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Abstract. An action on order ideals of posets first analyzed in full generality by Fon-Der-
Flaass is considered in the case of posets arising from minuscule representations of complex
simple Lie algebras. For these minuscule posets, it is shown that the Fon-Der-Flaass action,
together with the generating function that counts order ideals by their cardinality, exhibits
the cyclic sieving phenomenon as defined by Reiner, Stanton, and White. The proof is
uniform, and it is accomplished by investigation of a bijection due to Stembridge between
order ideals of minuscule posets and fully commutative Weyl group elements arranged in
Bruhat lattices, which allows for an equivariance between the Fon-Der-Flaass action and an
arbitrary Coxeter element to be demonstrated.

If P is a minuscule poset, it is shown that the Fon-Der-Flaass action on order ideals of
the Cartesian product P × [2] also exhibits the cyclic sieving phenomenon, only the proof is
by appeal to the classification of minuscule posets and is not uniform.

1. Introduction

The Fon-Der-Flaass action on order ideals of a poset has been the subject of extensive
study since it was introduced in its original form on hypergraphs by Duchet in 1974 [6].
The results that have been obtained to date, however, have yet to be assembled into a form
sufficiently coherent to give an indication of the a priori nature of the operation. In this
article, we attempt to clarify the picture by identifying a disparate collection of posets – called
the minuscule posets – characterized by properties from representation theory for which the
experience of the Fon-Der-Flaass action is somewhat uniform. We illustrate the commonality
vis-a-vis the cyclic sieving phenomenon of Reiner-Stanton-White, which provides a unifying
framework for organizing combinatorial data on orbits derived from cyclic actions.

If P is a poset, and J(P ) is the set of order ideals of P , partially ordered by inclusion,
the Fon-Der-Flaass action Ψ maps an order ideal I ∈ J(P ) to the order ideal Ψ(I) whose
maximal elements are the minimal elements of P \ I. It should be clear that Ψ is invertible
and thus generates a cyclic group 〈Ψ〉 acting on J(P ) for which the orbit structure is not
immediately apparent.

In [9], Reiner, Stanton, and White observed many situations in which the orbit structure
of the action of a cyclic group 〈c〉 on a finite set X may be predicted rather consistently by a
polynomial X(q) ∈ Z[q]. Following their lead, we say that the triple (X,X(q), 〈c〉) exhibits
the cyclic sieving phenomenon if, for any integer d, the number of elements x in X fixed by
cd is obtained by evaluating X(q) at q = ζd, where n is the order of c on X and ζ is any
primitive nth root of unity. In other words, the cyclic sieving phenomenon encapsulates an
action’s relevant enumerative attributes by expressing the number of orbits of each size as a
particular specialization of an associated generating function. In the case when X = J(P )
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and c is the Fon-Der-Flaass action, the natural generating function to consider is the rank-
generating function for J(P ), which we denote by J(P ; q), where the rank of an order ideal
I ∈ J(P ) is given by the cardinality |I| (so that J(P ; q) :=

∑
I∈J(P ) q

|I|).
The minuscule posets are a class of posets arising in the representation theory of Lie

algebras that enjoy some astonishing combinatorial properties, chief among them being that,
if P is minuscule, the rank-generating function J(P × [m]; q) takes on a certain “nice” form
for all positive integers m. (Here [m] denotes the chain with m elements, and P×[m] denotes
the Cartesian product.)

Let g be a complex simple Lie algebra with Weyl group W and weight lattice Λ. There
is a natural partial order on Λ called the root order in which one weight µ is considered to
be smaller than another weight ω if the difference ω − µ is a sum of positive roots. If λ ∈ Λ
is dominant and the only weights occuring in the irreducible highest weight representation
V λ are the weights in the W -orbit Wλ, then λ is called minuscule, and the restriction of
the root order to the set of weights Wλ (which is called the weight poset) has two alternate
descriptions:

• Let WJ be the maximal parabolic subgroup of W stabilizing λ, and let W J be the
set of minimum-length coset representatives for the parabolic quotient W/WJ . Then
there is a natural bijection

W J −→ Wλ
w 7−→ w0wλ.

(where w0 denotes the longest element of W ), and this map turns out to be an
isomorphism of posets between the strong Bruhat order on W restricted to W J and
the root order on Wλ.
• Let P be the poset of join irreducible elements of the root order on Wλ. Then P is

called the minuscule poset for λ; P is ranked, and there is an isomorphism of posets
between the weight poset and J(P ).

If P is minuscule, it is a result of Proctor’s ([8], Theorem 6) that P enjoys what Stanley
calls the Gaussian property (cf. [12], Exercise 25): for all positive integers m,

J(P × [m]; q) =
∏
p∈P

1− qm+r(p)+1

1− qr(p)+1
,

where r(p) denotes the rank of the element p in P . This may be verified case-by-case, but
in fact it follows uniformly from the standard monomial theory of Lakshmibai, Musili, and
Seshadri, as is shown in [8].

Thus, for all positive integers m, we are led to consider the triple (X,X(q), 〈Ψ〉), where
X = J(P × [m]), X(q) = J(P × [m]; q), and P is any minuscule poset. We are at last poised
to state the first two of our main results, answering a question of Reiner’s.

Theorem 1.1. Let P be a minuscule poset. If m = 1, (X,X(q), 〈Ψ〉) exhibits the cyclic
sieving phenomenon.

Theorem 1.2. Let P be a minuscule poset. If m = 2, (X,X(q), 〈Ψ〉) exhibits the cyclic
sieving phenomenon.
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Interestingly enough, the analogous claim to Theorems 1.1 and 1.2 is false for m = 3;
computations performed by Kevin Dilks 1 reveal that when m = 3 and P is the minuscule
poset P = [3]× [3], the triple (X,X(q), 〈Ψ〉) does not exhibit the cyclic sieving phenomenon.
However, if P arises from a Lie algebra with root system of type D and no other Lie algebras
(i.e., if P belongs to the third infinite family of minuscule posets; see the classification at
the end of the introduction), the same triple exhibits the cyclic sieving phenomenon for
all positive integers m, which we prove in section 10, and, in section 12, we include some
speculation about the cases in which we suspect the cyclic sieving phenomenon to hold in
general. The rest of this introduction is devoted to a discussion of Theorems 1.1 and 1.2 and
a brief overview of our approach to their proofs.

It should be noted that several special cases of Theorem 1.1 already exist in the literature.
When P arises from a Lie algebra with root system of type A, for instance, Theorem 1.1
reduces to a result of Stanley’s in [13] coupled with Theorem 1.1(b) in [9], and it is recorded
as Theorem 8.1 in [16]. The case when the root system is of type B turns out to be handled
almost identically, and it is recorded as Corollary 8.4 in [16]. That being said, our theorem
is a vast generalization of these results, and the novelty lies not so much in the statement of
the theorem per se as in the method of proof, which relates Theorem 1.1 to a known cyclic
sieving phenomenon for finite Coxeter groups, namely, Theorem 1.6 in [9], thus shedding
more light onto the underlying structure of the orbits of order ideals of the previously studied
minuscule posets and, for the first time, exposing the Fon-Der-Flaass action itself to new
algebraic avenues of appraisal for which the prospects have only begun to be investigated.

If P is a finite poset, it is shown by Cameron and Fon-Der-Flaass in [5] that the Fon-
Der-Flaass action Ψ may be expressed as a product of the involutive generators {tp}p∈P for
a larger group acting on the poset of order ideals J(P ). In [5], this group was denoted by
G(P ) and left unnamed, but it is called the toggle group in [16] because for all p ∈ P and
I ∈ J(P ), tp(I) is obtained by toggling I at p, so that tp(I) is either the symmetric difference
I∆{p}, if this forms an order ideal, or just I, otherwise.

On the other hand, results of Stembridge’s in [15] provide a natural labelling of the ele-
ments of a minuscule poset P by the Coxeter generators S = {s1, s2, . . . , sn} for the Weyl
group W acting on the Bruhat lattice W J . In particular, if P is a minuscule poset, there
exists a labelling of P such that the linear extensions of the labelled poset (which is called
a minuscule heap) index the reduced words for the fully commutative element of W repre-
senting the topmost coset w0WJ . This labelling of the minuscule poset P is the one featured
in Figure 2 (as well as in Figures 9, 10, 11, 14, 15 of the Appendix) and explained more
thoroughly in Section 5, and it has the following important properties.

First, it realizes the poset isomorphism J(P ) ∼= W J explicitly. Given an order ideal
I ∈ J(P ) and a linear extension (x1, x2, . . . , xt) of the partial order restricted to the elements
of I, if the corresponding sequence of labels is (i1, i2, . . . , it), define φ(I) to be sit · · · si2si1 ,
considered as an element of W J . Then the map φ : J(P ) → W J is an order-preserving
bijection.

Second, it indicates a correspondence between Coxeter elements in W and sequences of
toggles in G(P ). To wit, the choice of a linear ordering on the Coxeter generators S =
(si1 , . . . , sin) yields a choice of

1Computed using code in the computer algebra package Maple. The authors also thank Dilks for allowing
them the use of his code for subsequent computations.
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• an element t(i1,...,in) in the toggle group that executes the following sequence of toggles:
first toggle at all elements of P labelled by sin , in any order; then toggle at all elements
of P labelled by sin−1 , in any order;...; then toggle at all elements of P labelled by
si2 , and, finally, toggle at all elements of P labelled by si1 , and
• a Coxeter element c = si1si2 · · · sin in the Weyl group, which acts on cosets W/WJ

by left translation, i.e., c(wWJ) = cwWJ , and hence also acts on W J .

The (original) theorems that reduce Theorem 1.1 to the aforementioned result of Reiner-
Stanton-White are as follows.

Theorem 1.3. For any minuscule poset P and any ordering of S = (si1 , . . . , sin), the actions
Ψ and t(i1,...,in) are conjugate in G(P ).

Theorem 1.4. For any minuscule poset P and any ordering of S = (si1 , . . . , sin), if φ :
J(P )→ W J is the isomorphism described above, then the following diagram is commutative.

J(P )
φ−→ W J

t(i1,...,in) ↓ c ↓
J(P )

φ−→ W J .

To see that these theorems suffice to demonstrate Theorem 1.1, we quote Theorem 1.6
from [9] and append the appropriate observations.

Theorem 1.5. Let W be a finite Coxeter group; let S be the set of Coxeter generators, and
let J be a subset of S. Let W J be the set of minimum-length coset representatives, and let
W J(q) =

∑
w∈WJ ql(w), where l(w) denotes the length of w. If c ∈ W is a regular element in

the sense of Springer’s [11], then (W J ,W J(q), 〈c〉) exhibits the cyclic sieving phenomenon.

Remark 1.6. If W J is a distributive lattice, then the length function l doubles as a rank
function, so W J(q) is the rank-generating function.

Remark 1.7. If c is a Coxeter element of W , then c ∈ W is regular (cf. [11]).

The proofs of Theorem 1.3 and Theorem 1.4 are undertaken in section 6; sections 2, 3, 4,
and 5 are all preliminary. Because offering a uniform proof of Theorem 1.4 requires a bit of
a digression into the theory of fully commutative elements of Coxeter groups (for which the
relevant background in elucidated in section 5) and because our rather more specific work
delineating the desired equivariance for each individual minuscule family (which predates
our uniform proof) is of some significance in its own right (especially for the minuscule
posets associated to the classical root systems), we state the case-by-case bijections in the
appendix, which also contains a complete description of every minuscule representation of
a complex simple Lie algebra and the associated minuscule posets, and we suggest that the
reader consult this “atlas” if she desires some concrete examples before delving too deeply
into the more obscure aspects of the paper that may be of less immediate interest to someone
working outside the field.

Unfortunately, we did not manage to adapt these techniques for the proof of Theorem 1.2,
so here we opt for a somewhat less theoretical approach. We turn to work by Cameron
and Fon-Der-Flaass, who devised a mechanism for encoding height 2 plane partitions (which
may be thought of equivalently as order ideals of P × [2] for minuscule posets P arising from
Lie algebras with root systems of type A) as sequences of dots and parentheses, which we
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refer to as bracket sequences. By performing elementary manipulations on these sequences,
with the aid of generating functions, we are able to directly enumerate the number of orbits
of each size under the Fon-Der-Flaass action and verify that the results we obtain are in
concurrence with those predicted by assuming the cyclic sieving phenomenon holds. This is
the focus of section 8 (section 7 is preliminary). In section 9, we apply the same techniques to
demonstrate that the desired cyclic sieving phenomenon holds for symmetric height 2 plane
partitions, which may be thought of equivalently as order ideals of P × [2] for minuscule
posets P arising from Lie algebras with root systems of type B. Finally, in section 10, we
present a proof that if P is a minuscule poset belonging to remaining infinite family, the
order ideals of P × [m] obey the cyclic sieving phenomenon with respect to the Fon-Der-
Flaass action for all positive integers m. Bracket sequences are applied as well, but, because
m may be any positive integer, the bijection between bracket sequences and order ideals is
more difficult to obtain. The claim of Theorem 1.2 for the two exceptional cases is checked
by computer, using the software developed by Dilks, in section 11. While the proofs of these
results which we assemble into Theorem 1.2 are purely combinatorial, it is our hope that
representation-theoretic (or Bruhat-theoretic) simplifications are possible, and our outlook
for future work on this problem is touched on in the concluding section (section 12).

We close the introduction with a description of the three infinite families and two excep-
tional cases of minuscule posets and the root systems associated to the Lie algebras from
which they arise. As discussed, more detail is provided in the appendix. The following facts
are well-known and may be found in, for instance, [3].

• For the root systems of the form An−1, there are n − 1 possible minuscule weights,
which lead to n− 1 associated minuscule posets, namely all those posets of the form
[j]× [n− j] such that 1 ≤ j < n. Posets of this form are considered to comprise the
first infinite family. An example is depicted in Figure 9, part (a).
• For the root systems of the form Bn, there is 1 possible minuscule weight, which leads

to 1 associated minuscule poset, namely [n]×[n]/S2. Posets of this form are considered
to comprise the second infinite family. An example is depicted in Figure 10, part (a).
• For the root systems of the form Cn, there is 1 possible minuscule weight, which leads

to 1 associated minuscule poset, namely [2n−1]. It should be clear that posets of this
form already belong to the first infinite family. An example is depicted in Figure 11,
part (a).
• For the root systems of the form Dn, there are 3 possible minuscule weights, which

lead to 2 associated minuscule posets, namely [n− 1]× [n− 1]/S2 and Jn−3([2]× [2]),
because two of the minuscule weights both lead to the same minuscule poset. Posets
of the latter form are considered to comprise the third infinite family (it should be
clear that posets of the former form already belong to the second infinite family).
• For the root system E6, there are 2 possible minuscule weights, which lead to 1

associated minuscule poset, namely J2([2] × [3]), because both minuscule weights
lead to the same minuscule poset. This poset is considered to be the first exceptional
case. It is depicted in Figure 14, part (b).
• For the root system E7, there is 1 possible minuscule weight, which leads to 1 associ-

ated minuscule poset, namely J3([2]× [3]). This poset is considered to be the second
exceptional case. It is depicted in Figure 15, part (b).

No other root systems admit minuscule weights.
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2. The Fon-Der-Flaass Action

In this section, we introduce and analyze the Fon-Der-Flaass action. While we call it
the Fon-Der-Flaass action because Fon-Der-Flaass devised it independently and was the
first to make great strides in the development of the theory, it should be noted that the
action actually appeared years earlier in Brouwer-Schrijver [4], so the credit for the invention
should in fairness be considered theirs. Let P = (X,<) be a partially ordered set, and let
J(P ) be the set of order ideals of P , partially ordered by inclusion. Following the notation
of [5], for all order ideals I ∈ J(P ), let Z(I) = {x ∈ I : y > x =⇒ y /∈ I}, and let
U(I) = {x /∈ I : y < x =⇒ y ∈ I}. Then the Fon-Der-Flaass action, which we denote by Ψ,
is formally defined as follows.

Definition 2.1. For all I ∈ J(P ), Ψ(I) is the unique order ideal satisfying Z(Ψ(I)) = U(I).

Remark 2.2. From Definition 2.1, it should be clear that Ψ permutes the order ideals of P .

Figure 1. Fon-Der-Flaass Operation

Our understanding of the Fon-Der-Flaass action hinges upon our ability to decompose
it into its constituent components. Recall from the introduction that for all p ∈ P and
I ∈ J(P ), we let tp : J(P ) → J(P ) be the map defined by tp(I) = I \ {p} if p ∈ Z(I),
tp(I) = I ∪ {p} if p ∈ U(I), and tp(I) = I otherwise. The following theorem is equivalent to
Lemma 1 in [5].

Theorem 2.3. Let P be a poset. For all linear extensions (p1, p2, . . . , pn) of P and order
ideals I ∈ J(P ), Ψ(I) = tp1tp2 · · · tpn(I).

The group G(P ) := 〈tp〉p∈P is dubbed the toggle group by Striker and Williams [16], and
it will be referred to as such in this work, as well. Note that for all x and y, the generators
tx and ty commute unless x and y share a covering relation.

In the case that the poset P is ranked, there is a natural type of linear extension to consider
in Theorem 2.3, namely the extensions that label the elements of P in order of increasing
rank, which leads to further simplifications. For the purposes of this paper, we shall say
that P is ranked if there is an integer-valued function r on X (called the rank function)
such that r(p) = 0 for all minimal elements p ∈ X and, for all x, y ∈ X, if x covers y, then
r(x) − r(y) = 1. This condition is somewhat stronger than the standard, but it turns out
that the posets we consider are all ranked in our sense of the word, so there is little to be
lost by circumscribing full generality from the definition.

If P is a ranked poset, let the maximum value of r be R. For all 0 ≤ i ≤ R, let
Pi = {p ∈ P : r(p) = i}, and let ti =

∏
p∈Pi tp. We see that ti is always well-defined because,

for all i, tx and ty commute for all x, y ∈ Pi. By Theorem 2.3, Ψ = t0t1 · · · tR. Note that
ti and tj commute for all |i − j| > 1. We are now in a position to introduce the following
theorem, also found in [5].
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Theorem 2.4. For all permutations σ of {0, 1, . . . , R}, Ψσ := tσ(0)tσ(1) · · · tσ(R) is conjugate
to Ψ in G(P ).

Corollary 2.5. The action Ψσ has the same orbit structure as Ψ for all σ.

Let teven =
∏

i even ti, and let todd =
∏

i odd ti. It should be clear that teven and todd are well-
defined, and it follows from Theorem 2.4 that teventodd is conjugate to Ψ in G(P ). In words,
this means that the action of toggling all the elements of odd rank, followed by toggling all
the elements of even rank, is conjugate to the Fon-Der-Flaass action in the toggle group. As
we shall see, this holds the key to demonstrating that the induced action of every Coxeter
element of W on J(P ) under φ is conjugate to the Fon-Der-Flaass action as well. The expert
reader may wish to skip directly to the proof of Theorem 1.3 in section 6 to witness this for
herself.

3. Minuscule Posets

In this section, we introduce the primary objects of study for this paper – the minuscule
posets. We begin with the requisite notation, following [14]. Let g be a complex simple
Lie algebra; let h be a Cartan subalgebra; choose a set Φ+ of positive roots α in h∗, and
let ∆ = {α1, α2, . . . , αn} be the set of simple roots. Let (·, ·) be the inner product on
h∗, and, for each root α, let α∨ = 2α/(α, α) be the corresponding coroot. Finally, let
Λ = {λ ∈ h∗ : α ∈ Φ→ (λ, α∨) ∈ Z} be the weight lattice.

For all 1 ≤ i ≤ n, let si be the simple reflection corresponding to the simple root αi, and
let W = 〈si〉1≤i≤n be the Weyl group of g. If s is conjugate to a simple reflection si in W ,
we refer to s as an (abstract) reflection.

Let V be a finite-dimensional representation of g. For each λ ∈ Λ, let

Vλ = {v ∈ V : h ∈ h =⇒ hv = λ(h)v}
be the weight space corresponding to λ, and let ΛV be the (finite) set of weights λ such that
Vλ is nonzero. Recall that there is a standard partial order on Λ called the root order defined
to be the transitive closure of the relations µ < ω for all weights µ and ω such that ω − µ is
a simple root.

Definition 3.1. The weight poset QV of the representation V is the restriction of the root
order on Λ to ΛV .

If V is irreducible, it is known that QV has a unique maximal element, which is called the
highest weight of V . This leads to the following definition.

Definition 3.2. Let V be a nontrivial, irreducible, finite-dimensional representation of g. V
is a minuscule representation if the action of W on ΛV is transitive. In this case, the highest
weight of V is called the minuscule weight.

Theorem 3.3. If V is minuscule, the weight poset QV is a distributive lattice.

Remark 3.4. This result, due to Proctor (cf. [8], Propositions 3.2 and 4.1), was originally
verified by exhaustive search, but, actually, it is a consequence of Theorem 5.8, for which a
case-free proof was given using Bruhat-theoretic techniques by Stembridge in [15]. For now,
however, we ask that the reader accept this result on faith.
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Definition 3.5. If V is minuscule, let PV be the poset of join irreducible elements of the
weight poset QV , so that PV is the unique poset satisfying J(PV ) ∼= QV . Then PV is the
minuscule poset of V , and an arbitrary poset P is minuscule if and only if there exists a
minuscule representation V for which PV = P .

Remark 3.6. If V is a minuscule representation and λ is the highest weight of V , we refer
to PV as the minuscule poset for λ. A moment’s thought reveals that this terminology
is legitimate because, for all minuscule weights λ, the minuscule poset for λ is necessarily
unique.

4. Bruhat Posets

In this section, we develop the framework through which we will obtain Theorems 1.3 and
1.4. We begin by discussing the Bruhat posets; then we illuminate the connection between
these objects and the weight posets of minuscule representations, which we have already
defined.

We continue with the notation of the previous section. Given a Weyl group W , we define
a length function l on the elements of W as follows. For all w ∈ W , we let l(w) be the
minimum length of a word of the form si1si2 . . . si` such that w = si1si2 . . . si` and sij is a
simple reflection for all 1 ≤ j ≤ `. This allows us to introduce a well-known partial order
on W , known as the (strong) Bruhat order, for which l doubles as the rank function. The
(strong) Bruhat order is defined to be the transitive closure of the relations w <B sw for all
Weyl group elements w and (abstract) reflections s satisfying l(w) < l(sw).

It turns out that what is of interest is not the Bruhat order on W per se, but rather the
restrictions of the Bruhat order to parabolic quotients of W , for it is these orders that give
rise to the Bruhat posets.

Definition 4.1. If J is a subset of {1, 2, . . . , n}, then WJ := 〈si〉i∈J is the parabolic subgroup
of W generated by the corresponding simple reflections, and W J := W/WJ is the parabolic
quotient.

It is well-known that each coset in W J has a unique representative of minimum length,
so the quotient W J may be thought of equivalently as the subset of W comprising all the
minimum-length coset representatives. This fact facilitates the definition of an analogous
partial order on W J .

Definition 4.2. The Bruhat order <B on the parabolic quotient W J is the restriction of
the Bruhat order on W to W J . Posets of the form (W J , <B) comprise the Bruhat posets.

We may also define the left Bruhat order on W to be the transitive closure of the relations
w <L sw for all Weyl group elements w and simple reflections s satisfying l(w) < l(sw).
The analogous partial order on W J is defined in precisely the same way: (W J , <L) is the
restriction of (W,<L) to the minimum-length coset representatives W J . While the left
Bruhat order is not, strictly speaking, necessary to illuminate the connection between the
minuscule posets and the Bruhat posets, we introduce it here so that our work in this section
may be compatible with the theory of fully commutative elements developed in section 5
and exploited in section 6.

We are now poised to state the following theorem, which appears as Proposition 4.1 in [8].
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Theorem 4.3. Let V be a minuscule representation with minuscule weight λ, and let J =
{i : siλ = λ}. Then WJ is the stabilizer of λ in the Weyl group W , and the weight poset QV

is isomorphic to the Bruhat poset (W J , <B).

Remark 4.4. There is a small subtlety in the proof Theorem 4.3 because the natural map
ϕ : W J → QV to consider, w 7→ wλ, is order-reversing, rather than order-preserving. (In
other words, for all u, v ∈ W J , uλ < vλ if and only if v <B u.) However, composing ϕ
with the order-reversing involution of QV given by ω 7→ w0ω, where w0 is the unique longest
element of W , yields a suitable isomorphism (as noted in the introduction). Alternatively,
ϕ may be composed with the corresponding order-reversing involution of W J given by w 7→
w0w(w′)−1w0, where w′ denotes the unique longest element of W J . We omit the proofs
of these claims, but the first involution, at least, may be found in the literature (cf., for
instance, [14]), and anyway they are not altogether difficult. It should be noted, though,
that, in Proctor’s proof of Theorem 4.3, he circumvents this step by defining the partial order
on the weights opposite to the root order. We avoid his approach here because it leads to
unnecessary confusion over terms such as “highest weight,” etc. (Why is the highest weight
of the minuscule representation now the lowest weight?) The reader is encouraged to refer
to [8] herself for more details.

Definition 4.5. The parabolic quotientW J is minuscule ifWJ is the stabilizer of a minuscule
weight λ.

It is important to point out that the assumption that g be simple implies that λ is fun-
damental (recall that the fundamental weights ω1, ω2, . . . , ωn are defined by the condition
(ωi, α

∨
j ) = δij for all 1 ≤ i, j ≤ n, where δij is the Kronecker delta). Hence if λ = ωj, siλ = λ

for all i 6= j. It follows that if W J is minuscule, J = {1, 2, . . . , n} \ {j}, so WJ is a maximal
parabolic subgroup of W , and, in general, a minuscule Bruhat poset is obtained precisely
when the “missing” element of J is the index of a fundamental weight for which there exists
a representation of g in which that fundamental weight is minuscule.

We note that Bruhat posets W J provide a natural setting for identifying instances of the
cyclic sieving phenomenon because they come equipped with a group action, namely that of
W , and a rank-generating function W J(q) :=

∑
w∈WJ ql(w), which is what motivated us to

consider them in the first place. We now turn our attention to the labelling of the minuscule
poset PV and the construction of the isomorphism φ : J(PV ) → W J , which lie behind the
proofs of Theorems 1.3 and 1.4.

5. Fully Commutative Elements

We pause in this section to develop Stembridge’s theory of fully commutative elements
of Coxeter groups. At the end of this section, we quote a theorem of Stembridge’s that
the minuscule parabolic quotients are indeed distributive lattices, which was proven through
this theory without reference to casework, and, in the next section, we shall see how this
theory enables us to characterize the relationship between the action of the Weyl group on
the elements of these lattices and the action of the toggle group on the order ideals of the
corresponding minuscule posets.

Definition 5.1. Let W be a Weyl group, and let S = {s1, s2, . . . , sn} be the set of Coxeter
generators. An element w ∈ W is fully commutative if every reduced word for w can be
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obtained from every other by means of commuting braid relations only (i.e., via relations of
the form sjsj′ = sj′sj for commuting Coxeter generators sj and sj′).

Given a fully commutative element w, we can define a labelled poset Pw that generates
all the reduced words of w in the sense that the linear extensions of Pw, with labels in place
of poset elements, are in bijection with the reduced words of w.

Definition 5.2. Let si1si2 · · · si` be a reduced word for w. Let Pw = ({1, 2, . . . , `}, <) be a
partially ordered set, where the partial order on {1, 2, . . . , `} is defined to be the transitive
closure of the relations j > j′ for all j < j′ in integers such that sij and sij′ do not commute.
Then Pw is the heap of w, and, for all 1 ≤ j ≤ `, sij is the label of the heap element j ∈ Pw.

s1

s2

s2

s3

s3

s4

Figure 2. If W is the Weyl group arising from the root system A4, then
the element w := s3s2s4s1s3s2 is fully commutative, and the heap Pw is as
displayed above.

Let L(Pw) := {π : π(1) ≥ π(2) ≥ . . . ≥ π(`)} be the set of reverse linear extensions of Pw,
and let L(Pw, w) be the set of labelled reverse linear extensions of Pw, i.e.,

L(Pw, w) := {siπ(1)siπ(2) · · · siπ(`) : π ∈ L(Pw)}.
As alluded to above, the set L(Pw, w) is significant for the following reason.

Proposition 5.3. L(Pw, w) is the set of reduced words for w in W .

Proof. See Proposition 2.2 in [15]. �

Remark 5.4. Upon consulting Stembridge’s paper, the reader may find the differences
between our definitions and Stembridge’s to be somewhat perplexing; for one thing, we
define the partial order on Pw to be the reverse of Stembridge’s order and consider reverse
linear extensions rather than linear extensions, and, for another, Stembridge defines heaps for
all words in W , whereas our definition is only correct for reduced words of fully commutative
elements w. The implications for the theory are rather cosmetic, however, and we prefer our
approach because it helps simplify some of the proofs.

It follows from Proposition 5.3 that, if w is fully commutative, the heaps of the reduced
words for w are all equivalent, so we may refer to the heap of w unambiguously. This is also
noted in [15]. The crucial claim is the next theorem.

Theorem 5.5. Let w ∈ W be fully commutative. Then J(Pw) ∼= {x ∈ W : x ≤L w} is an
isomorphism of posets.

Proof. A proof is found in [15] (see Lemma 3.1), but because our definitions are different
from Stembridge’s, and because the map between the two posets will be of importance in

10



its own right for our proof of Theorem 1.4, we provide our own adaptation of Stembridge’s
proof.

For all 1 ≤ k ≤ n, let Ck := {j : sij = sk} be the set of all heap elements labelled by sk.
We first note that each Ck is a totally ordered subset of Pw. The proof is by contradiction.
Suppose that there exist incomparable elements j, j′ ∈ Pw such that sij = sij′ = sk. Then

there exists a reverse linear extension of Pw in which j and j′ occur consecutively, which
implies that the corresponding reduced word of w contains two consecutive instances of sk.
This is of course impossible. Thus, we may write Ck in the form {k1 < k2 < . . . < kν(k,w)},
where ν(k, w) denotes the number of instances of sk in a reduced word for w, and ν is
well-defined because w is fully commutative.

We are now ready to define the bijection between J(Pw) and {x ∈ W : x ≤L w}. Given an
order ideal I ∈ J(Pw), let ρ be a linear extension of Pw such that ρ(j) ∈ I for all 1 ≤ j ≤ |I|
and ρ(j) /∈ I otherwise.

Definition 5.6.
φ : J(Pw) −→ {x ∈ W : x ≤L w}

is defined by
I 7−→ siρ(|I|) · · · siρ(2)siρ(1) .

Remark 5.7. The choice of the symbol φ to denote this map is deliberate, for when the
heap Pw is minuscule (see Definition 6.1), φ is the map described in the introduction.

It is not immediately clear that φ is well-defined. However, if ρ and ρ′ are both linear
extensions of Pw such that ρ(j), ρ′(j) ∈ I for all 1 ≤ j ≤ |I| and ρ(j), ρ′(j) /∈ I otherwise,
then let x = siρ(|I|) · · · siρ(2)siρ(1) and x′ = siρ′(|I|) · · · siρ′(2)siρ′(1) . Since

(ρ(`), . . . , ρ(|I|+ 1), ρ(|I|), . . . , ρ(2), ρ(1))

is a reverse linear extension of Pw,

siρ(`) · · · siρ(|I|+1)
siρ(|I|) · · · siρ(2)siρ(1)

is a reduced word for w, so siρ(`) · · · siρ(|I|+1)
is a reduced word for wx−1. However,

(ρ(`), . . . , ρ(|I|+ 1), ρ′(|I|), . . . , ρ′(2), ρ′(1))

is also a reverse linear extension of Pw. It follows that siρ(`) · · · siρ(|I|+1)
is a reduced word for

wx′−1, so x = x′, as desired.
To see that φ is bijective, we define the inverse map φ−1 : {x ∈ W : x ≤L w} → J(Pw) by

x 7→ ∪nk=1{kh : 1 ≤ h ≤ ν(k, x)}. Because every reduced word for x is the final segment of a
reduced word for w, it should be clear that φ−1(x) is an order ideal of Pw for all x ≤L w. It
is a trivial matter to verify that φ−1φ is the identity on J(Pw) and φφ−1 is the identity on
{x ∈ W : x ≤L w}, so this completes the proof. �

The following theorem rather persuasively demonstrates the relevance of the theory of
fully commutative elements to our main results.

Theorem 5.8. If W J is minuscule, then the following three claims hold:

(i) If w ∈ W J , w is fully commutative;
(ii) (W J , <L) is a distributive lattice;

(iii) (W J , <B) = (W J , <L).
11



This theorem is a consequence of Theorems 6.1 and 7.1 in [15], where, as we’ve said, the
proof is uniform. We will see how it enables us to apply our knowledge of fully commutative
heaps to the minuscule setting in the next section.

6. The Main Results

In this section, we prove Theorems 1.3 and 1.4. We require the following definition and
subsequent theorem.

Definition 6.1. If W J is minuscule, and wJ0 is the longest element of W J , then the heap
PwJ0 is minuscule, and heaps of this form comprise the minuscule heaps.

Remark 6.2. Some of the minuscule heaps appear in Wildberger [17], but his construction
differs from ours. In particular, he introduces a set of heaps that he calls two-neighbourly,
and he shows that these are precisely the minuscule heaps arising from complex simple Lie
algebras whose root systems are simply laced.

Theorem 6.3. Let V be a minuscule representation of a complex simple Lie algebra g with
minuscule weight λ and Weyl group W . If S = {s1, s2, . . . , sn} is the set of Coxeter generators
and WJ is the maximal parabolic subgroup stabilizing λ, then the following claims hold:

(i) If wJ0 is the longest element of W J , then the poset {x ∈ W : x ≤L wJ0 } and the lattice
(W J , <L) are identical, and, furthermore, the minuscule heap PwJ0 and the minuscule
poset PV are isomorphic as posets.

(ii) The isomorphism φ : J(PwJ0 ) → {x ∈ W : x ≤L wJ0 } ∼= (W J , <L) ∼= (W J , < B)
defined in Definition 5.6 satisfies the following property: for all 1 ≤ l ≤ n, the
induced action of the Coxeter generator sl on J(PwJ0 ) in the toggle group G(PwJ0 ) may

be expressed in the form
∏

p∈P
wJ0

is labelled by sl

tp.

Example 6.4. In the case when the root system is A4 and the minuscule weight is ω2,
Figure 3 shows the minuscule heap Ps3s2s4s1s3s2 (on the left) and the corresponding Bruhat
poset (W J , <B) (on the right). If I is the order ideal encircled by the solid line, then φ(I) is
the coset representative encircled by the solid line, and

∏
p∈Ps3s2s4s1s3s2 is labelled by s2

tp(I) is the

order ideal encircled by the dotted line. Furthermore, φ(
∏

p∈Ps3s2s4s1s3s2 is labelled by s2
tp(I)) =

s2φ(I) is the coset representative encircled by the dotted line, thus illustrating the statement
(ii) in Theorem 6.3. (See the appendix for more details about this or other specific cases.)

Proof. (i) By Proposition 2.6 in [15], wJ0 is the unique maximal element of (W J , <L). It
follows that if w ∈ W J , w ≤L wJ0 . To see that the converse also holds, let x0 be the longest
element of WJ , and note that w ∈ W J if and only if wx0 is reduced (i.e. if and only if the
product of a reduced word for w and a reduced word for x0 is necessarily a reduced word
for wx0). If w ≤L wJ0 , then there exists a reduced word for w that is the final segment
of a reduced word for wJ0 . Hence there exists a reduced word for w and a reduced word
for x0 such that their product is a reduced word for wx0, and it follows from the fact that
all reduced words for the same element are of the same length that wx0 is reduced. We
may conclude that w ∈ W J , so, in general, {x ∈ W : x ≤L wJ0 } = (W J , <L). However,
J(PwJ0 ) ∼= {x ∈ W : x ≤L wJ0 }, and (W J , <L) = (W J , <B) ∼= J(PV ) by Definition 3.5 and
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s1

s2

s2

s3

s3

s4

(a)

s2

e

s3s2

s4s3s2

s1s2

s1s3s2

s4s1s3s2s2s1s3s2

s2s4s1s3s2

s3s2s4s1s3s2

(b)

Figure 3. The map φ sends the indicated order ideals to the indicated coset
representatives.

Theorems 4.3 and 5.8, so J(PwJ0 ) ∼= J(PV ), and it follows that PwJ0
∼= PV is an isomorphism

of posets, as desired.
(ii) Because (W J , <L) = (W J , <B), it suffices to prove the claim with (W J , < L) in place of
(W J , <B). Following the notation in the proof of Theorem 5.5, for all 1 ≤ l ≤ n, let Cl be
the set of all heap elements labelled by sl, and let t′l be the toggle group element defined by
t′l =

∏
p∈Cl tp. From section 5, we know that Cl is totally ordered, and, by definition of PwJ0 ,

no two elements of Cl share a covering relation, so it follows that t′l is well-defined for all l.
Consider the following lemma:

Lemma 6.5. For all order ideals I ∈ J(PwJ0 ), t′l(I) disagrees with I on at most one vertex
of PwJ0 .

Proof. It suffices to show that if there exists one vertex on which the two disagree, then there
cannot exist any other such vertices. If there exists a vertex on which the two disagree, then
there must exist at least one vertex p0 labelled by sl such that p0 ∈ Z(I) or p0 ∈ U(I). If
p0 ∈ Z(I), consider

∏
p∈Cl tp(I), where the toggles tp are applied to I in order of increasing

p. For all the elements p such that p < p0, the toggle tp has no effect because when tp is
applied, p is in the order ideal, but so is p0, which is larger. For all the elements p such that
p > p0, the toggle tp has no effect because when tp is applied, p is not in the order ideal,
but neither is p0 (any longer), which is smaller. Similarly, if p0 ∈ U(I), consider

∏
p∈Cl tp(I),

where the toggles tp are applied to I in order of decreasing p. For all the elements p such
that p > p0, the toggle tp has no effect because when tp is applied, p is not in the order ideal,
but neither is p0, which is smaller. For all the elements p such that p < p0, the toggle tp
has no effect because when tp is applied, p is in the order ideal, but (now) so is p0, which is
larger. This completes the proof. �

It follows immediately that in applying t′l to an order ideal I, it suffices to determine
whether or not there exists a p0 labelled l in Z(I) or U(I), and, if there does, to apply tp0
only, and, if there does not, to simply return I.

Let I be an order ideal, and let w = φ(I). There are two cases.
13



(i) If no elements of PwJ0 labelled by sl belong to Z(I) or U(I), we claim that slwWJ = wWJ

(which is equivalent to saying that sl maps the coset of w in W J to itself). We divide into
two subcases:

(1) slw is not reduced. In this case, let sil(slw)
· · · si2si1 be a reduced word for slw, and

note that slsil(slw)
· · · si2si1 is a reduced word for w, else l(w) = l(slsil(slw)

· · · si2si1) <
l(sil(slw)

· · · si2si1) = l(slw) < l(w), which is absurd. Let il(w) = l, and extend this

word to a reduced word for wJ0 , si` · · · si2si1 , where ` is the length of wJ0 . Without
loss of generality, we may assume that the heap PwJ0 is built with reference to this

particular reduced word (recall that the heaps of every reduced word for wJ0 are
equivalent), in which case the vertex corresponding to sil(w)

is maximal over the

vertices in the order ideal φ−1(w) = I, which implies that there exists an element of
PwJ0 labelled by sl that belongs to Z(I). Therefore, this case does not occur.

(2) slw is reduced. In this case, slw covers w in the left Bruhat order on W , so, by
Corollary 2.5.2 in [2], it follows that slw = wsj, where j ∈ J , or slw ∈ W J . In the
former case, since sj ∈ WJ , slwWJ = wsjWJ = wWJ , as desired, and it turns out
that the latter case does not occur. To see this, assume that slw ∈ W J , and let
sil(w)

· · · s2s1 be a reduced word for w. Then slsil(w)
· · · s2s1 is a reduced word for slw.

Let il(w)+1 = l, and extend this word to a reduced word for wJ0 , si` · · · s2s1, where `
is the length of wJ0 (this may be done because slw ≤L wJ0 follows from slw ∈ W J).
Without loss of generality, we may assume that the heap PwJ0 is built with reference
to this particular reduced word, in which case the vertex corresponding to sil(w)+1

is minimal over the vertices not in the order ideal φ−1(w) = I, which implies that
there exists an element of PwJ0 labelled by sl that belongs to U(I). This contradiction
completes the proof.

(ii) If there exists an element p0 ∈ P labelled by sl such that p0 ∈ Z(I) or p0 ∈ U(I), we
claim that slw = t′l(I). Again we divide into two subcases:

(1) p0 ∈ Z(I). In this case, let si` · · · s2s1 be a reduced word for wJ0 , where ` is the length
of wJ0 , and assume that the heap PwJ0 is built with reference to this particular reduced

word. Since p0 ∈ Z(I), I \{p0} is an order ideal of PwJ0 . Let (ρ(1), ρ(2), . . . , ρ(|I|−1))

be a linear extension of I \ {p0} (i.e. a linear extension of the poset with vertices
in I \ {p0} and partial order given by the restriction of the partial order on PwJ0 to

I\{p0}). Then (ρ(1), ρ(2), . . . , ρ(|I|−1), p0) is a linear extension of I. Let ρ(|I|) = p0,
and extend this linear extension to a linear extension of PwJ0 , (ρ(1), ρ(2), . . . , ρ(`)).
By definition of φ, siρ(|I|)siρ(|I|−1)

· · · siρ(2)siρ(1) is a reduced word for w. Since p0 is
labelled by sl, sip0 = sl, so it follows that slw = siρ(|I|−1)

· · · siρ(2)siρ(1) . However,∏
p∈Cl tp(I) = I \ {p0}, and φ(I \ {p0}) = siρ(|I|−1)

· · · siρ(2)siρ(1) as well, as desired.

(2) p0 ∈ U(I). In this case, let si` · · · s2s1 be a reduced word for wJ0 , where ` is the length
of wJ0 , and assume that the heap PwJ0 is built with reference to this particular reduced

word. Since p0 ∈ U(I), I∪{p0} is an order ideal of PwJ0 . Let (ρ(1), ρ(2), . . . , ρ(|I|)) be

a linear extension of I; then (ρ(1), ρ(2), . . . , ρ(|I|), p0) is a linear extension of I∪{p0}.
Let ρ(|I| + 1) = p0, and extend this linear extension to a linear extension of PwJ0 ,

(ρ(1), ρ(2), . . . , ρ(`)). By definition of φ, siρ(|I|) · · · siρ(2)siρ(1) is a reduced word for w.
Since p0 is labelled by sl, sip0 = sl, so it follows that slw = siρ(|I|+1)

siρ(|I|) · · · siρ(2)siρ(1) .
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However,
∏

p∈Cl tp(I) = I ∪ {p0}, and φ(I ∪ {p0}) = siρ(|I|+1)
· · · siρ(2)siρ(1) as well, as

desired.

�

We proceed to the proofs of Theorems 1.3 and 1.4.

6.1. Proof of Theorem 1.4. Let PV be a minuscule poset, and understand the label of
each element of PV to be the label of the corresponding element of PwJ0 . From Theorem 6.3,
it follows that, for all 1 ≤ l ≤ n, the diagram below is commutative:

J(PV )
φ−→ W J

t′l ↓ sl ↓
J(PV )

φ−→ W J .

For any ordering of S = (si1 , si2 , . . . , sin), c = si1si2 · · · sin and t(i1,i2,...,in) = t′i1t
′
i2
· · · t′in , so

Theorem 1.4 follows immediately.

6.2. Proof of Theorem 1.3. Let PV be a minuscule poset, and understand the labels of
each element of PV to be the label of the corresponding element of PwJ0 . Theorem 6.3 embeds

the Weyl group W as a subgroup of the toggle group G(PV ), so, in light of Theorem 1.4,
since the Coxeter elements are known to be pairwise conjugate in W , it suffices to exhibit a
particular ordering S = (si1 , si2 , . . . , sin) such that t(i1,i2,...,in) = t′i1t

′
i2
· · · t′in is conjugate to Ψ

in G(PV ). However, in section 2, we saw that teventodd is conjugate to Ψ in G(PV ). What
we prove here is that there exists an ordering (si1 , si2 , . . . , sin) such that the toggle group
elements t′i1t

′
i2
· · · t′in and teventodd are equal.

We start with two lemmas:

Lemma 6.6. If P is a minuscule poset, then P is a ranked poset.

Proof. As discussed in the introduction, minuscule posets are Gaussian. The fact that all
Gaussian posets are ranked is recorded as Exercise 25(b) in [12]. �

Lemma 6.7. If W is the Weyl group of a complex simple Lie algebra g, then the Dynkin
diagram of the associated root system is acyclic and therefore bipartite.

Proof. Assume for the sake of contradiction there the Dynkin diagram contains a cycle
(i1, i2, . . . , ik), where k ≥ 3, so that sij does not commute with sij+1

for all 1 ≤ i ≤ k−1, and
sik does not commute with si1 . Consider the infinite word · · · sk · · · s2s1 · · · sk · · · s2s1sk · · · s2s1.
Since every final segment of this word is reduced, it follows that W is infinite, but this is not
possible. �

Let r be the rank function for PV . For all 1 ≤ l ≤ n, we claim that the ranks of all the
vertices labelled by sl are of the same parity.

For the proof, the key observation is that each covering relation in the heap PwJ0 corre-

sponds to an edge of the Dynkin diagram of the associated root system. (Recall that the
partial order on PwJ0 is the transitive closure of the relations j > j′ for all j < j′ in integers

such that sij and si′j do not commute; cf. Definition 5.2.) Assume for the sake of contradic-

tion that there exists an l such that j, j′ ∈ PwJ0 are both labelled l but r(j′) − r(j) is odd.

Without loss of generality, let r(j′) > r(j). Since Cl is totally ordered, it follows that j′ > j,
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and there exists a set of vertices {j1, j2, . . . , j2u} such that j′ covers j1, j2u covers j, and ji
covers ji+1 for all 1 ≤ i ≤ 2u− 1. We may conclude that there exists a path of odd length in
the Dynkin diagram from the vertex corresponding to sl to itself. However, by Lemma 6.7,
the graph of the Dynkin diagram is bipartite, so this is impossible.

Note that if p, p′ ∈ PV and r(p) ≡ r(p′) (mod 2), then sp and sp′ commute in G(PV ). Let
Sodd be the set of all l such that sl is a simple reflection and the rank of p is odd for all
vertices p ∈ PwJ0 labelled by sl. Similarly, let Seven be the set of all l′ such that sl′ is a simple
reflection and the rank of p is even for all vertices p ∈ PwJ0 labelled by sl′ . It follows that

teventodd =
∏

l′∈Seven
t′l′
∏

l∈Sodd
t′l. This completes the proof.

7. Plane Partitions, Preliminaries

For the remainder of the paper, we shift the focus from the representation-theoretic aspects
of minuscule posets to their combinatorial properties. From interpreting these properties
judiciously, we are able to deduce a number of instances of the cyclic sieving phenomenon
directly. We begin by recalling the Gaussian criterion from the introduction.

Definition 7.1. Let P be a ranked poset with rank function r. P is Gaussian if, for all
positive integers m, the following equality holds:

J(P × [m])(q) =
∏
p∈P

1− qm+r(p)+1

1− qr(p)+1
.

Remark 7.2. It is a result of Proctor’s that all minuscule posets are Gaussian (cf. [8],
Theorem 6), and it is conjectured that all Gaussian posets are minuscule.

The two most important known families of Gaussian posets are the first two infinite families
of minuscule posets. The order ideals of these posets may be identified with combinatorial
objects that we refer to as plane partitions, which have been the subject of intensive study
independent of the underlying posets. Thus, in establishing Theorem 1.2 for these cases,
we are implicitly formulating new combinatorial identities that in some sense are already
organized and explained.

Definition 7.3. A plane partition of an integer n is an array of integers ni,j of the form
n =

∑
i,j≥1 ni,j, where the ni,j are non-negative and ni,j ≥ ni,j+1, ni,j ≥ ni+1,j.

Define a plane partition ni,j to be inside m×n×k if it satisfies 0 ≤ ni,j ≤ k for 1 ≤ i ≤ m,
1 ≤ j ≤ n, and ni,j = 0 otherwise. If we think of such a plane partition as stacking ni,j
cubes on the (i, j) square, then it is clear that any such plane partition corresponds to an
order ideal of [m]× [n]× [k]. Conversely, any order ideal of [m]× [n]× [k] corresponds to a
plane partition inside m× n× k. In other words, there is a canonical bijection between the
plane partitions inside m× n× k and the order ideals of [m]× [n]× [k].

Theorem 7.4. (MacMahon) The generating function for plane partitions π inside m×n×k
is as follows: ∑

π⊂m×n×k

q|π| =
∏

1≤i≤m
1≤j≤n
1≤l≤k

[i+ j + l − 1]q
[i+ j + l − 2]q

.
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Remark 7.5. It follows that the MacMahon formula is also the rank-generating function
for the poset of order ideals of [m]× [n]× [k].

Definition 7.6. A symmetric plane partition of an integer n is a plane partition as defined
in Definition 7.3, with the extra condition that ni,j = nj,i for all i, j.

As expected, there is a canonical bijection between the symmetric plane partitions inside
n×n×k and the order ideals of the poset ([n]×[n])/S2×[k]. The analogue to the MacMahon
formula for symmetric plane partitions is called the Bender-Knuth formula.

Theorem 7.7. The generating function for symmetric plane partitions π inside n × n × k
is as follows: ∑

π⊂n×n×k
π symmetric

q|π| =
n∏
i=1

(
1− qk+2i−1

1− q2i−1

n∏
h=i+1

1− q2(k+i+h−1)

1− q2(i+h−1)

)
.

Remark 7.8. By similar reasoning, the Bender-Knuth formula is the rank-generating func-
tion for the poset of order ideals of ([n] × [n])/S2 × [k]. The rank-generating functions for
J([m]× [n]× [k]) and J([n]× [n])/S2× [k] actually arise in a representation-theoretic setting
in the sense that, up to a constant power of q, they are the q-analogues of the Weyl dimen-
sion formulas for the corresponding minuscule posets, which is shown in [14]. Thus, some
papers treat these formulas as a given and use them to verify that the two families of posets
in question are Gaussian, rather than the other way around.

8. Proof of Theorem 1.2 for the First Infinite Family

In this section, we will demonstrate that cyclic sieving phenomenon holds for all posets of
the form [m]× [n]× [2].

8.1. The Cameron Fon-Der-Flaass Bijection. In [5], Cameron and Fon-Der-Flaass pre-
sented an equivariant bijection between order ideals of [m]×[n]×[2] and what we call bracket
sequences of length m+n+1 with respect to the Fon-Der-Flaass action and a natural action
on bracket sequences, which they denoted by ψ. We will give only a brief outline of the
bijection; for further details, see Theorem 6 in [5].

The bijection is as follows: an order ideal of [m] × [n] × [2] is first mapped to a column
of length m + n + 1. These columns are then placed side-by-side to form an infinite grid
consisting of m+ n+ 1 rows. This done, each column is mapped to its first diagonal, and it
is noted that a diagonal repeats itself if and only if its corresponding column repeats under
an action conjugate to the Fon-Der-Flaass action. Finally, each diagonal is mapped to a
balanced word Wt consisting of symbols among “•”, “(”, “)”, and “G”. Thus, demonstrating
the cyclic sieving phenomenon for order ideals of [m] × [n] × [2] under the Fon-Der-Flaass
action is reduced to demonstrating the cyclic sieving phenomenon for such balanced words
Wt under ψ. For convenience, in the rest of this section we will refer to the symbols “(”, “)”,
“G” as “brackets” and to Wt as a “bracket sequence.” The action of ψ on Wt is summarized
in the following proposition.

Proposition 8.1. The operation ψ has the acts on Wt in the following way (in the below,
the Ai are balanced sub-words, which are possibly empty):

(1) If Wt = •A1 then ψ(Wt) = A1•.
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(2) If Wt = (A1)A2 then ψ(Wt) = A1(A2).
(3) If Wt = (A1 G · · · G Ai)Ai+1, i ≥ 2, then ψ(Wt) = A1(A2 G · · · G Ai G Ai+1).

Proof. See Theorem 6 in [5]. �

The following theorem, found in [5], shows that ψ has order m+ n+ 1.

Theorem 8.2. If Wt = UV , where U and V are balanced sub-words, then ψ|U |(Wt) = V U .

Corollary 8.3. Letting U = Wt and V = ∅ in Theorem 8.2 yields ψm+n+1(Wt) = Wt since
|Wt| = m+ n+ 1.

8.2. Substituting Roots of Unity into the MacMahon Formula. Letting k = 2 in
Theorem 7.4, the rank-generating function for [m]× [n]× [2] becomes

X(m,n, q) =

[
m+ n+ 1

n

]
q

[
m+ n
n

]
q

[1]q
[n+ 1]q

.

By symmetry of m and n, this is also equal to[
m+ n+ 1

m

]
q

[
m+ n
m

]
q

[1]q
[m+ 1]q

.

Since the order of ψ is m+n+ 1, the cyclic sieving phenomenon predicts that for any ` ≥ 0,

X
(
m,n, q = (e

2πi
m+n+1 )`

)
=
∣∣{Wt balanced: ψ`(Wt) = Wt}

∣∣ .
For example, substituting ` = 1 gives the number of elements whose order divides 1; substi-
tuting ` = 2 gives the number of elements whose order divides 2, etc. It is easy to see that
if the cyclic sieving phenomenon holds for some `|m + n + 1, then it holds for all `′ such
that ` = gcd(`′,m + n + 1). Therefore it is suffices to verify the identities predicted by the
cyclic sieving phenomenon for all `|m+ n+ 1. The following lemma will prove useful in the
subsequent computations.

Lemma 8.4. Let n = n′d+ r, k = k′d+ s, where 0 ≤ r, s ≤ d− 1. Then[
n
k

]
q=e

2πi
d

=

(
n′

k′

)[
r
s

]
q=e

2πi
d

Proof. If r < s, then it is easy to check that both sides of the equation evaluate to 0.
Therefore it suffices to prove the claim when r ≥ s. We can write[
n
k

]
=

[n′d+ r]q!

[k′d+ s]q![(n′ − k′)d+ (r − s)]q!

=

(
[n′d+ r]q · · · [n′d+ 1]q

[k′d+ s]q · · · [k′d+ 1]q[(n′ − k′)d+ (r − s)]q · · · [(n′ − k′)d+ 1]q

)(
[n′d]q!

[k′d]q![(n′ − k′)d]q!

)
.

The first fraction, when q = e
2πi
d , is precisely

[
r
s

]
q=e

2πi
d

. The second fraction, when q = e
2πi
d ,

evaluates to
(
n′

k′

)
. Thus the lemma is proved. �
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For ` < m + n + 1, if we let d = m+n+1
`

, then q =
(
e

2πi
m+n+1

)`
is a dth root of unity.

Expanding the MacMahon formula, we have the following:[
m+ n+ 1

n

]
q

[
m+ n
n

]
q

[1]q
[n+ 1]q

=

(
[m+ n+ 1]q · · · [m+ 2]q

[n]q · · · [1]q

)(
[m+ n]q · · · [m+ 1]q

[n]q · · · [1]q

)
[1]q

[n+ 1]q
.

If we let q be a dth root of unity where d > n+1, then in the above expression [m+n+1]q = 0,
and all of the other terms are nonzero. Hence the expression as a whole evaluates to 0. Also,
suppose d - n and d - n+ 1; then, since d|m+ n+ 1, by Lemma 8.4, it follows that[

m+ n+ 1
n

]
q=e

2πi
d

=

(
`

`′

)[
r
r′

]
q=e

2πi
d

,

where m + n + 1 = `d + r, b = `′d + r′, 0 ≤ r, r′ ≤ d − 1. Since d|m + n + 1 and d - n, it
follows that r = 0 and r′ > 0. Therefore, the expression evaluates to 0.

The only cases left are when d|n or d|n + 1. If d|n + 1, then since d|m + n + 1, we get
that d|m. By symmetry between m and n, it suffices to analyze the case when d|n. Let
m+ n+ 1 = `d, n = `′d. Applying Lemma 8.4, we have[

m+ n+ 1
n

]
q=e

2πi
d

=

(
`

`′

)
.

Consider the term [
m+ n
n

]
q

=
[m+ n]q · · · [m+ 1]q

[n]q · · · [1]q

Since d|n, d|m+ 1, and d|m+ n+ 1, the number of terms in m+ 1 . . . ,m+ n divisible by d
is the same as the number of terms in 1, . . . , n divisible by d. The rest of the terms cancel
each other out when we let q = e

2πi
d . Hence the expression evaluates to

(`− `′)(`− `′ + 1) · · · (`− 1)

`′!
=

(
`− 1

`′

)
.

Finally, since d ≥ 2, it follows that [1]q
[n+1]q

= 1. Therefore, when d|n, the expression evaluates
to (

`− 1

`′

)(
`

`′

)
,

where ` = m+n+1
d

, `′ = n
d
. We may conclude that there are

(
`−1
`′

)(
`
`′

)
elements whose orbits

are of size dividing `.

Remark 8.5. The above argument only works for d ≥ 2. In the case that d = 1, what is
predicted by the cyclic sieving phenomenon is equivalent to the MacMahon formula.

8.3. Bracket Positions. If we count “(”, “)”, “G”, and “•” as having length one each,
all words Wt from the Cameron Fon-Der-Flass bijection have length m + n + 1. Treating
the brackets “(”, “)”, and “G” as identical for now, their positions can be considered as a
subset of [m+ n+ 1] = {1, . . . ,m+ n+ 1}. The following proposition follows directly from
Proposition 8.1.

Proposition 8.6. Every time we apply ψ to Wt, the entries in the bracket position subset
decrease by 1, where the entries are considered modulo m+ n+ 1.
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Example 8.7. Consider the sequence shown below:

(•• G • G ••) {1, 4, 6, 9}
ψ−→ • • (• G •• G) {3, 5, 8, 9}
ψ−→ •(• G •• G)• {2, 4, 7, 8}
ψ−→ (• G •• G) • • {1, 3, 6, 7}
ψ−→ •(•• GG ••) {2, 5, 6, 9}

...
...

The entries in the subset decrease by 1 (mod 9) every time we apply ψ.

Suppose there are ` brackets in total, and suppose furthermore that there exists d|m+n+1

such that ψ
m+n+1

d (Wt) = (Wt). By Proposition 8.6, it follows that the position subset is a
disjoint union of subsets among the following:{

0,
m+ n+ 1

d
, · · · , (d− 1)(m+ n+ 1)

d

}
,{

1, 1 +
m+ n+ 1

d
, · · · , 1 +

(d− 1)(m+ n+ 1)

d

}
, . . . ,{

m+ n+ 1

d
− 1,

2(m+ n+ 1)

d
− 1, · · · , (m+ n+ 1)− 1

}
.

(Since the position subset is invariant under shifts by m+n+1
d

(mod m+n+1), if the position
subset contains one element of a subset listed above, it must contain all elements of that
subset.)

Observe that each of the m+n+1
d

subsets above has cardinality d. It follows that d|`. Since

we need to choose `
d

subsets from above, there are a total of

(m+n+1
d
`
d

)
ways to choose the

bracket positions.

8.4. Underlying Bracket Sequence. Once we fix the positions of the brackets, we consider
the types of the brackets. We start with the following definition.

Definition 8.8. The underlying bracket sequence U(Wt) of a word Wt is the bracket sequence
obtained by deleting all the •’s from Wt.

Example 8.9. If Wt = ((•) G •), then its underlying bracket sequence is U(Wt) = (() G).

Suppose ψ
m+n+1

d (Wt) = (Wt); then the underlying bracket sequence remains the same after
we apply ψ to Wt

m+n+1
d

times. Thus, it should be easy to see from Proposition 8.1 that the
following proposition holds.

Proposition 8.10. If Wt = •A1, then U(ψ(Wt)) = U(Wt). Otherwise, U(ψ(Wt)) =
ψ(U(Wt)).
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Example 8.11. If we start with ((•) G •), then we have the following sequence:

((•) G •) (() G)
ψ−→ (•)(• G) ()(G)
ψ−→ •((• G)) ((G))
ψ−→ ((• G))• ((G))
ψ−→ (• G)(•) (G)()

...
...

When Wt = •A1, then after applying ψ, the underlying bracket sequence doesn’t change.
Otherwise, the underlying bracket sequence changes from U(Wt) to ψ(U(Wt)).

In the previous subsection, we chose `
d

subsets from{
0,
m+ n+ 1

d
, · · · , (d− 1)(m+ n+ 1)

d

}
,{

1, 1 +
m+ n+ 1

d
, · · · , 1 +

(d− 1)(m+ n+ 1)

d

}
, . . . ,{

m+ n+ 1

d
− 1,

2(m+ n+ 1)

d
− 1, · · · , (m+ n+ 1)− 1

}
(where ` is the number of brackets). Since each of the chosen subsets contains exactly one
position with index ≤ m+n+1

d
, applying ψ `

d
times to the underlying bracket sequence returns

the original sequence. In other words,

ψ
`
d (U(Wt)) = U(Wt).

Hence the underlying bracket sequence must have order dividing `
d
.

From now on, we will use the term “bracket sequence” to mean a balanced word consisting
of only brackets and no •’s.
Definition 8.12. For 1 ≤ i ≤ m, a bracket sequence is said to have type (i,m− i) if there
are i “(”, i “)”, and m− i “G” in the sequence.

By Definition 8.12, the length of a bracket sequence of type (i,m− i) is ` = i+ i+m− i =
m+ i.

Definition 8.13. For any d ≥ 1 such that d divides m+n+1, let Nd(i,m−i) be the number
of bracket sequences of type (i,m− i) whose order divides `

d
= m+i

d
.

Definition 8.13, coupled with the previous result about bracket positions, yields the fol-
lowing theorem.

Theorem 8.14. The number of words Wt whose order divides m+n+1
d

is
m∑
i=1

(m+n+1
d

m+i
d

)
Nd(i,m− i),

where, for convenience, if d - m+ i, we let
(m+n+1

d
m+i
d

)
= 0.
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We proceed to obtain a closed formula for Nd(i,m− i).
8.5. Analyzing Bracket Sequences. For convenience, if S is a balanced word, we denote
the length of S by |S|.
Definition 8.15. A balanced word S is called reducible if there exist nonempty balanced
sub-words S1 and S2 such that S = S1S2. If S is not reducible, then S is called irreducible.

It is easy to see from Definition 8.15 that irreducible words are either of the form (A) or
(A1 G A2 G · · · G Ai), with i ≥ 2, where A,A1, . . . , Ai are balanced words.

Definition 8.16. If W is a balanced word such that W = A1A2, where A1 is irreducible,
then A1 is called the first irreducible sub-word of W . (A2 may be empty.)

We present two lemmas about the length of irreducible sub-words in balanced words W
when we apply ψ.

Lemma 8.17. Let W = UV , where W , U , and V are balanced words. For all 1 ≤ i ≤ |U |−1,
the length of the first irreducible sub-word in ψi(W ) is either greater than |V | or less than
|U |.
Proof. Let γ denote the function that maps each balanced word to the length of its first
irreducible sub-word. We induct on |U |. The base case when U = () is trivial. (Consider the
sequence ()V → (V )→ V (), and note that (V ) is an irreducible word of length |V |+2 > |V |.)

Suppose the claim is true for all W = UV , where |U | < k. We will show that the claim is
true when |U | = k. The proof will be divided into three cases.

(i) U is reducible. We can write U as U1U2, where U1, U2 are non-empty balanced words.
We can apply the inductive process two times in between U1U2V → U2V U1 → V U1U2 to
see that between each listed configuration either γ > |V | or γ < |U |. This follows from the
fact that |U1|, |U2| < |U | and |U2V |, |V U1| > |V |. Furthermore, for the configuration U2V U1,
γ ≤ |U2| < |U |, which implies that the claim is true in this case.

(ii) U = (U ′), where U ′ is a balanced word. Applying ψ once to W = (U ′)V maps (U ′)V
to U ′(V ). Now, to invoke the inductive hypothesis, let V ′ = (V ). By induction, for all
configurations occurring between of U ′V ′ and V ′U ′, either γ < |U ′| < |U | or γ > |V ′| > |V |.
Furthermore, for the initial configuration U ′V ′, γ ≤ |U ′| < |U |, and for the final configura-
tion V ′U ′, γ = |V ′| > |V |. Once the configuration V ′U ′ = (V )U ′ is reached, applying ψ once
more gives V (U ′) = V U , so the claim is true in this case.

(iii) U = (U1 G U2 G · · · G Ui). Applying ψ once to UV maps UV to U1(U2 G · · · G Ui G V ).
To invoke the inductive hypothesis, let U ′ = U1 and V ′ = (U2 G · · · G Ui G V ). By induction
on U ′V ′, for all configurations occurring between U ′V ′ and V ′U ′, either γ < |U ′| < |U | or
γ > |V ′| > |V |. Furthermore, for the initial configurations U ′V ′, γ ≤ |U ′| < |U |, and for the
final configuration V ′U ′, γ = |V ′| > |V |. Since V ′U ′ = (U2 G · · · G Ui G V )U1, applying ψ
once more gives ψ(V ′U ′) = U2(U3 G · · · G V G U1), and reprising the argument above shows
that for all configurations reached by successive applications of ψ between UV and V U , the
length of the first irreducible sub-word is always less than |U | or greater than |V |.
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Therefore, the inductive hypothesis holds for |U | = k, and, by induction, the claim is
proved for all balanced words U , as desired. �

Lemma 8.18. Let W = UV , where W , U , and V are balanced words. Furthermore, suppose
|V | ≥ |U |. Then for all 1 ≤ i ≤ |U | − 1, the following two claims hold:

• If V is irreducible, then the longest irreducible sub-word in ψi(W ) has length at most
|V |.
• If U is irreducible (here V is not necessarily irreducible), then the longest irreducible

sub-word in ψi(W ) has length greater than |V |.
Proof. Let Γ denote the function that maps each balanced word to the length of its longest
irreducible sub-word. To prove this lemma, we induct on the length of U for both claims
simultaneously. Again, the base is trivial because the sequence to consider is ()V → (V )→
V (), and (V ) is an irreducible word of length greater than |V |.

For the inductive step, suppose both claims are true for |U | < k. Let W = UV such
that |U | = k and |V | ≥ |U |, and suppose first that |V | is irreducible but U is reducible. If
U = U1U2 · · ·Ui, where U1, . . . , Ui are all irreducible, i ≥ 2, then we may apply the inductive
hypothesis corresponding to the second claim to see that for all configurations occurring
between UV and V U , namely

U1 · · ·UiV → U2 · · ·UiV U1 → U3 · · ·UiV U1U2 → · · · → V U1 · · ·Ui,
it is always true that Γ ≥ |V |. This follows from the observation that, for any configuration
between two listed configurations, Γ > |V |, and that, for each of the shown configurations,
Γ ≥ |V |. Therefore, the first claim holds for |U | = k when V is irreducible and U is reducible.

We proceed to show that if U is irreducible (but V is not necessarily irreducible), then
the second claim is true. This will imply that the first claim is true when U and V are both
irreducible. We may write U as (U1 G U2 G · · · G Ui), i ≥ 1 (if i = 1, then U = (U1)).
Applying ψ once to W = UV = (U1 G U2 G · · · G Ui)V maps UV to

U1(U2 G · · · G Ui G V ).

Since (U2 G · · · G Ui G V ) is an irreducible word of length greater than |V | and |U1| < |U |,
applying the inductive hypothesis corresponding to the first claim to U = U1, V = (U2 G
· · · G Ui G V ) shows that, for all configurations between U1(U2 G · · · G Ui G V ) and (U2 G
· · · G Ui G V )U1, Γ ≥ |(U2 G · · · G Ui G V )| > |V |. Since this argument may be reprised to
show that for all configurations between (U1 G U2 G · · · G Ui)V and V (U1 G U2 G · · · G Ui),
Γ > |V |, the second claim holds for |U | = k when U is irreducible but V is not necessarily
irreducible.

It follows by induction that both claims are true for all balanced words U . Thus the
lemma is proved. �

Now, given d ≥ 2, the following theorem characterizes all orbits whose lengths divide `
d
,

where ` is the length of the bracket sequence.

Theorem 8.19. Any orbits whose length divides `
d

contains at least one of the following
elements:

• A · · ·A, where A is a balanced word appearing d times.
• (A1 G A2 G · · · G Ak G A1 G · · · G Ak G · · · G A1 G · · · G Ak−1)Ak, where A1, . . . , Ak are

balanced words appearing d times each.
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Proof. Let S be an element whose orbit length divides `
d
. We may write S = S1S2 · · ·Sn,

where S1, . . . , Sn are irreducible balanced words. If |Si| + |Si+1| + · · · + |Sj| = `
d

for some
1 ≤ i ≤ j (indices are taken modulo n), then if we let A = SiSi+1 · · ·Sj, A · · ·A is in the
orbit, where A appears d times. Therefore we may assume for the remainder of this proof
that |Si|+ |Si+1|+ · · ·+ |Sj| 6= `

d
for all 1 ≤ i ≤ j. We will now divide into three cases based

on the value of max{|S1|, . . . , |Sn|}.

(i) max{|S1|, . . . , |Sn|} < `
d
. By Theorem 8.2, we can apply ψ an appropriate number of

times to make the largest Si appear at the front. Therefore without loss of generality we
may assume |S1| = max{|S1|, . . . , |Sn|}. Since |Sj| < `

d
for all 1 ≤ j ≤ n, there exists

1 ≤ i ≤ n − 1 such that |S1| + · · · + |Si−1| < `
d

and |S1| + · · · + |Si| > `
d
. Applying ψ

|S1|+ · · ·+ |Si−1| times maps S1S2 · · ·Sn to SiSi+1 · · ·SnS1 · · ·Si−1.
Since the orbit has length dividing `

d
, the original word must appear as one of the con-

figurations between SiSi+1 · · ·SnS1 · · ·Si−1 and Si+1 · · ·SnS1 · · ·Si−1Si. However, invoking
Lemma 8.17 for U = Si, V = Si · · ·SnS1 · · ·Si−1 tells us that for all such configurations the
first irreducible sub-word has length < |Si| ≤ |S1| or > |Si · · ·SnS1 · · ·Si−1| ≥ |S1|. There-
fore, no such configuration may have first irreducible sub-word of length S1, which is the the
length of the first irreducible sub-word of the original word. Hence this case does not occur.

(ii) `
d
< max{|S1|, . . . , |Sn|} ≤ (d−1)`

d
. As above, without loss of generality, we may assume

that |S1| is the maximum. We write the word as S1X, where X = S2 · · ·Sn, and, since S1

is irreducible, we may write S1 as (A1 G A2 G · · · G Ai) (or (A), but this does not affect the
analysis). Observe that the orbit contains the following elements:

(A1 G A2 G · · · G Ai)X, (A2 G · · · G Ai G X)A1, (A3 G · · · G X G A1)A2, · · · .

We may apply ψ and re-label if necessary so that for the new word (A′1 G A
′
2 G · · · G A′i)X ′,

(A′1, . . . A
′
i, X) is a cyclic permutation of (A1, . . . , Ai, X), and |X ′| = max{|A1|, . . . , |Ai|, |X|}.

It follows that |X ′| ≥ |X| ≥ `
d

and |X ′| ≤ (d−1)`
d

because if X ′ is one of the Ai, then it is

smaller than S1, which has length ≤ (d−1)`
d

, and if X ′ is the old X, then since |S1| > `
d
,

|X ′| = |X| < (d−1)`
d

. Therefore, we have |(A′1 G A′2 G · · · G A′i)| ≥ `
d

and |X ′| ≥ `
d
. Applying

ψ to the word (A′1 G A
′
2 G · · · G A′i)X ′ once, we obtain

A′1(A′2 G · · · G A′i G X ′).

We now show that the original word cannot occur as one of the configurations between
A′1(A′2 G · · · G A′i G X ′) and (A′2 G · · · G A′i G X ′)A′1.

Invoking Lemma 8.17 with U = A′1, V = (A′2 G · · · G A′i G X ′), the length of the first
irreducible sub-word for every such configuration is either < |A′1| ≤ |(A′1 G A′2 G · · · G A′i)|
or > |(A′2 G · · · G A′i G X ′)| ≥ |(A′1 G A′2 G · · · G A′i)| (since X ′ ≥ A′1). It follows that no such
configuration can be identical to (A′1 G A

′
2 G · · · G A′i)X ′. By successive applications of

this argument, we see that the only possible configurations that could potentially match the
original word are the following:

(A′2 G · · · G Ai G X)A1, (A
′
3 G · · · G Ai G X G A1)A2, · · · .
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Since applying ψ `
d

times returns the original word, the word (A′1 G A
′
2 G · · · G A′i)X ′ is of

the form

(A′1 G A
′
2 G · · · G A′k G A′1 G · · · G A′k G · · · G A′1 G · · · G A′k−1)A′k.

(There are d A′1A
′
2 · · ·A′k.) However, this implies that X ′ = A′k, which contradicts the as-

sumptions |A′k| < `
d

and |X ′| ≥ `
d
, so this case does not occur.

(iii) max{|S1|, . . . , |Sn|} > (d−1)`
d

. Without loss of generality, let |S1| = max{|S1|, . . . , |Sn|}.
Let X = S2 · · ·Sn. Since S1 is irreducible, we may write S1X as either (A)X or (A1 G A2 G
· · · G Ai)X (the analysis is the same either way). There are two sub-cases to consider:

(1) max{|A1|, . . . , |Ai|, |X|} ≤ (d−1)`
d

. In this case, we may apply ψ an appropriate num-
ber of times to obtain the word (A′1 G A

′
2 G · · · G A′i)X ′, where (A′1, . . . A

′
i, X) is a

cyclic permutation of (A1, . . . , Ai, X) and |X ′| = max{|A1|, . . . , |Ai|, |X|}. Therefore,
it follows from the same reasoning we used in case (ii) that one of the elements in
the orbit must be of the form

(A′1 G A
′
2 G · · · G A′k G A′1 G · · · G A′k G · · · G A′1 G · · · G A′k−1)A′k,

where A′1, . . . A
′
k appears d times each.

(2) max{|A1|, . . . , |Ai|, |X|} > (d−1)`
d

. In this case, suppose |Aj| = max{|A1|, . . . , |Ai|, |X|},
where 1 ≤ j ≤ i (X can’t be the longest among {A1, . . . , Ai, X} because the assump-

tion |S1| > (d−1)`
d

implies that |X| < `
d
). We may apply ψ an appropriate number of

times to obtain the word

(Aj+1 G · · · G Ai G X G A1 G · · · G Aj−1)Aj.

Note that |Aj| < |(A1 G · · · G Ai)|, so we have successfully reduced the length of the
maximal irreducible sub-word. Therefore, we may continue this process until the
word we obtain belongs to one of the previous cases, which we have handled already.
This completes the proof.

�

8.6. The Generating Functions f and g. In this section, we define two bivariate generat-
ing functions f(x, y) and g(x, y) that will help us demonstrate the cyclic sieving phenomenon.
Recall that by Definition 8.13, N1(i,m − i) is the total number of balanced words of type
(i,m− i). Analogously, for m ≥ 1, 1 ≤ i ≤ m, let U1(i,m− i) be the number of irreducible
balanced words of type (i, j).

Definition 8.20. Let f(x, y) and g(x, y) be defined as follows:

f(x, y) = 1 +
∑

1≤m,1≤i≤m

N1(i,m− i)xiym−i.

g(x, y) = 1 +
∑

1≤m,1≤i≤m

U1(i,m− i)xiym−i.

Remark 8.21. The coefficient [xiyj]f(x, y) gives the total number of balanced words of type
(i, j), where by convention the number of balanced words of type (0, 0) is 1, representing the
empty word, and the coefficient [xiyj]g(x, y) gives the total number of irreducible balanced
words of type (i, j).
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We proceed to compute f and g explicitly. We start by identifying two relationships
between the functions rooted in their definitions.

Proposition 8.22. f = 1
2−g .

Proof. Every non-empty balanced word S can be decomposed as S = S1S2 · · ·Si, where
S1, · · · , Si are nonempty irreducible balanced words. It follows immediately that

f = 1 + (g − 1) + (g − 1)2 + · · · = 1

1− (g − 1)
=

1

2− g ,

as desired. �

Proposition 8.23. g = 1 + xf
1−yf .

Proof. Every irreducible balanced word of type (i, j), i ≥ 1, is of the form

(A), (A G B), (A G B G C), . . .

Hence the number of irreducible balanced word of type (i, j) is equal to

[xi−1yj]f + [xi−1yj−1]f 2 + [xi−1yj−2]f 3 + · · · = [xiyj](xf + xyf + xy2f 3 + · · · )
It follows that

g = 1 + xf + xyf 2 + xy2f 3 + · · · = 1 + xf(1 + yf + y2f 2 + · · · ),
which simplifies to

g − 1 =
xf

1− yf ,
as desired. �

Since f = 1
2−g , we have g = 2− 1

f
. Substituting this into the second relation yields

f − 1

f
=

xf

1− yf ,

which simplifies to
(x+ y)f 2 − (1 + y)f + 1 = 0.

Solving for f as a solution of the quadratic equation, we obtain

f =
(1 + y)±

√
(1 + y)2 − 4(x+ y)

2(x+ y)

It is easy to see that the sole valid solution is

f =
(1 + y)−

√
(1− y)2 − 4x

2(x+ y)

because the alternative does not have a power series expansion at x = y = 0. Substituting
this solution into g = 2− 1

f
yields

g =
3− y −

√
(1− y)2 − 4x

2

Remark 8.24. If we let y = 0, f becomes the generating function of the Catalan numbers
because the number of balanced words of type (i, 0) is Ci by definition.
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8.7. Cyclic Sieving Phenomenon for d dividing m. In this section, we first show that it
suffices to demonstrate the cyclic sieving phenomenon for d dividing m, and then we reduce
the cyclic sieving phenomenon in that case to verification of a combinatorial identity.

Recall that, by Theorem 8.19, every orbit contains an element of the form A · · ·A, where
A appears d times, or (A1 G A2 G · · · G Ak G A1 G · · · G Ak G · · · G A1 G · · · G Ak−1)Ak, where
there are d A1 · · ·Ak. In the former case, if A is of type (a, b), then m = d(a+b) ≡ 0 (mod d),
so d must divide m. In the latter case, if A1 · · ·Ak is of type (a, b), then the word must be of
type (1, di− 2) +d(a, b) = (da+ 1, db+di− 2), which implies that m = d(a+ b+ i)− 1 ≡ −1
(mod d). Since d divides m + n + 1, it follows that d divides n. Therefore, it suffices by
symmetry to restrict our attention to the case in which d divides m.

Let m = dr. Given an orbit whose length divides `
d
, there must exist an element of the

form A · · ·A in the orbit, where A appears d times. The type of the bracket sequence in
the orbit must be (da, db), where (a, b) is the type of A. Therefore, the only types for which
there can exist a bracket sequence of order `

d
are (dr, 0), (dr − d, d), . . . , (d, dr − d).

Suppose for the type (di, d(r− i)), 1 ≤ i ≤ r, there are ai words of that type whose orbits
have lengths dividing `

d
(ai = Nd(di, d(r − i))). Then by Proposition 8.14, the total number

of words (with •’s) that have orbit size dividing m+n+1
d

= r + n+1
d

is

r∑
i=1

ai

(
r + n+1

d

r + i

)
= ar

(
r + n+1

d

2r

)
+ ar−1

(
r + n+1

d

2r − 1

)
+ · · ·+ a1

(
r + n+1

d

r + 1

)
.

If cyclic sieving occurs, we must have
r∑
i=1

ai

(
r + n+1

d

r + i

)
=

(
r + n+1

d

r

)(
r + n+1

d
− 1

r

)
.

Let X =
(
r+n+1

d
r

)
. Since we have (

r + n+1
d

r + i

)
= X ·

(n+1
d
i

)(
r+i
i

) ,
if we let c = n+1

d
, it remains to show

r∑
i=1

(
c

i

)
ai(
r+i
i

) =

(
c+ (r − 1)

r

)
.

But by the binomial identity(
c+ (r − 1)

r

)
=

r∑
i=1

(
r − 1

i− 1

)(
c

i

)
,

since c = n+1
d

can vary, it is equivalent to show

ai(
r+i
i

) =

(
r − 1

i− 1

)
,

or

ai =

(
r + i

i

)(
r − 1

i− 1

)
,

for all 1 ≤ i ≤ r. That is the task of the next section.
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8.8. Computing ai. We will now compute ai, the number of elements of type (di, d(r− i))
whose orbits have length dividing `

d
. Since d|m, by Theorem 8.19, the orbit must contain an

element of the form A · · ·A, where A appears d times.
Suppose A = A1A2 · · ·Ai, where A1, A2, . . . , Ai are irreducible, and consider the sequence

A1 · · ·AiA · · ·A︸ ︷︷ ︸
d−1 A’s

ψ|A1|−→ A2 · · ·AiA · · ·A︸ ︷︷ ︸
d−1 A’s

A1
ψ|A2|−→ A3 · · ·AiA · · ·A︸ ︷︷ ︸

d−1 A’s

A1A2
ψ|A3|−→ · · · ψ

|Ai|−→ A · · ·A︸ ︷︷ ︸
d−1 A’s

A1 · · ·Ai.

For all configurations occurring between any two listed configurations, it follows from Lemma 8.18
that the longest irreducible sub-word has length > `

d
. Therefore, no such configuration can be

a representative element of the form B · · ·B, where B is a balanced word appearing d times.
We claim that the length of the orbit divided by the number of representative elements of the
form B · · ·B contained in the orbit is `

id
. To see this, we write A1 · · ·Ai = (A1 · · ·Ai/s)× s,

where s ≥ 1 and W × s denotes the concatenation of s copies of W , in such a way that the
order of the i/s-tuple (A1, · · · , Ai/s) under cyclic permutation is i/s. Then the orbit of the

whole word has length `
sd

, there are i/s representative elements in the orbit, so the length of

the orbit divided by the number of representative elements is `/(sd)
i/s

= `
id

, as desired.

It should now be easy to see that since the word is of type (di, d(r−i)), A is of type (i, r−i),
and ` = d(r+ i), the number ai is the coefficient of the term xiyr−i in the generating function(

(g − 1) + (g−1)2

2
+ (g−1)3

3
+ · · ·

)
(r + i).

To compute the coefficient of xiyj in
(

(g − 1) + (g−1)2

2
+ (g−1)3

3
+ · · ·

)
, we make use of

the Lagrange inversion formula. Recall the following relations from Proposition 8.22 and
Proposition 8.23:

g − 1 =
xf

1− yf
f =

1

2− g
Substituting the second relation into the first relation yields

g − 1 =
x

2− g − y .

Let g′ = g − 1. The relation becomes

g′ =
x

1− y − g′
or

x = g′(1− y − g′).
Let s(x) = x(1− y − x); then s(x) = g′−1(x). The Lagrange inversion formula tells us that

[xn]g′m =
m

n
[xn−m]

(
x

x(1− y − x)

)n
.

Therefore,

[xn]
g′m

m
=

1

n
[xn−m]

(
1

1− x− y

)n
.
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Since

(1− (x+ y))−n =
∞∑
i=0

(
n+ i− 1

i

)
(x+ y)i,

the coefficient for xn−m in (1− (x+ y))−n is equal to
∞∑
i=0

(
n+ i− 1

i

)(
i

n−m

)
yi−(n−m)xn−m.

Hence the coefficient [xn]
(∑∞

m=1
g′m

m

)
is equal to

∞∑
m=1

1

n

∞∑
i=0

(
n+ i− 1

n− 1

)(
i

n−m

)
yi−(n−m) =

∞∑
m=1

∞∑
i=0

(
n+i
n

)(
i

n−m

)
n+ i

yi−(n−m).

To extract the coefficient of yr for each m, we let i− (n−m) = r, i.e. i = n−m + r. The
coefficient of yr in the above sum is equal to

∞∑
m=1

(
2n+r−m

n

)(
n−m+r
n−m

)
2n+ r −m =

∞∑
m=1

(
2n−m+r

n

)(
n−m+r

r

)
2n+ r −m .(8.1)

We will now use hyper-geometric identities as described in [10] to show that this sum is equal

to
(2n+r

n )(n+r−1
n−1 )

2n+r
.

Let Cm =
(2n−m+r

n )(n−m+r
r )

2n+r−m . Then

Cm+1

Cm
=

(m− n)

m− (2n+ r − 1)

=
(m− n)(m+ 1)

(m− (2n+ r − 1))(m+ 1)

Thus, it suffices to compute

2F1

(
−n, 1

−(2n+ r − 1)

)
.

From Section 2 in [10], it is given that

2F1

(
−n, −b

c

)
=

(c+ b)n
(c)n

,

where the (α)n are the shifted factorials defined by

(α)n = α(α + 1) · · · (α + n− 1), (α)0 = 1.

Therefore,

2F1

(
−n, 1

−(2n+ r − 1)

)
=

(−(2n+ r − 1)− 1)n
(−(2n+ r − 1))n

=
2n+ r

n+ r
.

Hence the right-hand side in Equation 8.1 is equal to C0 ·
(

2n+r
n+r
− 1
)
, which is equal to(

2n+r
n

)(
n+r
n

)
2n+ r

· n

n+ r
=

(
2n+r
n

)(
n+r−1
n−1

)
2n+ r

.
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This is the coefficient of [xnyr] in (g − 1) + (g−1)2

2
+ · · · .

Since we demonstrated that ai is the coefficient of [xiyr−i] in
(

(g − 1) + (g−1)2

2
+ · · ·

)
(r+i),

letting n = i and r = r − i in our formula above gives

ai =

(
r+i
i

)(
r−1
i−1

)
r + i

· (r + i) =

(
r + i

i

)(
r − 1

i− 1

)
.

Indeed, this is exactly what we wanted to show. Therefore, the cyclic sieving phenomenon
holds, as desired.

Remark 8.25. It has been verified via Kevin Dilks’s Maple code that cyclic sieving does
not occur in the poset [3] × [3] × [3]. Furthermore, the order of the Fon-Der-Flaass action
is 33 for the poset [4] × [4] × [4], so, in particular, it is not true in general that the order
of the Fon-Der-Flaass action is m + n + k − 1 for the poset [m] × [n] × [k] (although it is
conjectured by Cameron and Fon-Der-Flaass that if m+ n+ k − 1 is prime, then the order
of the Fon-Der-Flaass action is divisible by m + n + k − 1 – and they have proved this for
all posets in which k exceeds (m− 1)(n− 1)).

9. Proof of Theorem 1.2 for the Second Infinite Family

In this section, we demonstrate that the cyclic sieving phenomenon holds for m = 2 for
minuscule posets that belong to the second infinite family, i.e. posets of the form ([n+ 1]×
[n+ 1])/S2. The fact that the triple (J(([n+ 1]× [n+ 1])/S2× [2]), J(([n+ 1]× [n+ 1])/S2×
[2]; q),Ψ) exhibits the cyclic sieving phenomenon is obtained as a consequence of the fact
that (J(([n+ 1]× [n+ 1])× [2]), J(([n+ 1]× [n+ 1])× [2]; q),Ψ) cyclic sieving phenomenon.
From the Bender-Knuth formula (Theorem 7.7), we see that the rank-generating function for

J(([n+ 1]× [n+ 1])/S2 × [2]) is

[
2n+ 3
n+ 1

]
q

. It follows by Lemma 8.4 that if q is a (2n+ 3)th

root of unity, substituting q into the Bender-Knuth expression yields 0 unless q = 1. It
therefore suffices to show that all orbits of order ideals of ([n+ 1]× [n+ 1])/S2× [2] are free
of length 2n+ 3.

Assume for the sake of contradiction that there exists an orbit of length 2n+3
d

, where d > 1.
Since the Fon-Der-Flaass action on plane partitions viewed as order ideals of [n+ 1]× [n+
1]× [2] restricts to the Fon-Der-Flaass action on symmetric plane partitions viewed as order
ideals of ([n + 1] × [n + 1])/S2 × [2], this orbit must also be an orbit of order ideals of
[n+ 1]× [n+ 1]× 2 under the Fon-Der-Flaass action. However, by Section 8.2, we see that
d|n+ 1. Then gcd(n+ 1, 2n+ 3) = 1 contradicts the assumption that d > 1, so all the orbits
are free of length 2n+3. This confirms that the cyclic sieving phenomenon holds, as desired.

Remark 9.1. It has been verified via Dilks’s Maple code that the cyclic sieving does not
occur in the poset ([6]× [6])/S2× [4]. Every poset of the form ([n+1]× [n+1])/S2× [3] (that
we tested!) was found to obey the cyclic sieving phenomenon, however, and it is tempting
to conjecture that the cyclic sieving phenomenon holds for all such posets, but we do not
attempt to provide a proof.

10. Proof of Theorem 1.2 for the Third Infinite Family

In this section, we demonstrate that the cyclic sieving phenomenon holds for all positive
integers m for minuscule posets that belong to the third infinite family. Recall from the
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introduction that the third infinite family consists of posets of the form Jn−3([2]× [2]). We
may describe these posets equivalently as the posets of the form [r]⊕ ([1] + [1])⊕ [r], for it is
easily checked that [r]⊕ ([1]+[1])⊕ [r] = Jn−2([2]× [2]) (cf. [12], Chapter 3, for a description
of the relevant notation). As Cameron and Fon-Der-Flaass did for the case [m] × [n] × [2],
we present a bijection from order ideals of ([r]⊕ ([1] + [1])⊕ [r])× [m] to bracket sequences
that is equivariant with respect to the Fon-Der-Flaass action on order ideals and a variant of
ψ on bracket sequences that we denote by ψ′. We were motivated to make this construction
by a new bijection from order ideals of [m] × [n] × [2] to bracket sequences found in [16],
which the authors of that preprint devised after seeing our work in section 8.

Remark 10.1. The choice of the symbol ψ′ to denote the variant of ψ is deliberate, for
the action of ψ′ on bracket sequences meaningfully resembles the action of ψ given by the
Cameron-Fon-Der-Flaass defined in section 8.

We draw the poset ([r]⊕ ([1]+ [1])⊕ [r])× [m] as two (r+1)×m rectangles, one northeast
of the other, such that if p < p′ is a covering relation in the poset, then p′ is either northeast
or northwest of p. Call a path starting from the west of the west-most vertex and ending
to the east of the east-most vertex a “boundary path” if it consists of directed segments
running northeast or southeast. We view each order ideal of ([r]⊕ ([1] + [1])⊕ [r])× [m] as
determining two “boundary paths,” one of which separates the elements in the order ideal
from the elements not in the order ideal in the northeast rectangle, and the other of which
separates the elements in the order ideal from the elements not in the order ideal in the
southwest rectangle. We call the former path the “upper boundary path” and the latter
path the “lower boundary path.” To ensure that, no matter the order ideal, the boundary
paths are always well-defined, we impose the following condition:

• The two boundary paths coincide unless it is necessary for them to separate.

For example, the boundary paths for the order ideal are shown below:

Figure 4. Boundary paths for an order ideal in ([3]⊕ ([1] + [1])⊕ [3])× [3].

It should be clear that this condition implies the following:
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Lemma 10.2. The two boundary paths coincide outside the area immediately bordering the
“double-line.” (What we call the double-line is determined by the near-coincidence of the
northeast edge of the southwest rectangle and the southwest edge of the northeast rectangle
and is indicated in the above diagram.)

We represent each boundary path by a binary sequence of length m+2r+1. The procedure
is simple: the segments of the boundary path pointing toward the Northeast correspond to
1’s and the segments pointing toward the Southeast correspond to 0’s. The order of the
binary sequence is given by the order of the segments in the boundary path.

Given upper and lower boundary paths expressed as binary sequences, we convert the data
into a bracket sequence as follows.

• If there are 2k + 1

(
1
1

)
, we replace the first k instances by “(”, the last k instances

by “)”, and the middle instance by “G”. If there are 2k

(
1
1

)
, then we replace the

first k instances by “(”, and the last k instances by “)”.

• We replace every instance of

(
0
1

)
by “(”.

• We replace every instance of

(
1
0

)
by “)”.

• We replace every instance of

(
0
0

)
by “•”.

The next theorem delineates some of the basic properties of bracket sequences.

Theorem 10.3. The bracket sequences satisfy the following properties:

(i) The bracket sequences are balanced in the sense of section 8.
(ii) Each bracket sequence contains either m •’s or (m− 1) •’s.

(iii) If a bracket sequence contains exactly (m−1) •’s, there must be exactly one instance of(
0
1

)
and exactly one instance of

(
1
0

)
in the binary sequences from which it arises.

Furthermore, these instances must be preceded by exactly r instances of

(
1
1

)
and

followed by exactly r instances of

(
1
1

)
.

Proof. We first prove (ii) and (iii).
To prove (ii), note that, if the two boundary paths coincide, then there are m •’s. There-

fore, there can be no instances of

(
0
1

)
or

(
1
0

)
in the binary sequences. On the other hand,

if the two paths are different, then they must fork immediately below the “double line” and
rejoin immediately above the “double line,” so the subsequences where they differ must be
of the form either

U : 100 · · · 00

L : 000 · · · 01
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or

U : 00 · · · 01

L : 10 · · · 00.

Either way, we obtain exactly one instance of

(
1
0

)
and exactly one instance of

(
0
1

)
, which

in turn implies there are exactly m− 1 •’s. Hence (ii) and (iii) are proved.
It should be clear that (i) follows immediately. �

We will now define a map on order ideals of the poset conjugate in the toggle group to
the Fon-Der-Flaass action.

Definition 10.4. Promotion Let ψ′ be the map on order ideals of ([r]⊕([1]+[1])⊕ [r])× [m]
that toggles all the elements of the poset in succession, north-south column by north-south
column, from west to east.

Remark 10.5. When we say ψ′ toggles the elements from west to east, we mean that if a
is west of a′, then a is toggled before a′ under ψ′.

Lemma 10.6. If the two boundary paths of an order ideal coincide, then after applying
ψ′, the boundary paths of the new order ideal coincide. Furthermore, ψ′ acts on the binary
sequences by left rotation.

Proof. Treating the two boundary paths as one path, we may represent the order ideal as a
2r + 1-tuple:

(a1, . . . , a1︸ ︷︷ ︸
n1

, a2, . . . , a2︸ ︷︷ ︸
n2

, · · · , ai−1, . . . , ai−1︸ ︷︷ ︸
ni−1

, 0, . . . , 0︸ ︷︷ ︸
ni

),

where
∑i

j=1 nj = 2r + 1. An example is shown in the diagram below:

Figure 5. Two boundary paths coincide, represented by the tuple (3, 3, 3, 2, 1, 1, 1).

33



If a1 = m, then the identical binary sequences are:

1 · · · 1︸ ︷︷ ︸
n1

0 · · · 0︸ ︷︷ ︸
a1−a2

· · · 1 · · · 1︸ ︷︷ ︸
ni−1

0 · · · 0︸ ︷︷ ︸
ai−1

1 · · · 1︸ ︷︷ ︸
ni

.

Applying ψ′ deletes the southwest-most elements of the order ideal and shifts what is left of
the “stair-case” southwest by one element. The resulting binary sequences are:

1 · · · 1︸ ︷︷ ︸
n1−1

0 · · · 0︸ ︷︷ ︸
a1−a2

· · · 1 · · · 1︸ ︷︷ ︸
ni−1

0 · · · 0︸ ︷︷ ︸
ai−1

1 · · · 1︸ ︷︷ ︸
ni+1

,

which are cyclic rotations of the original sequences.
If a1 < m, then the identical binary sequences are:

0 · · · 0︸ ︷︷ ︸
m−a1

1 · · · 1︸ ︷︷ ︸
n1

0 · · · 0︸ ︷︷ ︸
a1−a2

· · · 1 · · · 1︸ ︷︷ ︸
ni−1

0 · · · 0︸ ︷︷ ︸
ai−1

1 · · · 1︸ ︷︷ ︸
ni

.

Applying ψ′ shifts the stair-case northwest by one element and brings all the southeast-
most elements of the poset into the order ideal. The resulting binary sequences are:

0 · · · 0︸ ︷︷ ︸
m−a1−1

1 · · · 1︸ ︷︷ ︸
n1

0 · · · 0︸ ︷︷ ︸
a1−a2

· · · 1 · · · 1︸ ︷︷ ︸
ni−1

0 · · · 0︸ ︷︷ ︸
ai−1

1 · · · 1︸ ︷︷ ︸
ni

0,

which are again cyclic rotations of the original sequences, as desired. �

Lemma 10.7. If the upper and lower binary sequences of an order ideal do not coincide, ψ′

shifts the positions of

(
0
0

)
to the left by 1 (mod 2r + m + 1). Furthermore, if the binary

sequences start with an instance of

(
1
1

)
, then ψ′ reverses the relative order in which

(
1
0

)
and

(
0
1

)
appear in the sequence. Otherwise, if the binary sequences start with an instance

of

(
0
0

)
, then the relative order of

(
1
0

)
and

(
0
1

)
after ψ′ is applied remains unchanged.

Proof. We first consider the case in which the upper boundary path is above the lower

boundary path (i.e.

(
1
0

)
occurs before

(
0
1

)
). For any column outside the area immediately

bordering the “double line,” the upper path and the lower path are coincident. As with the

previous lemma, we may show that ψ′ shifts the positions of

(
0
0

)
occurring in the segments

where the paths coincide to the left by one position. Consider the columns (L1, L2, U1, U2)
as shown in the diagram below.

Since the upper path lies above the lower path, L2 < U1. If we start and end at the
positions indicated in the diagram above, our binary sequences sequences are

U : 1

L1−U1︷ ︸︸ ︷
0 · · · 0 1

U1−L2︷ ︸︸ ︷
0 · · · 0

L2−U2︷ ︸︸ ︷
0 · · · 0

L : 1 0 · · · 0︸ ︷︷ ︸
L1−U1

0 · · · 0︸ ︷︷ ︸
U1−L2

1 0 · · · 0︸ ︷︷ ︸
L2−U2
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L1

L2

U1

U2

Start

End

Figure 6. The upper path lies above the lower path, with (L1, L2, U1, U2) = (8, 4, 6, 2).

There are two cases to consider. If the full binary sequences start with an instance of(
1
1

)
, then, under ψ′, L1 7→ U1, L2 7→ L2 + 1, and U1 7→ U2. The resulting binary sequences

for this segment are:

U ′ :

L1−U1︷ ︸︸ ︷
0 · · · 0 1

U1−L2−1︷ ︸︸ ︷
0 · · · 0

L2−U2+1︷ ︸︸ ︷
0 · · · 0 1

L′ : 0 · · · 0︸ ︷︷ ︸
L1−U1

1 0 · · · 0︸ ︷︷ ︸
U1−L2−1

1 0 · · · 0︸ ︷︷ ︸
L2−U2+1

It should be clear that, in this case, ψ′ shifted the positions of

(
0
0

)
to the left by one

position and reversed the relative order of

(
0
1

)
and

(
1
0

)
.

On the other hand, suppose the full binary sequences start with an instance of

(
0
0

)
; then,

under ψ′, L1 7→ L1 + 1, L2 7→ L2 + 1, U1 7→ U1 + 1, and U2 7→ U2 + 1. The resulting path
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Figure 7. Example of promotion when the full binary sequences start with
an instance of (1, 1)t.

sequences for this segment are:

U ′ :

L1−U1︷ ︸︸ ︷
0 · · · 0 1

U1−L2︷ ︸︸ ︷
0 · · · 0

L2−U2︷ ︸︸ ︷
0 · · · 0 1

L′ : 0 · · · 0︸ ︷︷ ︸
L1−U1

0 · · · 0︸ ︷︷ ︸
U1−L2

1 0 · · · 0︸ ︷︷ ︸
L2−U2

1,

(10.1)

Figure 8. Example of promotion when the full binary sequences start with
an instance of (0, 0)t.

and it is again clear that ψ′ shifted the positions of

(
0
0

)
to the left by one position, but

this time it left the relative order of

(
0
1

)
and

(
1
0

)
unchanged. Thus the lemma is proved

for the cases in which the upper path lies above the lower path.
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However, analogous reasoning suffices to prove the lemma for the cases in which the lower
path lies above the upper path, so this completes the proof.

�

Combining the two lemmas above, we arrive at the following theorem.

Theorem 10.8. Each time we apply ψ′ to an order ideal, the corresponding bracket sequence
changes as follows:

(i) The positions of the •’s, when treated as a subset of [m+ 2r + 1], shift to the left by
1 (mod m+ 2r + 1).

(ii) The bracket sequence obtained by deleting the leftmost r− 1 instances of “(” and the
rightmost r − 1 instances of “)”, as well as all •’s, changes in accordance with the
Cameron-Fon-Der-Flaass rule.

Remark 10.9. The “underlying” bracket sequence from (ii) is always among ()(), (()), and
(G).

It should be clear that the map from order ideals to balanced bracket sequences satisfying
the requisite conditions (i.e., to balanced bracket sequences containing at least r instances
of “(” and at least r instances of “)”) is invertible. It follows that this map is bijective.
Therefore, for every positive integer d|m + 2r + 1, the number of order ideals whose orbits
under ψ′ have lengths dividing m+2r+1

d
is equal to the number of bracket sequences whose

orbits under ψ′ have lengths dividing m+2r+1
d

.
Finally, we are ready to demonstrate the cyclic sieving. Suppose we wish to compute the

number of bracket sequences whose orbits under ψ′ have lengths dividing m+2r+1
d

for some
positive integers d dividing m + 2r + 1. We first consider the positions of the •’s, and we
note that, given such a bracket sequence, after applying ψ′ m+2r+1

d
times, the positions of

the •’s must be the same as in the original bracket sequence. There are two cases:

(i) There are m •’s. This implies d|m. By reasoning analogous to that employed in the

analyses of • positions in the [m] × [n] × [2] case, we see that there are
(m+2r+1

d
m
d

)
ways to

choose the positions of the •’s. Since the two boundary paths coincide, it follows from the
Remark 10.9 that the underlying bracket sequence is (G), which is left unchanged after ψ′ is

applied. Therefore, the number of bracket sequences arising in this case is
(m+2r+1

d
m
d

)
.

(ii) There are m − 1 •’s. This implies d|m − 1. There are
(m+2r+1

d
m−1
d

)
ways to choose the

positions of the •’s. It follows from Remark 10.9 that the underlying bracket sequence is
either ()() or (()). Since there are m−1

d
•’s in the first m+2r+1

d
positions; each time we apply

ψ′ the positions of •’s shift to the left by one position, and the bracket sequence only changes
when the left most character is not a •, the bracket sequence changes

m+ 2r + 1

d
− m− 1

d
=

2r + 2

d

times over the course of m+2r+1
d

applications of ψ′. Since m+2r+1
d

applications of ψ′ returns

the original bracket sequence, it follows that 2r+2
d

must be even, which in turn implies that
r+1
d

is an integer. Because there are two ways to choose the underlying bracket sequence,
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the total number of bracket sequences arising in this case is

2

(m+2r+1
d

m−1
d

)
.

It remains to show this matches the results given by substituting the appropriate roots of
unity into the rank-generating function for J(([r]⊕ ([1] + [1])⊕ [r])× [m]). Since [r]⊕ ([1] +
[1])⊕ [r] is Gaussian,

J(([r]⊕ ([1] + [1])⊕ [r])× [m]; q) =

[
m+ 2r + 1

m

]
q

(
1− qm+r+1

1− qr+1

)
.

We wish to compute the number of elements whose order divides m+2r+1
d

, so we let q be a

primitive dth root of unity and divide into four cases:

(i) d|m. We first demonstrate that 1 − qr+1 6= 0. Suppose 1 − qr+1 = 0; then d divides
r + 1. Also, since d divides m and d divides m+ 2r + 1, d divides 2r + 1. This implies that
d = 1, which contradicts the assumption that d ≥ 2. Therefore, 1− qm+r+1 = 1− qr+1 6= 0.

Substituting q into

[
m+ 2r + 1

m

]
q

, the expression evaluates to
(m+2r+1

d
m
d

)
.

(ii) d|m− 1 and d|r + 1. The rank-generating function is[
m+ 2r + 1
m− 1

]
q

· (1− q2r+2)(1− qm+r+1)

(1− qm)(1− qr+1)
.

As in case (i), it is easily shown that 1− qm+r+1 = 1− qm 6= 0. Furthermore, since d divides

r+1, qr+1 = 1. It follows that 1−q2r+2

1−qr+1 = 1+qr+1 = 2. Substituting q into the rank-generating

function, the expression evaluates to

2 ·
(m+2r+1

d
m−1
d

)
,

as desired.

(iii) d|m− 1 and d - r+ 1. Since d divides both m− 1 and m+ 2r+ 1, d divides 2r+ 2. As
in case (ii), it is easily shown that 1− qm 6= 0. Furthermore, 1− qr+1 6= 0, but 1− q2r+2 = 0,
so the whole expression evaluates to 0.

(iv) d - m, d - m − 1. Since d does not divide m − 1, it follows from Lemma 8.4 that[
m+ 2r + 1
m− 1

]
q

= 0. We claim that 1− qr+1 6= 0. Suppose 1− qr+1 = 0; then d|r+ 1. Since d

also divides m+ 2r+ 1, d divides m− 1, which contradicts the assumption d - m− 1. Hence
1 − qr+1 6= 0. Substituting q into the rank-generating function, the expression evaluates to
0.

This completes our proof that the triple

(J((r ⊕ (1 + 1)⊕ r)× [m]), J((r ⊕ (1 + 1)⊕ r)× [m]; q),Ψ)

exhibits the cyclic sieving phenomenon for all positive integers m.
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11. Proof of Theorem 1.2 for the Exceptional Cases

We verified via Dilks’s code that the cyclic sieving phenomenon holds for the triple
(J(J2([2]× [3])× [m]), J(J2([2]× [3])× [m]; q),Ψ) when m ≤ 4 and for the triple (J(J3([2]×
[3]) × [m]), J(J3([2] × [3]) × [m]; q),Ψ) when m ≤ 3. For reference, we provide the data
on the orbit structures corresponding to both exceptional posets for the cases m = 1 and
m = 2. This data is not required to establish Theorem 1.1 because the proof of Theorem 6.3
is uniform, but it is required to show that Theorem 1.2 holds in the exceptional cases as well
as in the infinite families.

P = J2([2]× [3]) P = J3([2]× [3])
m = 1 2× 12 + 1× 3 3× 18 + 1× 2
m = 2 27× 13 77× 19

Table 1. For each entry, the table indicates the number of Fon-Der-Flaass
action orbits of each size that occur in the indicated poset of order ideals. For
instance, the poset J(J3([2] × [3]) × [1]) is composed of 3 orbits of order 18
and 1 orbit of order 2.

It is tempting to propose the following conjecture.

Conjecture 11.1. The triples (J(J2([2]×[3])×[m]), J(J2([2]×[3])×[m]; q),Ψ) and (J(J3([2]×
[3])× [m]), J(J3([2]× [3])× [m]; q),Ψ) exhibit the cyclic sieving phenomenon for all positive
integers m.

12. Concluding Remarks

In this article, we demonstrated that, for all minuscule posets P , the triple (J(P ×
[m]), J(P × [m]; q),Ψ) exhibits the cyclic sieving phenomenon for positive integers m ≤ 2 if
P belongs to the first or second infinite family and for all m if P belongs to the third infinite
family, and we checked that the triple exhibits the cyclic sieving phenomenon for m ≤ 4 if
P is the first exceptional case and for m ≤ 3 if P is the second exceptional case. It remains
an open problem to determine a priori, given a minuscule poset P and a positive integer m,
whether the triple exhibits the cyclic sieving phenomenon, but, as discussed, we conjecture
that the cyclic sieving phenomenon holds for all m for the exceptional cases and for m = 3
for members of the second infinite family. That leaves only the first infinite family for which
even hints about the behavior of its order ideals under the Fon-Der-Flaass action for large
m have proved elusive.

It is our hope that the combinatorial techniques developed in sections 7-11, which pro-
vide more robust methods for representing the Fon-Der-Flaass action as an operation on
bracket sequences as well as new tools for analyzing those bracket sequences, will be of some
help should future researchers seek to tackle concretely the cases not covered in this paper.
Furthermore, we would one day like to see a uniform resolution of this problem that draws
upon the more advanced algebraic techinques of sections 2-6. That, in particular, may seem
like a tall order, but it should be noted that Stembridge proved that an instance of the
q = −1 phenomenon (a special case of the cyclic sieving phenomenon for actions of order
2) holds uniformly for all Cartesian products P × [m] in [14], so we have good reason to
be optimistic, even though the situation in the case of general cyclic sieving is considerably
more complicated.

39



13. Acknowledgments

This research was undertaken at the University of Minnesota, Twin Cities, under the di-
rection of Profs. Victor Reiner, Gregg Musiker, and Pavlo Pylyavsky and with the financial
support of the US National Science Foundation via grant DMS-1001933. It is the authors’
pleasure to extend their gratitude first and foremost to Prof. Reiner, not only for his extra-
ordinary leadership of the REU (Research Experiences for Undergraduates) program hosted
by the University of Minnesota, but also for his dedicated mentorship while this project was
in progress and his continued support when it came time to ready the results for eventual
publication. The authors would also like to thank Jessica Striker, Nathan Williams, and
Kevin Dilks for helpful conversations, with special thanks due to Dilks for allowing them the
use of his Maple code for crucial computations.

On this the occasion of their first successful research project, the authors would like to
take the opportunity to thank the many individuals who contributed to their mathematical
development in the pre-research stages of their careers as well. The first author thanks
Prof. Michael Sipser, his advisor at the Massachusetts Institute of Technology, Dr. Zuming
Feng, his teacher and math team coach at Phillips Exeter Academy, and Alan Alterman,
Tamara Winton, and Robert Arrigo, all of whom were teachers of his at the Scarsdale public
schools. The second author thanks Prof. Richard Stanley, Prof. Richard Melrose, Prof.
Michael Artin, and Prof. Benjamin Brubaker, all of whom were professors of his at the
Massachusetts Institute of Technology. Finally, both authors are grateful to their parents
for all their long years of encouragement and support.

14. Appendix

In this section, for every minuscule poset PV arising from a minuscule representation V
of a complex simple Lie algebra g, we present an explicit description of the isomorphism
φ : J(PV ) → W J satisfying the properties of Theorem 6.3. These results are not necessary
for our uniform proof of Theorem 6.3, but they could constitute a case-by-case proof of
Theorem 6.3 if we justified the assertions in Theorems A.2, B.2, C.2, D.2, D.4, and E.1,
and we include them in order to state specifically, for every PV , which elements of PV are
labelled by which Coxeter generators, where the labels of PV are always understood to be
the labels of the corresponding minuscule heap PwJ0 . We adopt the notation of Stembridge’s

in his appendix to [14].

Appendix A. The Case An−1

For positive integers n ≥ 2, we consider the Lie algebras sl(n), for which the associated root
systems are of the form An−1. Let αj = εj+1−εj for all 1 ≤ j ≤ n−1. The possible minuscule
weights are ω1, ω2, . . . , ωn−1. It is possible to consider all these cases simultaneously. If V is
a representation in which ωk is minuscule, PV = [k]× [n−k], and J = {1, 2, . . . , n−1}\{k}.
The Weyl group W is the group of all n × n permutation matrices, so W is the group of
permutations of the n basis vectors ε1, ε2, . . . , εn, and, as a shorthand, we regard W as the
group of permutations of the n letters 1, 2, . . . , n by setting w(i) = i′ if w(εi) = εi′ for all
1 ≤ i ≤ n. We see then that the Coxeter generator sj swaps the letters j and j + 1 for all
1 ≤ j ≤ n− 1.
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Note that the elements of W J considered as minimum-length coset representatives are
precisely the permutations w satsifying w(1) < w(2) < . . . < w(k) and w(k+1) < w(k+2) <
. . . < w(n). We proceed to define the desired bijection. Let PV = {(i, j) ∈ Z2 : 1 ≤ i ≤ k
and 1 ≤ j ≤ n − k}, where the partial order is defined to be the transitive closure of the

relations (i, j) < (i + 1, j) for all 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − k and (i, j) < (i, j + 1) for all
1 ≤ i ≤ k, 1 ≤ j ≤ n− k − 1. Given an order ideal I ∈ J(PV ), we define Ii for all 1 ≤ i ≤ k
as follows: if (i, 1) /∈ I, then Ii = 0; otherwise, Ii is the largest positive integer such that
(i, Ii) ∈ I.

Definition A.1. Let φ : J(PV )→ W J be the map defined by setting φ(I) to be the unique
minimum-length coset representative satisfying w(i) = i + Ik+1−i for all 1 ≤ i ≤ k. (See
Figure 9.)

Theorem A.2. The induced action of sl on J(PV ) may be expressed as
∏

(i,j):i+l=j+k

t(i,j); in

other words, the elements of PV labelled by the simple reflection sl are precisely those (i, j)
for which i+ l = j + k.

s1

s2

s2

s3

s3

s4

(a)

13

12

14

15

23

24

2534

35

45

(b)

Figure 9. In the case when the root system is A4 and the minuscule weight
is ω2, the map φ sends order ideals of the minuscule heap P45123 (at left) to
elements of the Bruhat poset (W J , <B), where J = {1, 3, 4} (at right).

Appendix B. The Case Bn

For positive integers n ≥ 2, we consider the Lie algebras so(2n+1), for which the associated
root systems are of the form Bn. Let α1 = ε1, and let αj = εj − εj−1 for all 2 ≤ j ≤ n.
The only possible minuscule weight is ω1. If V is a representation in which ω1 is minuscule,
PV = [n]× [n]/S2, and J = {1, 2, . . . , n} \ {1}. The Weyl group W is the group of all n× n
signed permutation matrices – a signed permutation matrix is like a permutation matrix
except that the nonzero entries may be 1 or −1 – so W is the group of signed permutations
of the n basis vectors ε1, ε2, . . . , εn, and, as a shorthand, we regard W as a subgroup of
the group of permutations of the 2n letters 1, 2, . . . , n, 1, 2, . . . , n by setting w(i) = i′ and
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w(i) = i′ if w(εi) = εi′ and w(i) = i′ and w(i) = i′ if w(εi) = −εi′ , for all 1 ≤ i ≤ n. We see
then that the Coxeter generator s1 swaps the letters 1 and 1, and the Coxeter generator sj
swaps the letters j − 1 and j and the letters j − 1 and j for all 2 ≤ j ≤ n.

Note that the elements of W J considered as minimum-length coset representatives are
precisely the permutations w satisfying w(1) < w(2) < . . . < w(n), where in comparing two
letters among 1, 2, . . . , n, 1, 2, . . . , n we treat i as a stand-in for −i. We proceed to define the
desired bijection. Let PV = {(i, j) ∈ Z2 : 1 ≤ i ≤ j ≤ n}, where the partial order is defined
to be the transitive closure of the relations (i, j) < (i + 1, j) for all 2 ≤ i + 1 ≤ j ≤ n and
(i, j) < (i, j + 1) for all 1 ≤ i ≤ j ≤ n− 1. Given an order ideal I ∈ J(PV ), we define Ii for
all 1 ≤ i ≤ n as follows: if (i, i) /∈ I, then Ii = 0; otherwise, Ii is the largest positive integer
such that (i, Ii + i − 1) ∈ J . We also define M(I) to be 0 if I1 = 0 and to be the largest
positive integer such that IM(I) > 0 otherwise.

Definition B.1. Let φ : J(PV )→ W J be the map defined by setting φ(I) to be the unique

minimum-length coset representative satisfying w(i) = I(i) for all 1 ≤ i ≤M(I) and w(i) > 0

otherwise, where we consider j to be j for all 1 ≤ j ≤ n. (See Figure 10.)

Theorem B.2. The induced action of sl on J(PV ) may be expressed as
∏

(i,j):i+l=j+1

t(i,j); in

other words, the elements of PV labelled by the simple reflection sl are precisely those (i, j)
for which i+ l = j + 1.

s1

s1

s1

s1

s2

s2

s2

s3

s3

s4

(a)

∅

1̄

2̄

2̄1̄3̄

3̄1̄

3̄2̄

3̄2̄1̄

4̄

4̄1̄

4̄2̄

4̄2̄1̄4̄3̄

4̄3̄1̄

4̄3̄2̄

4̄3̄2̄1̄

(b)

Figure 10. In the case when the root system is B4 and the minuscule weight
is ω1, the map φ sends order ideals of the minuscule heap P4̄3̄2̄1̄ (at left) to
elements of the Bruhat poset (W J , <B), where J = {2, 3, 4} (at right).
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Appendix C. The Case Cn

For positive integers n ≥ 2, we consider the Lie algebras sp(2n), for which the associated
root systems are of the form Cn. Let α1 = 2ε1, and let αj = εj − εj−1 for all 2 ≤ j ≤ n.
The only possible minuscule weight is ωn. If V is a representation in which ωn is minuscule,
PV = [2n − 1], and J = {1, 2, . . . , n} − {n}. The Weyl group W is identical to that for
the root systems of the form Bn, i.e. it remains the group of all n × n signed permutation
matrices, and we retain the shorthand by which we regard W as a subgroup of the group
of permutations of the 2n letters 1, 2, . . . , n, 1, 2, . . . , n by setting w(i) = i′ and w(i) = i′ if
w(εi) = εi′ and w(i) = i′ and w(i) = i′ if w(εi) = −εi′ , for all 1 ≤ i ≤ n.

Note that the elements of W J considered as minimum-length coset representatives are
precisely the permutations w satisfying 0 < w(1) < w(2) < . . . < w(n − 1). We proceed to
define the desired bijection. Let PV = {i ∈ Z : −n+ 1 ≤ i ≤ n− 1}, where the partial order
is defined to be the transitive closure of the relations i < i + 1 for all −n + 1 ≤ i ≤ n − 2.
Note that PV is in fact totally ordered. Given an order ideal I ∈ J(PV ), we define M(I) to
be −n if I is empty and to be the largest element of I otherwise.

Definition C.1. Let φ : J(PV ) → W J be the map defined by setting φ(I) to be the
unique minimum-length coset representative satisfying w(n) = −M(I) if M(I) < 0 and

w(n) = M(I) + 1 otherwise. (See Figure 11.)

Theorem C.2. The induced action of sl on J(PV ) may be expressed as
∏

i:|i|=l−1

ti; in other

words, the elements of PV labelled by the simple reflection sl are precisely those i for which
|i| = l − 1.

Appendix D. The Case Dn

For positive integers n ≥ 4, we consider the Lie algebras so(2n), for which the associated
root systems are of the form Dn. Let α1 = ε1+ε2, and let αj = εj−εj−1 for all 2 ≤ j ≤ n. The
only possible minuscule weights are ω1, ω2, and ωn. However, the minuscule representation
with minuscule weight ω2 is isomorphic to the minuscule representation with minuscule
weight ω1. Therefore, we need only consider the cases in which the minuscule weight is ω1

or ωn.
If V is a representation in which ω1 is minuscule, PV = ([n − 1] × [n − 1])/S2, and

J = {1, 2, . . . , n}\{1}. The Weyl group W is the group of all even n×n signed permutation
matrices – an even signed permutation matrix is like a signed permutation matrix except that
the number of negative entries must be even – so W is the group of even signed permutations
of the n basis vectors ε1, ε2, . . . , εn, and, as a shorthand, we regard W as a subgroup of
the group of permutations of the 2n letters 1, 2, . . . , n, 1, 2, . . . , n by setting w(i) = i′ and
w(i) = i′ if w(εi) = εi′ and w(i) = i′ and w(i) = i′ if w(εi) = −εi′ , for all 1 ≤ i ≤ n. We
see then that the Coxeter generator s1 swaps the letters 1 and 2 and the letters 2 and 1,
and the Coxeter generator sj swaps the letters j− 1 and j and the letters j − 1 and j for all
2 ≤ j ≤ n.

Note that the elements of W J considered as minimum-length coset representatives are
precisely the permutations w satisfying w(1) < w(2) < . . . < w(n). We proceed to define
the desired bijection. Let PV = {(i, j) ∈ Z2 : 1 ≤ i ≤ j ≤ n− 1}, where the partial order is
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s5

s4

s3

s2

s1

s2

s3

s4

s5

(a)

5

4

3

2

1

1

2

3

4

5

(b)

Figure 11. In the case when the root system is C5 and the minuscule weight
is ω5, the map φ sends order ideals of the minuscule heap P12345̄ (at left) to
elements of the Bruhat poset (W J , <B), where J = {1, 2, 3, 4} (at right).

defined to be the transitive closure of the relations (i, j) < (i+1, j) for all 2 ≤ i+1 ≤ j ≤ n−1
and (i, j) < (i, j + 1) for all 1 ≤ i ≤ j ≤ n− 2. Given an order ideal I ∈ J(PV ), we define Ii
for all 1 ≤ i ≤ n− 1 as follows: if (i, i) /∈ I, then Ii = 0; otherwise, Ii is the largest positive
integer such that (i, Ii + i − 1) ∈ I. We also define M(I) to be 0 if I1 = 0 and to be the
largest positive integer such that IM(I) > 0 otherwise.

Definition D.1. Let φ : J(PV ) → W J be the map defined by setting φ(I) to be the
unique minimum-length coset representative satisfying w(i) = Ii + 1 for all 1 ≤ i ≤ M(I),
w(M(I) + 1) = (−1)M(I), and w(i) > 0 otherwise, i.e., w(M(I) + 1) is defined to be 1 if
M(I) is even and 1 if M(I) is odd. (See Figure 12.)

Theorem D.2. The induced action of s1 on J(PV ) may be expressed as
∏

(i,i):i is odd

t(i,i); the

induced action of s2 on J(PV ) may be expressed as
∏

(i,i):i is even

t(i,i), and the induced action of

sl, for all 3 ≤ l ≤ n, may be expressed as
∏

(i,j):i+l=j+2

t(i,j). In other words, the elements of PV

labelled by the simple reflection s1 are precisely those (i, i) for which i is odd; the elements
of PV labelled by the simple reflection s2 are precisely those (i, i) for which i is even, and the
elements of PV labelled by the simple reflection sl, for all 3 ≤ l ≤ n, are precisely those (i, j)
for which i+ l = j + 2.
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s1

s2

s1

s2

s3

s3

s3

s4

s4

s5

(a)

∅

2̄1̄

3̄1̄

3̄2̄4̄1̄

4̄2̄

4̄3̄

4̄3̄2̄1̄

5̄1̄

5̄2̄

5̄3̄

5̄3̄2̄1̄5̄4̄

5̄4̄2̄1̄

5̄4̄3̄1̄

5̄4̄3̄2̄

(b)

Figure 12. In the case when the root system is D5 and the minuscule weight
is ω1, the map φ sends order ideals of the minuscule heap P5̄4̄3̄2̄1 (at left) to
elements of the Bruhat poset (W J , <B), where J = {2, 3, 4, 5} (at right).

If V is a representation in which ωn is minuscule, PV = Jn−3([2] × [2]) = (n − 2) ⊕
(1 + 1) ⊕ (n − 2), and J = {1, 2, . . . , n} \ {n}. This time the elements of W J considered
as minimum-length coset representatives are precisely the permutations w satisfying 2 ≤
w(1) ≤ 2 ≤ w(2) < w(3) . . . < w(n − 1). We proceed to define the desired bijection. Let
PV = {(i, j) ∈ Z : 1 ≤ |i| ≤ n − 2 and j = 0 or i = 0 and |j| = 1}, where the partial
order is defined to be the transitive closure of the relations (i, j) < (i′, j′) for all (i, j), (i′, j′)
satisfying i′ − i = 1. Given an order ideal I ∈ J(PV ), we define M(I) to be −n + 1 if I
is empty and to be the largest integer for which there exists a j satisfying (M(I), j) ∈ I
otherwise. We also define N(I) to be 1 if (0, 1) ∈ I but (0,−1) /∈ I, −1 if (0,−1) ∈ I but
(0, 1) /∈ I, and 0 otherwise.

Definition D.3. Let φ : J(PV ) → W J be the map defined by setting φ(I) to be the
unique minimum-length coset representative satisfying w(n) = −M(I) + 1 if M(I) < 0,

w(n) = M(I) + 2 if M(I) > 0, and w(n) = N(I) if M(I) = 0. (See Figure 13.)

Theorem D.4. The induced action of s1 on J(PV ) may be expressed as t(0,−1); the induced
action of s2 may be expressed as t(0,1), and the induced action of sl, for all 3 ≤ l ≤ n, may be

expressed as
∏

i:|i|=l−2

t(i,0); in other words, the element of PV labelled by the simple reflection

s1 is precisely (0,−1); the element of PV labelled by the simple reflection s2 is precisely (0, 1),
and the elements of PV labelled by the simple reflection sl, for all 3 ≤ l ≤ n, are precisely
those (i, 0) for which |i| = l − 2.
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Figure 13. In the case when the root system is D5 and the minuscule weight
is ω5, the map φ sends order ideals of the minuscule heap P12345̄ (at left) to
elements of the Bruhat poset (W J , <B), where J = {1, 2, 3, 4} (at right).

Appendix E. The Exceptional Cases

For the Lie algebras E6 and E7, for which the root systems are E6 and E7, respectively,
we let the diagrams of the minuscule heaps speak for themselves. For the case E6, let the
Coxeter-Dynkin diagram for the Weyl group be as shown in part (a) of Figure 14. The only
possible minuscule weights are ω1 and ω6, but the minuscule representation with minuscule
weight ω6 is isomorphic to the minuscule representation with minuscule weight ω1. Therefore,
we need only consider the case in which the minuscule weight is ω1. Part (b) of Figure 14
illustrates the minuscule heap PwJ0 .

For the case E7, let the Coxeter-Dynkin diagram for the Weyl group be as shown in part
(a) of Figure 15. The only possible minuscule weight is ω7. Part (b) of Figure 15 illustrates
the minuscule heap PwJ0 .

The following theorem may be easily verified by hand or by computer.

Theorem E.1. The statement of Theorem 6.3 holds for the cases E6 and E7, where the
minuscule heaps named in the theorem are as they appear in Figures 14 and 15, respectively.
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