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Abstract

A quiver with vertices labeled from 1, . . . , n is said to have period 2 if the quiver obtained by
mutating at 1 and then 2 is isomorphic to the original quiver under the permutation (1, . . . , n)→
(n− 1, n, 1, 2, . . . , n− 2) of the vertices. In this paper, we classify period 2 quivers with 6 nodes,
and we also construct infinite families of period 2 quivers in an attempt to move towards a
complete classification. We also examine symmetries occuring in such quivers.

1 Introduction

There is a well known relation between cluster algebras and integer sequences which are Laurent
polynomials in their initial terms [2]. For example, the terms in the Somos-4 sequence, given by
the recurrence

xnxn+4 = xn+1xn+3 + x2n+2,

are given by the cluster exchange relation associated to mutating vertex 1 in Figure 1(a).
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(b) The mutation µ1S4

Figure 1: The Somos-4 quiver and its mutation at 1

Surprisingly, after mutating at 1, we obtain a quiver which is isomorphic to our original quiver
under the permutation (1, 2, 3, 4) 7→ (4, 1, 2, 3) of the vertices, and so we can think of a sequence of
mutations as iterations of the recurrence. In [3], Fordy and Marsh classify quivers satisfying this
property, and they also consider a more general type of periodicity corresponding to Somos type
sequences in higher dimensional spaces.
In this paper, we introduce several new results concerning quivers of period 2 in an attempt to
move towards a complete classification. In Section 2, we recall the notion of a quiver and a quiver
mutation, and we also define the notion of periodicity considered in [3]. We then recall in Section
3 the notion of a primitive quiver, and we briefly describe how quivers of period 1 and sink-type
quivers of higher period can be described in terms of primitives. Afterwards, we will examine
in Section 4 certain symmetries arising in period 2 quivers. We establish that period 2 quivers
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on 5 nodes are graph symmetric and find a sufficient condition for period 2 quivers to be graph
symmetric. In Section 5, we classify the period 2 quivers on 6 nodes. Finally, in Section 6 we will
introduce two new infinite families of period 2 quivers in Theorems 6.3 and 6.7.

2 Mutations and Periodicity

In this paper, we will only consider quivers containing no 1-cycles or 2-cycles, and we will assume
that the vertices of a quiver Q lie on an N -sided polygon with vertices labeled 1, . . . , N in clockwise
order. We will identify a quiver Q with N nodes with the skew-symmetric N × N matrix whose
(i, j)-entry is given by the number of arrows from i to j minus the number of arrows from j to i.
We define quiver mutation as follows:

Definition 2.1. [1] Given a quiver Q and a vertex k, we construct the mutation of Q at k, denoted
by µkQ, as follows:

1. Reverse all arrows which either begin or end at the node k.

2. Suppose there are p arrows from a node i to k and q arrows from k to a node j. Then we add
pq arrows from i to j to any existing arrows between the two nodes.

3. We remove both arrows of any 2-cycles created in the second step.

Remark 2.2. We can also describe quiver mutation in terms of the adjacency matrix. If A and
B are the skew-symmetric matrices corresponding to the quivers Q and Q = µkP respectively and
if aij and bij are the corresponding matrix entries, then the entries of B are given by the following
formula.

bi,j =

{
−aij if i=k or j=k

aij + 1
2(|aik|akj + aik|akj |) otherwise

We now consider the permutation ρ: (1, . . . , N) 7→ (N, 1, . . . , N-2, N-1) of the vertices of a quiver
Q. This permutation acts on Q so that the number of arrows from i to j in ρ(Q) is the same as the
number of arrows from ρ−1(i) to ρ−1(j) in Q. Thus the action can be viewed as rotating the arrows
in a clockwise direction while leaving the vertices fixed. Note that the action of ρ on our quiver
corresponds to the conjugation of our adjacency matrix by the permutation matrix:

ρ =


0 . . . . . . 1

1 0
...

. . .
. . .

...
1 0

 .

We now consider a sequence of mutations, starting at node 1, then at node 2, and so on.

Definition 2.3. [3] We say that a quiver Q has period m if it satisfies Q(m+1) = ρmQ(1) under
the mutation sequence depicted by

Q = Q(1)
µ1−→ Q(2)

µ2−→ . . .
µm−1−−−→ Q(m)

µm−−→ Q(m+ 1) = ρmQ(1).

Note that in the previous definition, if Q(1) has period m, then each of the quivers Q(2), . . . , Q(m+
1) must have period m. Also note that a quiver Q has period 2 if and only if its opposite, the
quiver obtained from Q by reversing all arrows, is also a period 2 quiver.

2



3 Primitive Quivers

In [3], the authors are able to classify period 1 quivers in terms of a finite set of period 1 quivers
which they call primitives. They also define primitives for higher periodicities and use them to
classify a subset of periodic quivers which we will describe later in the section. First, we recall how
the period 1 primitives are constructed. Consider the matrix

τ =


0 . . . . . . −1

1 0
...

. . .
. . .

...
1 0

 ,

which we call a skew-rotation. We construct the primitives from this rotation as follows. First
consider a quiver with a single arrow from N − k + 1 to 1 and denote its adjacency matrix by

R
(k)
N so that (R

(k)
N )N−k+1,1 = 1, (R

(k)
N )1,N−k+1 = −1, and (R

(k)
N )ij = 0 otherwise. We then define a

matrix B
(k)
N by

B
(k)
N =

{∑N−1
i=0 τ iR

(k)
N τ−i if N = 2r + 1 and 1 ≤ k ≤ r, or if N = 2r and 1 ≤ k ≤ r − 1∑r−1

i=0 τ
iR

(r)
N τ−i if k = r and N = 2r.

We call the quiver P
(k)
N associated to the matrix B

(k)
N a period 1 primitive. It is shown in [3] that

the period 1 primitives are in fact period 1 quivers, and it is also shown that all positive linear
combinations of the period 1 primitives on N nodes are period 1. In fact, these positive linear
combinations classify the sink-type period 1 primitives. Recall that a node j is called a sink if all
arrows incident to j end at j.

Definition 3.1. A quiver is said to be period m sink-type if it is period m and if the node k of Q(k)
is a sink for 1 ≤ k ≤ m.

Proposition 3.2. ([3, Proposition 3.6]) Let N = 2r or 2r+ 1, where r is an integer. Every period

1 sink-type quiver with N nodes has a corresponding matrix of the form B =
∑r

k=1mkB
(k)
N , where

the mk are arbitrary nonnegative integers.
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(b) P
(2)
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Figure 2: Period 1 primitives on 5 vertices

Fordy and Marsh defined in [3] period 2 primitives by “splitting” period 1 primitives and used them
to classify the whole family of strictly period 2 sink-type quivers. (It was shown in [3, Section 4]
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that there are neither period 2 sink-type quivers nor strictly period 2 primitives on an odd number
of vertices).

Definition 3.3. ([3]) For the matrices R
(k)
N , where N = 2r, 1 ≤ k ≤ r− 1, we define the primitive

P
(k,1)
N,2 to be the quiver with matrix given by

B
(k,1)
N,2 =

r−1∑
i=0

τ2iR
(k)
N τ−2i. (3.1)

In addition, if N is divisible by 4, we obtain the additional primitive P
(r,1)
N,2 with matrix given by

B
(r,1)
N,2 =

r/2−1∑
i=0

τ2iR
(r)
N τ−2i. (3.2)

Finally, we obtain primitives P
(k,2)
N,2 with matrix given by

B
(k,2)
N,2 = τB

(k,1)
N,2 τ

−1. (3.3)

Notice that geometrically, the primitive P
(k,1)
N,2 is obtained from the period 1 primitive P

(k)
N by

removing half of the arrows, the ones corresponding to odd powers of τ , and the removed arrows

form P
(k,2)
N,2 .

Proposition 3.4. ([3, Proposition 4.5]) If N = 2r where r is an integer, then every period 2
sink-type quiver with N nodes has a matrix of the form

B =

{∑r
k=1

∑2
j=1mk,jB

(k,j)
N,2 if 4 | N∑r−1

k=1

∑2
j=1mk,jB

(k,j)
N,2 +mr,1B

(r)
N if 4 - N

(3.4)

where the mk,j are non-negative integers so that if 4 divides N , there is at least one k, 1 ≤ k ≤ r,
so that mk,1 6= mk,2, and so that if 4 does not divide N , there is at least one k, 1 ≤ k ≤ r − 1 so
that mk,1 6= mk,2.

Fordy and Marsh [3] do not classify general period 2 quiver in terms of their primitives. However,
assuming certain symmetries, they classify the period 2 quivers on 5 nodes or less, and they are
able to construct an infinite family of period 2 quivers on an arbitrary number of nodes.

4 Graph Symmetry

Definition 4.1. Let Q be a quiver on N nodes and let BQ be its corresponding matrix with (i, j) en-
try bi,j for 1 ≤ i, j ≤ N . Q is graph symmetric if for all 1 ≤ i, j ≤ N , (BQ)i,j = (BQ)N+1−j,N+1−i.

Fordy and Marsh [3] introduce the idea of graph symmetry in Remark 7.2; stating that period 2
quivers on 4 nodes were all graph symmetric, and classifying all period 2 quivers on 5 nodes which
satisfy graph symmetry. In fact, not all period 2 quivers on 4 nodes are graph symmetric. Fordy
and Marsh’s classification of period 2 quivers on 4 nodes, in Section 7.2 of their paper, imposed
the condition that node 1 is not a sink; all these are graph symmetric. By dropping the non-sink
condition, we provide a complete classification of period 2 quivers on 4 nodes, some of which are
graph symmetric, some of which are not graph symmetric, in the following section. Furthermore,
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we are able to show that all period 2 quivers on 5 nodes are graph symmetric, hence the classi-
fication of period 2 graph symmetric quivers on 5 nodes in Section 7.3 of Fordy and Marsh [3] is
a complete classification of period 2 quivers on 5 nodes. However, for N 6= 2, 3, 5 we found that
period 2 quivers on N nodes were not necessarily graph symmetric. In Sections 4.2 and 4.4, we
provide a construction of period 2 quivers on N nodes for N ≥ 4 even and N ≥ 7 odd, which are
not graph symmetric. In addition, in Sections 4.3 and 4.5 we show some relationships between the
period 2 property and graph symmetry.

In this section and those to follow we will find it useful to use an alternative formulation of the
period 2 property given in Fordy and Marsh [3], namely that a quiver Q is period 2 if and only if
µ1ρQ = ρ−1µ1Q.
It will also prove useful to note that for a quiver Q on N nodes whose corresponding matrix BQ
has entries bi,j , for i > j, (i, j) entries of µ1ρBQ and ρ−1µ1BQ are:

(µ1ρBQ)i,j =

{
bi−1,j−1 + ε(bN,j−1, bN,i−1), if j 6= 1

bN,i−1, if j = 1
(4.1)

(ρ−1µ1BQ)i,j =

{
bi+1,j+1 + ε(bi+1,1, bj+1,1) = bi+1,j+1 + εi,j , if i 6= N

bj+1,1, if i = N
(4.2)

where ε(x, y) = 1
2(x|y| − y|x|) and εi,j = ε(mi,mj), where mj = bj+1,1 for 1 ≤ j ≤ N − 1 by the

convention in [3].
Note that when checking that µ1ρQ = ρ−1µ1Q it is sufficient to just check the lower triangular
portion of the matrices as they are skew-symmetric.

4.1 Classification of 4 Nodes

Given BQ, a general N × N skew-symmetric matrix that represents the quiver Q, we impose the
relation

µ1ρ(BQ) = ρ−1µ1(BQ) (4.3)

so that Q is period 2. Given that a quiver Q is period 2, it is determined by the arrows incident
with vertex 1 and vertex N , that is, BQ is determined by the entries in the first column and the
last row, and the number of arrows going from vertex 2 to vertex 1 is equal to the number of arrows
going from vertex N to vertex N − 1, that is, b21 = bN,N−1 in BQ. Thus for a 4 node quiver we let

bi1 = mi−1 for i = 2, . . . , 4 and b42 = p2.

By imposing the relation (4.3), we get the following four conditions

ε31 = 0 , m3 = b32 + ε(p2,m1) , b32 + ε21 = m3 , ε32 = ε(m3, p2).

We choose m1 ≥ 0. Since ε31 = 0, m3 ≥ 0 if m1 > 0.

Remark 4.2. In Section 7.2 [3], the authors claimed that in order to find non-sink-type period
2 quivers, they must require m2 < 0 for node 1 not to be sink and they had the result that all
non-sink-type period 2 quivers with 4 nodes satisfied graph symmetry. However, node 1 not being
sink is not equivalent to B(1) not being a sink type and there are non-sink-type period 2 quivers
with 4 nodes that do not satisfy graph symmetry. We give a classification of all period 2 quivers
with 4 nodes (including period 1 quivers and period 2 sink-type quivers1).

1We do not restrict our attention to strictly period 2 quivers or non-sink-type quivers by excluding period 1 quivers
and sink-type quivers in our classification as it might be easier to observe the general pattern this way.
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Case 4.2.1 (m2 = p2). In this case, b32 = m3 + ε12 and

B(1) =


0 −m1 −m2 −m3

m1 0 −m3 − ε12 −m2

m2 m3 + ε12 0 −m1

m3 m2 m1 0

 ,

where m2 = p2 and either m1 > 0 and m3 ≥ 0, or m1 = 0.

Case 4.2.2 (m2 6= p2 m1 > 0). Since ε21 = ε(p2,m1), it must be that m2, p2 ≥ 0. Hence,
b32 = m3 + ε12 = m3 and

B(1) =


0 −m1 −m2 −m3

m1 0 −m3 −p2
m2 m3 0 −m1

m3 p2 m1 0

 ,

where m2, p2 ≥ 0, m1 > 0 and m3 ≥ 0. Notice that all the quivers classified in this case are not
graph-symmetric.

Case 4.2.3 (m2 6= p2, m1 = 0 and m3 > 0). Since ε32 = ε(m3, p2), it must be that m2, p2 ≥ 0.
Since m1 = 0, b32 = m3 + ε12 = m3 and

B(1) =


0 0 −m2 −m3

0 0 −m3 −p2
m2 m3 0 0
m3 p2 0 0

 ,

where m2, p2 ≥ 0 and m3 > 0.

Case 4.2.4 (m2 6= p2, m1 = 0 and m3 < 0). Since ε32 = ε(m3, p2), it must be that m2, p2 ≤ 0.
b32 = m3 + ε12 = m3 and

B(1) =


0 0 −m2 −m3

0 0 −m3 −p2
m2 m3 0 0
m3 p2 0 0

 ,

where m2, p2 ≤ 0 and m3 < 0.

Case 4.2.5 (m2 6= p2, m1 = 0 and m3 = 0). There are no restrictions on the sign of m2 and p2,
and b32 = m3 = 0, giving

B(1) =


0 0 −m2 0
0 0 0 −p2
m2 0 0 0
0 p2 0 0

 ,

where m2 6= p2.

Note that from the classification, sink-type quivers are not all graph-symmetric and there are
non-sink-type quivers that do not satisfy graph symmetry.
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4.2 Non-Graph-Symmetric Sink-type Quivers with Even Number of Nodes

Given N even, the period 2 primitives P
(k,1)
N,2 and P

(k,2)
N,2 do not have graph symmetry for certain

values of k.

Proposition 4.3. Given N = 2r, the period 2 primitives P
(k,1)
N,2 and P

(k,2)
N,2 are not graph-symmetric

if k is even, i.e., if k = 2, 4, . . . , 2b r2c. More generally, for a sink-type quiver Q of the form specified
in Equation (3.4), if there exist a k even (for 1 ≤ k ≤ r if 4 | N and 1 ≤ k ≤ r − 1 if 4 - N) such
that mk,1 6= mk,2, then Q does not have graph symmetry.

Proof. Given N = 2r, when k ≤ r − 1 and even, the (N − k + 1, 1) entry of B
(k,1)
N,2 is 1 which

corresponds to the term R
(k)
N in the sum by Equation (3.1). The (N, k) entry of B

(k,2)
N,2 is 1 which

corresponds to the term τk−1R
(k)
N τ1−k in the sum by Equation (3.3). Since B

(k,1)
N,2 and B

(k,2)
N,2 add

up to B
(k)
N whose entries are at most 1, the (N, k) entry of B

(k,1)
N,2 is 0 which is not equal to its

(N − k + 1, 1) entry and thus breaks the symmetry. Analogous argument shows that B
(k,2)
N,2 is not

graph-symmetric. In addition, if N is divisible by 4, when k = r the (r + 1, 1) entry of B
(r,1)
N,2 is

1 which corresponds to the term R
(r)
N in the sum by Equation (3.2) and the (N, r) entry of B

(r,2)
N,2

is 1 which corresponds to the term τ r−1R
(r)
N τ1−r in the sum by Equation (3.3). This implies that

B
(r,1)
N,2 and B

(r,2)
N,2 do not satisfy graph symmetry.

If BQ has the form described in Equation (3.4), whenever mk1 6= mk2 for 1 ≤ k ≤ r if 4 | N and
1 ≤ k ≤ r − 1 if 4 - N , bN−k+1,1 = mk1 and bN,k = mk2 6= bN−k+1,1 which breaks the graph
symmetry.

4.3 5 Nodes

In [3], Fordy and Marsh classify period 2 quivers on 5 nodes by imposing graph symmetry. We
confirm that their classification is complete by showing that all period 2 quivers on 5 nodes are
indeed graph symmetric.

Theorem 4.4. All period 2 quiver on 5 nodes are graph symmetric.

Proof. Consider a period 2 quiver Q on 5 nodes and let the (i, j) entry of the matrix associated
with this quiver be bi,j for 1 ≤ i, j ≤ 5. The lower triangular portion of the matrix is:

0
b2,1 0
b3,1 b3,2 0
b4,1 b4,2 b4,3 0
b5,1 b5,2 b5,3 b5,4 0.

Since Q is period 2, (µ1ρQ)i,j =
(
ρ−1µ1Q

)
i,j

by (4.3). Following (4.1) and (4.2), we have
i = 5, j = 1 gives b2,1 = b5,4.
i = 5, j = 2 and i = 4, j = 1 give b4,1 = b3,1 + ε(b5,4, b5,1) and b5,3 + ε(b2,1, b5,1) = b5,2.
i = 2, j = 1 and i = 5, j = 4 give b5,1 + ε(b2,1, b3,1) = b3,2 and b4,3 = b5,1 + ε(b5,4, b5,3).
We show b3,1 = b5,3 as this would imply b4,1 = b5,2 and b3,2 = b4,3.
i = 4, j = 2 gives b3,1 + ε(b5,1, b5,3) = b5,3 + ε(b5,1, b3,1).
Without loss of generality let b5,1 ≥ 0. Note that then ε(b5,1, x) ≥ 0 for all real numbers x and
equality holds if x ≥ 0.
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Case 4.4.1 (b3,1 ≥ 0). In this case, since ε(b5,1, b5,3) ≥ 0 and ε(b5,1, b3,1) = 0, b3,1 ≤ b3,1 +
ε(b5,1, b5,3) = b5,3. Hence b5,3 ≥ 0 and b3,1 + ε(b5,1, b5,3) = b5,3 reduces to b3,1 = b5,3.

Similarly the case b5,3 ≥ 0 leads to b3,1 = b5,3.

Case 4.4.2 (b3,1, b5,3 < 0). In this case b3,1−b5,1b5,3 = b5,3−b5,1b3,1 hence (b3,1−b5,3)(b5,1+1) = 0.
Since b5,1 ≥ 0 we again have b5,3 = b3,1 and the quiver is symmetric.

4.4 Breaking Graph Symmetry for N odd, N > 5

For N ≥ 7, N odd, there are infinitely many period 2 quivers on N nodes which are not graph
symmetric.

Definition 4.5. Let N = 2k+ 1, k ≥ 3. We define FN to be the quiver on N nodes associated with
matrix BFN

whose (i, j) entry for i > j is as follows:

(BFN
)i,j =



−1, if i = j + 3, j = 2w − 1, 1 ≤ w ≤ k − 1

1, if i = j + 1, j = 2w + 1, 1 ≤ w ≤ k − 1

−1, if i = N, j = 2 or i = N, j = N − 2 or i = N − 2, j = 1

1, if i = N − 2, j = 2

0, else.

Theorem 4.6. Let N ≥ 7 be odd and n be non-negative integer. Then B
(1)
N + nBFN

is the matrix
corresponding to a period 2 quiver.

This is a subset of FS2 defined in Section 6.2 so the quivers of this form are indeed period 2.

4.5 Sufficient Condition for Graph Symmetry of a period 2 quiver

Theorem 4.7. Let Q be a 2-periodic quiver on N nodes and let the (i, j) entries of the corresponding
matrix be bi,j for 1 ≤ i, j ≤ N . If

bi,1 = bN,N+1−i for all 2 ≤ i ≤ N, (4.4)

then the quiver is graph symmetric.

Proof. It suffices to prove bi,j = bN+1−j,N+1−i for i > j since the matrix of the quiver is skew-
symmetric.
If i = N, j = k and i = N − k+ 1, j = 1, for 2 ≤ k ≤ N − 1, (µ1ρQ)i,j =

(
ρ−1µ1Q

)
i,j

and (4.4) give
us:

bN−1,k−1 = bk+1,1 + ε(bN,N−1, bN,k−1) = bN,N−k + ε(b2,1, bN−k+2,1) = bN−k+2,2. (4.5)

In addition ,
bi+1,j+1 − bi−1,j−1 = ε(bj+1,1, bi+1,1) + ε(bN,j−1, bN,i−1).

By (4.3),

= ε(bN,N−j , bN,N−i) + ε(bN−j+2,1, bN−i+2,1) = bN−j,N−i − bN−j+2,N−i+2

for 2 ≤ j < i ≤ N − 1.
Hence if bi−1,j−1 = bN−j+2,N−i+2 then bi+1,j+1 = bN−j,N−i.
By induction on k with base cases bk+1,1 = bN,N−k and bk+2,2 = bN−1,N−k−1, which follows from
(4.5), 1 ≤ k ≤ N − 1 and 1 ≤ k ≤ N − 2 respectively, we have that Q is graph symmetric.
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5 6 Node Quivers of Period 2 Classification

We did a case by case analysis for 6 node period 2 quivers (as was done in [3, Section 7.2]). As
we shall see that for 6 node period 2 quivers, all the non-graph-symmetric quivers are integer
linear combinations of period 2 primitives, i.e., there are no additional ε terms in the matrix that
represents these quivers.

We again impose the relation
µ1ρ(BQ) = ρ−1µ1(BQ)

and let
bi1 = mi−1 for i = 2, . . . , 6 and b6j = p6−j for j = 2, . . . , 4.

We get the following 14 conditions that must hold:

m5 = b32 + ε21, (5.1)

p4 = b42 + ε31, (5.2)

p3 = b52 + ε41, (5.3)

p2 = p4 + ε51, (5.4)

m1 + ε(m5, p4) = b43 + ε32, (5.5)

m2 + ε(m5, p3) = b53 + ε42, (5.6)

m3 + ε(m5, p2) = p3 + ε52, (5.7)

m4 + ε51 = m2, (5.8)

b32 + ε(p4, p3) = b54 + ε43, (5.9)

b42 + ε(p4, p2) = p2 + ε53, (5.10)

b52 + ε(p4,m1) = m3, (5.11)

b43 + ε(p3, p2) = m1 + ε54, (5.12)

b53 + ε(p3,m1) = m4, (5.13)

b54 + ε(p2,m1) = m5. (5.14)

We set m1 ≥ 0 and consider all the cases based on the signs of m2, . . . ,m5. This is a natural
way to classify all 6 node period 2 quivers since ε(x, y) vanishes whenever x and y are of the same
sign, simplifying the conditions above written in the most general form. For example, whenever
m1m5 ≥ 0, m2 = m4 and p4 = p2. The following seven cases contain all the 6 node period 2 quivers
(including period 1 quivers and period 2 sink-type quivers).

5.1 The case m1 ≥ 0, m2 ≥ 0, m3 ≥ 0, m5 ≥ 0, p4 ≥ 0

B(1) =



0 −m1 −m2 −m3 −m2 −m5

m1 0 −m5 −p4 −m3 −p4
m2 m5 0 −m1 −m2 −m3

m3 p4 m1 0 −m5 −p4
m2 m3 m2 m5 0 −m1

m5 p4 m3 p4 m1 0

 .

Note that B(1) = m1B
(1,1)
6,2 + m5B

(1,2)
6,2 + m2B

(2,1)
6,2 + p4B

(2,2)
6,2 + m3B

(3)
6 with all the coefficients

nonnegative. By Proposition 3.4, this case is exactly the 6 node period 2 sink-type quivers.
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5.2 The case m2 < 0, m5 ≤ 0

B(1) =



0 0 −m2 0 −m2 −m5

0 0 −m5 −p4 0 −p4
m2 m5 0 0 −m2 0
0 p4 0 0 −m5 −p4
m2 0 m2 m5 0 0
m5 p4 0 p4 0 0

 .

5.3 The case m2 ≤ 0,m3 < 0, m5 ≤ 0, p4 ≤ 0

B(1) =



0 0 −m− 2 −m3 −m2 −m5

0 0 −m5 −p4 −m3 −p4
m2 m5 0 0 −m2 −m3

m3 p4 0 0 −m5 −p4
m2 m3 m2 m5 0 0
m5 p4 m3 p4 0 0

 .

5.4 The case m2 ≥ 0, m3 < 0, m5 < 0

B(1) =



0 0 −m2 −m3 −m2 −m5

0 0 −m5 −m2 −m3 −m2

m2 m5 0 −m2(m5 −m3) −m2 −m3

m3 m2 m2(m5 −m3) 0 −m5 −m2

m2 m3 m2 m5 0 0
m5 m2 m3 m2 0 0

 .

5.5 The case m1 ≥ 0, m2 ≥ 0, m3 < 0

B(1) =



0 −m1 −m2 −m3 −m2 −m1

m1 0 −m1 −m2 +m1m3 −m3 −m2

m2 m1 0 −m1 +m2m3 −m2 +m1m3 −m3

m3 m2 −m1m3 m1 −m2m3 0 −m1 −m2

m2 m3 m2 −m1m3 m1 0 −m1

m1 m2 m3 m2 m1 0

 .

Notice that all the quivers covered in this case are period 1 and not period 2.

5.6 The case m1 ≥ 0, m2 < 0, m5 ≥ 0

B(1) =



0 −m1 −m2 0 −m2 0
m1 0 −m5 +m1m2 −m2 −m5 +m1m2 −m2

m2 m5 −m1m2 0 −m1 +m2m5 −m2 0
0 m2 m1 −m2m5 0 −m5 +m1m2 −m2

m2 −m1m2 m2 m5 −m1m2 0 −m1

m5 m2 0 m2 m1 0

 .

5.7 The case m1 ≥ 0, m2 < 0, m3 ≥ 0, m5 ≥ 0

B(1) =



0 −m1 −m2 −m3 −m2 −m5

m1 0 −m5 +m1m2 −m2 −m3 +m1m2 −m2

m2 m5 −m1m2 0 −m1 −m2(m3 −m5) −m2 −m3

m3 m2 m1 +m2(m3 −m5) 0 −m5 +m1m2 −m2

m2 m3 −m1m2 m2 m5 −m1m2 0 −m1

m5 m2 m3 m2 m1 0

 .
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6 Infinite Families

6.1 Family FS1

We define four types of quivers on odd number of nodes which we will utilize.

Definition 6.1. 2 Let N = 2k + 1, k ≥ 3 be the number of nodes of the quiver. The (i, j), i > j
entries of matrices for the quivers AN ,CN ,DN ,EN are as follows:

(BAN
)i,j =



1, if i = j + 1, 1 ≤ j ≤ N − 1

−1, if i = j + 2, 1 ≤ j ≤ N − 2

−1, if i = N − 1, j = 1 or i = N, j = 2

1, if i = N − 1, j = 2

0, otherwise

(BCN
)i,j =


1, if i = j + 1, 2 ≤ j ≤ N − 1

1, if i = N, j = 1

0, otherwise

(BDN
)i,j =

{
−1, if i = 2w1 + 1, j = 2w2 − 1, 1 ≤ w2 < w1 ≤ k, (i, j) 6= (N, 1)

0, otherwise

(BEN
)i,j =

{
1, if i = 2w1 + 1, j = 2w2 − 1, 2 ≤ w2 ≤ w1 ≤ k − 1

0, otherwise.

Theorem 6.2. Let n and m be non-negative integers. For N odd and greater or equal to 7, the
quiver corresponding to the matrix BAN

+ nBCN
+mBDN

+ nmBEN
is period 2.

Remark 6.3. Note that in the 5 node case that A5 and C5 make sense and the resulting quiver
when a non-negative number of copies of C5 are added to A5 is period 2.

Remark 6.4. If m = 0 and n 6= 1, then the resulting matrix falls within the family F in [3, Section
7.2] which will be discussed later on.

Proof. The lower triangle portion of the matrix corresponding to the resulting quiver Q is:

0
1 0
−1 1 + n 0
0 −1 1 + n 0
−m 0 nm− 1 1 + n 0

0 0 0 −1 1 + n 0
−m 0 nm−m 0 nm− 1 1 + n 0

0 0 0 0 0 −1 1 + n 0
−m 0 nm−m 0 nm−m 0 nm− 1 1 + n 0

...
...

...
...

...
...

...
...

. . .
. . .

0 0 0 0 0 0 0 0 . . . −1 1 + n 0
−m 0 nm−m 0 nm−m 0 nm−m 0 . . . 0 nm− 1 1 + n 0
−1 1 0 0 0 0 0 0 . . . 0 0 −1 1 + n 0
n −1 −m 0 −m 0 −m 0 . . . 0 −m 0 −1 1 0.

2We do not define a quiver BN as we reserve subscripts of B to denote matrices.
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Figure 3: Quivers on 11 nodes

We now show the (i, j) entries of µ1ρBQ and ρ−1µ1BQ are equal for 1 ≤ j < i ≤ N by using
relations (1) and (2). Let the bi,j be the (i, j) entry of BQ.

Case 6.4.1 (3 ≤ j < i ≤ N − 2). In this case ε(bN,j−1, bN,i−1) = ε(bi+1,1, bj+1,1) = 0, as
bN,j−1, bN,i−1, bi+1,1, and bj+1,1 are all nonpositive, so relations (1) and (2) reduce to bi+1,j+1 =
bi−1,j−1 which is true for all 3 ≤ j < i ≤ N − 2.

Note that Q is graph symmetric so (ρ−1µ1BQ)N−j+1,N−i+1 = (µ1ρBQ)i,j for all 1 ≤ j < i ≤ N .
Hence (ρ−1µ1BQ)i,j = (µ1ρBQ)i,j if and only if (ρ−1µ1Q)N−j+1,N−i+1 = (µ1ρBQ)N−j+1,N−i+1. It
now suffices to check (ρ−1µ1BQ)i,j = (µ1ρBQ)i,j for i = 2, N − 1, and N ; the cases j = N − 1, 2, 1
follow directly.

Case 6.4.2 (i = N −1). If j = 1 then bN,2 + ε(bN,1, b2,1) = −1 + ε(n, 1) = −1 = bN,N−2 as desired.
If j = N − 3 then bN,N−2 + ε(bN,1, bN−2,1) = −1 + ε(n,−m) = −1 + nm = nm− 1 + ε(−m,−1) =
bN−2,N−4 + ε(bN,N−4, bN,N−2).
If j = N − 2 then bN,N−1 + ε(bN,1, bN−1,1) = 1 + ε(n,−1) = 1 +n = n+ 1 + ε(0,−1) = bN−2,N−3 +
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ε(bN,N−3, bN,N−2).
If 1 < j < N − 3 and j odd then bN,j+1 + ε(bN,1, bj+1,1) = 0 + ε(n, 0) = 0 = 0 + ε(bN,j−1,−1) =
bN−2,j−1 + ε(bN,j−1, bN,N−2).
If j = 2 then bN,3 + ε(bN,1, b3,1) = −m+ ε(n,−1) = bN−2,1 + ε(bN,1, bN,N−2).
If 2 < j < N − 3 and j even then bN,j+1 + ε(bN,1, bj+1,1) = −m + ε(n,−m) = −m + nm =
nm−m+ ε(−m,−1) = bN−2,j−1 + ε(bN,j−1, bN,N−2).

Case 6.4.3 (i = N). If j = 1 then b2,1 = 1 = bN,N−1 as desired.
If j = 2 then bN−1,1 + ε(bN,1, bN,N−1) = −1 + ε(n, 1) = −1 = b3,1.
If j = 3 then bN−1,2 + ε(bN,2, bN,N−1) = 1 + ε(−1, 1) = 0 = b4,1.
If j = N − 2 then bN−1,N−3 + ε(bN,N−3, bN,N−1) = −1 + ε(0, 1) = −1 = bN−1,1.
If j = N − 1 then bN−1,N−2 + ε(bN,N−2, bN,N−1) = 1 + n+ ε(−1, 1) = n = bN,1.
If 3 < j < N − 2 then bN−1,j−1 + ε(bN,j−1, bN,N−1) = ε(bN,j−1, 1) = bN,j−1 = bj+1,1.

Case 6.4.4 (i = 2). Since i > j we have to only check the case i = 2, j = 1.
b3,2 + ε(b3,1, b2,1) = 1 + n+ ε(−1, 1) = n = bN,1 as desired.

6.2 Family FS2

Definition 6.5. . Let N ≥ 5 be odd and integers ai, ti, ci, gi satisfy

• a1, t1 ≤ 0

• abN4 c = tbN4 c if N ≡ 1 mod 4

• gi + aj , gi + tj , ci + aj , ci + tj ≤ 0 for j = i, i+ 1, for all 1 ≤ i ≤
⌊
N
4

⌋
The first and last condition ensure that entries in the first column, except first two entries and last
entry, and last row, except the first entry and last two entries, are non-positive.
We define the (i, j) entries, i > j, of a quiver on N nodes,where N is odd, as follows:

bm,1
2≤m≤N+1

2

=


1 if m = 2

a1 if m = 3

gn + tn if m = 2n+ 2, n ≥ 1

cn + an+1 if m = 2n+ 3, n ≥ 1

bm,1
N+3

2
≤m≤N

=


1 if m = N

a1 if m = N − 1

cn + tn if m = N + 2− (2n+ 2), n ≥ 1

gn + an+1 if m = N + 2− (2n+ 3), n ≥ 1

bN,m
1≤m≤N−1

2

=


1 if m = 1

t1 if m = 2

cn + an if m = 2n+ 1, n ≥ 1

gn + tn+1 if m = 2n+ 2, n ≥ 1
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bN,m
N+1

2
≤m≤N−1

=


1 if m = N − 1

t1 if m = N − 2

gn + an if m = N − (2n+ 1), n ≥ 1

cn + tn+1 if m = N − (2n+ 2), n ≥ 1.

Define

bm,2 = bN,m−2 − bm,1 for 3 ≤ m ≤ N − 1 (6.1)

bm,3 = bm−2,1 − bN,m−2 for 4 ≤ m ≤ N − 1

bi+1,j+1 = bi−1,j−1 for 3 ≤ j < i ≤ N − 2.

The (i, j) entries for i = j are 0, and for j > i, bi,j = −bN+1−i,N+1−j.

Remark 6.6. Note that relations (6.1) can be replaced with

bN−1,m = bm+2,1 − bN,m for 2 ≤ m ≤ N − 2 (6.2)

bN−2,m = bN,m+2 − bm+2,1 for 2 ≤ m ≤ N − 3

bi+1,j+1 = bi−1,j−1 for 3 ≤ j < i ≤ N − 2.

(6.2), along with defintions of bi,1, for 2 ≤ i ≤ N , and bN,j for 1 ≤ j ≤ N − 1 define the same
quiver Q.

The lower triangle portions of the matrices on 11 and 13 nodes are shown below, with c0 = g0 =
0, a0 = t0 = 1.

0
1 = g0 + t0 0
c0 + a1 a0 − a1 0
g1 + t1 g0 − g1 t0 − t1 0
c1 + a2 a1 − a2 c0 − c1 a0 − a1 0
g2 + t2 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0
c2 + t2 a2 − t2 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g1 + a2 g2 − g1 t2 − a2 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0
c1 + t1 t2 − t1 c2 − c1 a2 − t2 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g0 + a1 g1 − g0 a2 − a1 g2 − g1 t2 − a2 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0

1 g0 + t1 c1 + a1 g1 + t2 c2 + a2 g2 + a2 c1 + t2 g1 + a1 c0 + t1 1 = g0 + a0 0

0
1 = g0 + t0 0
c0 + a1 a0 − a1 0
g1 + t1 g0 − g1 t0 − t1 0
c1 + a2 a1 − a2 c0 − c1 a0 − a1 0
g2 + t2 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0
c2 + a3 a2 − a3 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g2 + a3 0 t2 − t3 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0
c2 + t2 t3 − t2 0 a2 − a3 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g1 + a2 g2 − g1 a3 − a2 0 t2 − t3 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0
c1 + t1 t2 − t1 c2 − c1 t3 − t2 0 a2 − a3 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g0 + a1 g1 − g0 a2 − a1 g2 − g1 a3 − a2 0 t2 − t3 g1 − g2 t1 − t2 g0 − g1 t0 − t1 0

1 g0 + t1 c1 + a1 g1 + t2 c2 + a2 g2 + t3 c2 + t3 g2 + a2 c1 + t2 g1 + a1 c0 + t1 1 = g0 + a0 0
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Theorem 6.7. FS2 is a family of period 2 quivers.

Proof. Let Q be a quiver of this family. We claim that µ1ρ swaps ak with tk and gk with ck for
each k in BQ, henceforth known as the swapping property.

The lower triangular portion of µ1ρBQ for Q on 9 nodes, with c0 = g0 = 0 and a0 = t0 = 1, is as
follows:

0
1 = c0 + a0 0
g0 + t1 t0 − t1 0
c1 + a1 c0 − c1 a0 − a1 0
g1 + t2 t1 − t2 g0 − g1 t0 − t1 0
c2 + a2 c1 − c2 a1 − a2 c0 − c1 a0 − a1 0
g2 + a2 t2 − a2 c1 − c2 t1 − t2 g0 − g1 t0 − t1 0
c1 + t2 c2 − c1 a2 − t2 g1 − g2 a1 − a2 c0 − c1 a0 − a1 0
g1 + a1 a2 − a1 g2 − g1 a2 − t2 c1 − c2 t1 − t2 g0 − g1 t0 − t1 0
c0 + t1 c1 − c0 t2 − t1 c2 − c1 t2 − a2 g1 − g2 a1 − a2 c0 − c1 a0 − a1 0

1 c0 + a1 g1 + t1 c1 + a2 g2 + t2 c2 + t2 g1 + a2 c1 + t1 g0 + a1 1 = c0 + t0 0.

Recall that for i > j,

(µ1ρBQ)i,j =

{
bi−1,j−1 + ε(bN,j−1, bN,i−1), if j 6= 1

bN,i−1, if j = 1.

Denote (µ1ρBQ)i,j by b
′
i,j for each i, j. It proves convinent to think of bN,1 as c0 +a0 and as c0 + t0.

We will show that the swapping property is true for the last column and first row, and that relations
(6.1) are satisfied by µ1ρBQ, hence the swapping property holds for the entire matrix.

Case 6.7.1 (j = 1). In this instance b
′
i,1 = bN,i−1 which corresponds to swapping ak with tk and gk

with ck for each k in bi,1 to obtain b
′
i,1.The first column of µ1ρBQ satisfies the swapping property.

Case 6.7.2 (i = N , j > 2). In this instance, ε(bN,j−1, bN,i−1) = bN,j−1. Hence b
′
N,j = bN−1,j−1 +

bN,j−1 = bj+1,1 by (6.2). This which equates to swapping ak with tk and gk with ck for each k in
bN,j to obtain b

′
N,j.

Case 6.7.3 (i = N ,j = 2). b
′
N,2 = bN−1,1 + ε(bN,1, bN,N−1) = bN−1,1 = g0 + a1 which equates to

swapping a1 with t1 and g0 with c0, since g0 = c0. Note too that b
′
N,2 = c0 + a+ 1 = b3,1.

We have established that the first column and last row satisfy the swapping property and that

b
′
i,1 = bN,i−1 for all 2 ≤ i ≤ N (6.3)

b
′
N,j = bj+1,1 for all 1 ≤ j ≤ N − 1.

It now sufficies to show that the recursive relations (6.1) hold for the b
′
i,j . Using (6.3) we obtain:

For 3 ≤ m ≤ N − 1:

b
′
m,2 = bm−1,1 + ε(bN,1, bN,m−1) = bm−1,1 − bN,m−1 = b

′
N,m−2 − b

′
m,1.
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For 4 ≤ m ≤ N − 1:

b
′
m,3 = bm−1,2 + ε(bN,2, bN,m−1) = bm−1,2 = bN,m−3 − bm−1,1 = b

′
m−2,1 − b

′
N,m−2.

For 3 < j < i ≤ N − 2:

b
′
i+1,j+1 = bi,j + ε(bN,j , bN,i) = bi,j = bi−2,j−2 + ε(bN,j−2, bN,i−2) = b

′
i−1,j−1.

For j = 3, i ≤ N − 2:
b
′
i+1,4 = bi,3 = bi−2,1 − bN,i−2 = bi−1,2.

Hence the recurrences are satisfied and BQ has the swapping property. µ1ρ is an involution and Q
has period 2.

6.3 Other Family

In this section, we describe a family of 2-periodic quivers (with at least five vertices) which enjoys a
particularly simple description in terms of period 1 primitives. This family can be seen as a subset
of a family described in [3, Section 7.4], which we’ll call F ; in particular, a subset FD of nonnegative
linear combinations of a specific set of quivers. Before continuing, we will briefly review Fordy and
Marsh’s family F . It consists of quivers on N vertices with matrices which are functions of N − 1
parameters mr (which we write as a vector m),

B(m) :=


0 −m1 · · · −mN−1

m1 0 ∗
... 0

mN−1 ∗ 0

 , (6.4)

where the entries in the regions marked ∗ are functions bij(m). To be in F , these quivers must
additionally satisfy mi = mN−i for 2 ≤ i ≤ N − 2, and the following identity (which ensures
2-periodicity):

ρ−1µ1 (B(m)) = B (σ(m)) , (6.5)

where σ is the involution (m1, . . . ,mN−1) 7→ (mN−1, . . . ,m1). Because of the symmetry require-
ment for the mi, σ can be considered as exchanging m1 and mN−1, so strictness of the 2-periodicity
is equivalent to the condition m1 6= mN−1. In their paper [3], Fordy and Marsh showed that
membership in this family was equivalent to requiring

bij = σj−1(bi−j+1,1) +

j−1∑
s=1

σj−1−s(εs,i−j+s), (6.6)

where εx,y = ε(mx,my). It should be noted that σ acts formally on these terms as expressions in
the mi.
We now describe FD, in a way that is independent of the characterization of F ; then we will show
that indeed FD ⊂ F . On N vertices, FD consists of quivers obtained by adding a nonnegative
linear combination of a finite number of quivers which are not themselves 2-periodic to a single

copy of a certain period 1 primitive. To describe them, we introduce the following notation: let P
(`)
N

denote the period 1 primitives on N vertices as in [3]. Then take ∆
(`)
N = P

(`+2)
N − P (`)

N−4, where the
difference is the difference of matrices obtained by adding two rows and columns of zeros around

the matrix for P
(`)
N−4. Note that these are defined for `+ 2 < N/2. Furthermore, take CN to be the
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P
(2)
9

C9

∆
(1)
9 = P

(3)
9 − P

(1)
5 ∆

(2)
9 = P

(4)
9 − P

(2)
5

Figure 4: Examples of CN and ∆
(`)
N for N = 9.

quiver obtained by removing the arrows 2 → 1 and N → N − 1 from P
(1)
N . For examples of these

quivers on 9 vertices, see figure 4.
With this, we have the following proposition:

Proposition 6.8. With P
(`)
N , ∆

(`)
N and CN defined as above, we have that the quivers (which

constitute FD) given by

QD(k, c1, . . . , cL) := P
(2)
N + kCN +

L∑
`=1

c`∆
(`)
N , (6.7)

for any nonnegative c1, . . . , cL (where L = bN/2c−2) and k ≥ 1, are in the family F , and therefore
strictly 2-periodic.

Proof. Our approach is to show that the formula (6.6) agrees with the entries of the matrix obtained
from (6.7) when we choose the appropriate values for the mj . To begin, we consider the first column
of the matrix BD of QD(k, c1, . . . , cL). For N = 2r, it is given by b11 = b21 = 0, b31 = −1, b41 = c1,
b51 = c2, . . ., br+1,1 = cL, br+2,1 = cL−1, . . ., b2r−2,1 = c1, b2r−1,1 = −1, and b2r,1 = k. For
N = 2r + 1, the sequence is the same, except there is an extra cL in the middle, so br+2,1 = cL,
after which it continues as it did for the even N case. To show membership in F , we therefore set
mi = bi+1,1 for j = 1, . . . , N − 1, and check the conditions as described above. First, we see that
indeed mi = mN−i for 2 ≤ i ≤ N − 2, and m1 6= mN−1, since k > 0. All that remains is to check
the formula (6.6).
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Note that, due to the nonnegativity of the mi except for m2 and mN−2 (which are −1), we have
that εx,y = 0 unless exactly one of x and y is equal to 2 or N − 2. Now, we compute with the
formula (6.6), considering different cases for the value of i− j.
Case 6.8.1. i− j = 1.

In this case, for j = 2, (6.6) gives b32 = σ(m1) + ε1,2 = mN−1 = k (we have ε1,2 = 0 because
m1 = 0), which is what we expect from (6.7). For 2 < j < N − 2 and j odd, the first term on the
right side of (6.6) vanishes since m1 = 0, and the sum over s contributes two terms; the s = 1 term,
given by εN−1,2 = k and the s = 2 term, given by ε2,3 = −c1, giving bij = k − c1. On the other
hand, for j even in this range, the first term contributes σ(m1) = mN−1 = k, while the s = 1 term
no longer contributes, meaning we again have bij = k − c1. These results both agree with (6.7).
Finally, for j = N − 2, the σj−1(bi−j+1,1) contributes a σ(m1) = k, while the s = 1 term vanishes,
and the s = 2 and s = N − 3 terms cancel, so we find bN−1,N−2 = k; for j = N − 1, the first term
contributes 0, and the s = 1 term cancels with the s = N − 2 term, while the s = 2 term cancels
with the s = N − 3 term, so we find bN,N−1 = 0; both of these agree with (6.7).

Case 6.8.2. 1 < i− j = d < N − 1.

In this case, we never have i−j+s = 2 in the sum, and we also never have s = N−2, since j ≤ N−d
and s is at most j− 1. So the only terms that can possibly contribute are s = 2 and s = N − 2− d.
Neither term appears for j = 2, so we always have bi2 = σ(bi−1,1) = md. For 2 < j < N − 1 − d,
only the s = 2 term appears, which contributes −md+2, so here we have bij = md −md+2 (note
that the σ’s have no effect because 1 < d < N − 1). For j = N − 1 − d and N − d, both nonzero
terms in the sum appear, but cancel each other out, due to the fact that mi = mN−i, so we once
again obtain bij = md. Note that for d > N − 4, there is no region 2 < j < N − 1− d, so we only
obtain the outer two regions, where bij = md. Again, all of these results agree with (6.7).

Case 6.8.3. i− j = N − 1.

In this case, we are only considering the entry bN,1, which the formula trivially gives to bemN−1 = k,
again in agreement with (6.7).
The proof for odd N is almost identical, so it is omitted. So, we indeed have that the quivers
QD(k, c1, . . . , cL) described are all in the family F , and therefore strictly 2-periodic.

In [3], Fordy and Marsh additionally showed that a specification of m1, . . . ,mN−1 within the stated
constraints (mi = mN−i for 2 ≤ i ≤ N − 2) only yielded a quiver in F if the mi also satisfied
mi ≥ 0 for 2 < i < N − 2 with i odd, as well as m2 = −1 for N odd. However, for N odd, the
nonnegativity of mi for odd i with 2 < i < N − 2 implies that, in fact, we have mi ≥ 0 for all i
with 2 < i < N − 2, since we require mi = mN−i and either i or N − i will be odd for N odd. So,
we obtain the following:

Remark 6.9. For N odd, the quivers QD(k, c1, . . . , cL) and their images under the involution
ρ−1µ1 account for all of the quivers in F on N vertices with either m1 = 0 or mN−1 = 0.

Because the quivers in FD are in F , we can easily find the image ρ−1µ1QD(k, c1, . . . , cL) in gen-
eral. This is because QD(k, c1, . . . , cL) = B(0,−1, c1, . . . , cL, . . . , c1,−1, k), where B here is the
function in (6.4) (again, there is an extra cL when N is odd), and by definition, this satisfies
[ρ−1µ1]B(0,−1, c1, . . . , cL, . . . , c1,−1, k) = B(k,−1, c1, . . . , cL, . . . , c1,−1, 0). Because the c` are
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not affected by this operation, we can immediately conclude that the image Q̃D(k, c1, . . . , cL) will
be of the form

Q̃D(k, c1, . . . , cL) = P
(2)
N + kC̃N +

L∑
`=1

c`∆
(`)
N

for some C̃N . We can then find C̃N simply by computing [ρ−1µ1]CN − P (2)
N , which is evidently

(
C̃N

)
ij

=


−1 i− j = 1 or i = N − 1 and j = 2,
1 j − i = 1 or i = 2 and j = N − 1,
0 otherwise.

Now, the formula for the entries of B(m1, . . . ,mN−1) found by Fordy and Marsh shows that if
m2 = mN−2 = −1 with the rest of the mj positive, then each entry is a linear combination of the
parameters m1, . . . ,mN−2, because the εi,j vanish except when one of i and j is either 2 or N − 2,
in which case εi,j is equal to mi or −mj . Since the operation ρ−1µ1 has the effect of exchanging
m1 and mN−1 for quivers in F , this means that if we set mN−1 = 0, then the occurrences of m1 in
ρ−1µ1B(m1, . . . ,mN−2, 0) exactly coincide with the occurrences of mN−1 in B(0,m2, . . . ,mN−1).
In our case, this means we can recover the general form of the quivers in F from QD and Q̃D:

Corollary 6.10. For N odd, the quivers

QA(k, k̃, c1, . . . , cL) := P
(2)
N + kCN + k̃C̃N +

L∑
`=1

c`∆
(`)
N

account for all of the quivers in F on N vertices.
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