) \ B
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It is not hard to check that this induces a well-defined simplicial map, that is, it carries simplices to simplices.
One can also check that, for every element F in the poset F \ {E} the inverse image of the order complex
of the principal order ideal F≤F is the star of the vertex xF within ∆′′, and hence contractible. Thus by
Quillen’s Fiber Lemma [1, (10.5)(i)], the map π induces a homotopy equivalence.

Remark. Note that Cone(Berg(M)) = ∆(F \ {E}) can be identified with the subcomplex of ∆′′ induced on
the vertex subset {xF : F ∈ F\{E}}. Since these vertices are all pointwise fixed by π, the same is true for this
subcomplex, so that the map π is actually a homotopy inverse to the inclusion map Cone(Berg(M)) ↪→ ∆′′,
showing that π is a deformation retraction.

It should also be noted that since the cone vertex xf(∅) of Cone(Berg(M)) is fixed by π, the map π
actually restricts to a deformation retraction

∆′′ \ {xf(∅)}
π−→ Berg(f). (7)

Example. We illustrate some of the preceding proof for the closure operator f : 2E → 2E with E = [5] =
{1, 2, 3, 4, 5} in Example 5. Part (d) of the figure depicts the subcomplex ∆′ − {x∅} = AugBerg(f) \ B \
{x∅} obtained from ∆′ by deleting the vertex x∅. Lastly, part (e) dentotes the homeomorphic subdivided
complex ∆′′ \ {x∅}, along with a depiction via arrows along certain edges, of the simplicial retraction map

∆′′ \ {x∅}
π−→ Berg(f) from (7).
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