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Abstract. Eager and Franco introduced a transformation on the F-polynomials of
Fomin and Zelevinsky that seems to display a surprising stabilization property in the

case of the dP1 quiver. They conjectured that this transformation will always cause the
cluster variables to converge as a formal power series. We explore this transformation on

the Kronecker and Conifold quivers and show that cluster variable stabilization occurs

for both of them. We also provide a combinatorial interpretation for the stable terms in
each case.
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1. Cluster Algebras and F-Polynomials

Fomin and Zelevinsky defined cluster algebras and quiver mutations in [1]. They also
introduced F-polynomials in [2]. We review these concepts here very briefly.

Definitions 1.1.

A quiver is a directed graph. Multiple edges are allowed. Self-loops are not allowed.

Given a quiver, a mutation sequence is an infinite sequence of vertices in the quiver.

Given a quiver, a cluster seed is an assignment of values, one to each vertex.

Given a quiver, mutation sequence, and cluster seed, quiver mutation/ cluster mutation
is performed by reading the mutation sequence left to right, and for each vertex i in the
sequence, mutating the quiver at i according to the mutation rules given below. Quiver
mutation generates an infinite sequence of new quivers along with an infinite sequence of
new cluster variables. For an example of quiver mutation, see Figure 2

Definition 1.2. Rules for mutation at a vertex i:
1
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(1) Update the cluster variable for vertex i:∏
v→i cluster var for v +

∏
i→v cluster var for v

old cluster var for i

(2) For every 2-path u→ i→ v, draw an arrow u→ v.
(3) If any self-loops or 2-cycles were newly created, delete them.
(4) Reverse all arrows incident to i.

Definition 1.3. Given a quiver, we frame it by adding a new ”frozen vertex” i′ for each
vertex i and drawing an arrow i→ i′.

Definition 1.4. Given a framed quiver and a mutation sequence µ that includes only non-
frozen vertices, set the initial cluster variable corresponding to any non-frozen vertex equal
to 1 and the initial cluster variable corresponding to any frozen vertex i′ equal to yi. The
cluster variables obtained from µ are known as F-polynomials.

2. Stable Cluster Variables

We now summarize the apparently stabilizing transformation on F-polynomials intro-
duced by Eager and Franco.

Definition 2.1. At any step in the mutation sequence, define the C-matrix by

Cij = number of arrows from i′ to j

(with this value being negative if the arrows are pointing from j to i′)

Definition 2.2. Given a C-matrix and some monomial m = ya1
1 · y

a2
2 · . . . · yan

n , define the
C-matrix transformation m̃ of m as

m̃ = yb11 · y
b2
2 · . . . · ybnn

where ~b = C−1~a

Definition 2.3. Let Fn be the F-polynomial derived at the nth step of the mutation
sequence. Let Cn be the C-matrix at the nth step of the mutation sequence. Writing
Fn =

∑
m as a sum of monomials m, define the C-matrix transformation F̃n of Fn as

F̃n =
∑

m̃

In other words, we transform each monomial individually.

In section 9.5 of [3] Eager and Franco observe that for the dP1 quiver, the sequence of

transformed cluster variables F̃n displays a surprising stabilization property, appearing to
converge to a limit as a formal power series. They conjecture that the transformed cluster
variables will always converge for any quiver.

In the remainder of the paper, we present two examples of quivers where this convergence
holds. We also interpret the transformed F-polynomials and limit combinatorially. In the
context of these examples, we will refer to the transformed F-polynomials F̃n as stable
cluster variables.
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0 1

0’ 1’

Figure 1. Framed Kronecker Quiver

3. Kronecker

The first example we present is the Kronecker quiver, pictured in Figure 1, with mutation
sequence (0, 1, 0, 1, . . .).

Q0

0 1

0’ 1’

µ0

Q1

0 1

0’ 1’

µ1 . . .

Qn if n even

0 1

0’ 1’
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Qn if n odd
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Figure 2. The Kronecker quiver mutates with a predictable structure.

n Fn F̃n

1 y0 + 1 y0 + 1
2 y20y1 + y20 + 2y0 + 1 y20y

4
1 + 2y0y

2
1 + y1 + 1

3 y20y
2
1 + 2y30y1 + y30 + 2y20y1 + 3y20 + 3y0 + 1 y90y

6
1 + 3y60y

4
1 + 2y50y

3
1 + 3y30y

2
1 + 2y20y1 + y0 + 1

4 . . .+ 6y20y1 + 4y30 + 3y20y1 + 6y20 + 4y0 + 1 . . .+ 3y40y
6
1 + 4y30y

4
1 + 3y20y

3
1 + 2y0y

2
1 + y1 + 1

Figure 3. Table of the first few cluster variables, illustrating the stabiliza-
tion property. The low order terms of the stable cluster variables match, up
to a fluctuation between y0 and y1. (Entries in the last row are truncated).

Lemma 3.1. The following recurrence on F-polynomials holds:

F0 = 1

F1 = y0 + 1

FnFn−2 = yn0 y
n−1
1 + F 2

n−1 for n ≥ 2

Proof. Qn has a predictable structure, as shown in Figure 2. Using the rule for updating
cluster variables (part 1 of Definition 1.2), it is easy to read off this recurrence from the
structure of Qn. �
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Lemma 3.2.

Cn =



[
−(n+ 1) n

−n n− 1

]
if n even

[
n −(n+ 1)

n− 1 −n

]
if n odd

C−1n =



[
n− 1 −n
n −(n+ 1)

]
if n even

[
n −(n+ 1)

n− 1 −n

]
if n odd

Proof. Qn has a predictable structure, as shown in Figure 2. Using the definition of the
C-matrix, it is easy to read it off from the structure of Qn. �

The two possible forms of C−1n can be obtained from each other by switching the rows.
This minor discrepancy accounts for the fluctuation between variables seen in Figure 3.
We will from now on remove this fluctuation by eliminating one case, in order to simplify
computation. We choose to assume all cases follow the case when n is odd.

Definition 3.3. Let the row pyramid of length n, Rn, be the two-layer arrangement of
stones with n white stones on the top layer and n− 1 black stones on the bottom layer, as
shown below.

R1 R2 R3

Definitions 3.4.

A partition of Rn is a stable configuration achieved by removing stones from Rn. That
is, if a stone is removed, any stone above it must be removed. (We will draw partitions by
showing the non-removed stones).

For any partition P of Rn, its weight

weight(P ) = y # white stones removed
0 y# black stones removed

1

Example 3.5. A partition of R9 with weight y50y1.

Proposition 3.6. Fn is the following generating function / partition function for Rn.

Fn =
∑

Partitions P of Rn

weight (P )

Proof. Omitted, but follows from the inductive structure of Fn. �

Proposition 3.7.

F̃n =
∑

Partitions of Rn

(yn0 y
n−1
1 ) # white stones removed

(yn+1
0 yn1 )# black stones removed
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Proof. Since we know the form of the Cn-matrix, we have that for any monomial m =

ya0 , y
b
1, it transforms to m̃ = y

n(a−b)−b
0 , y

n(a−b)−a
1 . Transform the expression in the previous

proposition according to this rule and regroup terms. �

Definition 3.8. A simple partition of Rn is a partition of Rn such that the removed white
stones form one consecutive block, and no exposed black stones remain. (With possibly no
stones removed).

Example 3.9. A simple partition of R9.

The idea of the proof of the next theorem is that the stable terms in F̃n are the contri-
butions exactly from the simple partitions.

Theorem 3.10. For the Kronecker quiver with µ = (0, 1, 0, 1, . . .)

lim
n→∞

F̃n = 1 + y0 + 2y20y1 + 3y30y
2
1 + 4y40y

3
1 + . . .

Proof. The term 1 clearly stabilizes, since every F -polynomial includes 1 as a term (coming
from the partition with no stones removed), and the C-matrix transforms it to 1.

Claim: For any monomial ya0y
b
1 6= 1 in Fn, a > b.

In Rn it is impossible to remove as many black stones as white stones, since a black stone
can only be removed after both white stones on top of it have been removed. Since Fn is
the partition function for Rn the claim follows.

Claim: For any monomial ya
′

0 y
b′

1 6= 1 in F̃n, a′ > b′.

Letm = ya0y
b
1 be any monomial in Fn. The Cn matrix transforms it to m̃ = y

n(a−b)−b
0 y

n(a−b)−a
1 .

By the previous claim, b < a. The claim follows.

So let m̃ = ya0y
a−k
1 be a monomial, with k ≥ 1.

Case 1: k = 1. So m̃ = ya0y
a−1
1 . We claim that there is some N such that for all n ≥ N ,

m̃ appears in F̃n with coefficient a.

Using the Cn-matrix, m̃ appears in F̃n if and only if the term yn−a+1
0 yn−a1 appears in

Fn. This term corresponds to a partition with (n−a+ 1) white stones removed and (n−a)
black stones removed. Note that since the difference is 1, it must be a simple partition. It
is an easy combinatorial observation to see that there are a such partitions whenever n ≥ a
and 0 such partitions whenever n < a. So the claim holds with N = a.

Case 2: k ≥ 2. We claim that for sufficiently large n, m̃ = ya0y
a−k
1 does not appear in F̃n.

Suppose m̃ appears in F̃z for some z. Using the matrix Cz, it corresponds to the term
yzk−a+k
0 yzk−a1 in Fz. If m̃ appears in F̃z+1, then it corresponds to the term yzk−a+2k

0 yzk−a+k
1

in Fz+1, using Cz+1. That is, we add k to each exponent. However, increasing from z to
z + 1 adds only one stone of each color to Rz. So if k ≥ 2, then after a finite number of
steps, the exponents will grow too large for any possible partition. �
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We now give a combinatorial interpretation for limn→∞ F̃n. This interpretation will
generalize in the next example presented in this paper.

Definition 3.11. Let R∞ be the row pyramid extending infinitely toward the center as
shown.

. . .

Definitions 3.12.

A partition of R∞ is a stable configuration achieved by removing an infinite number of
stones, such that only a finite number of stones remains.

A simple partition of R∞ is a partition of R∞ such that the removed white stones form
one consecutive (infinite) block, and no exposed black stones remain.

Define the weight of a partition P of R∞ as

weight(P ) = y# non-removed white stones + 1
0 y# non-removed black stones

1

Note that the number of non-removed white/black stones is actually the same. We have
written the expression in this form simply to make it look more similar to a familiar weight
function.

Example 3.13. A simple partition of R∞ with weight y40y
3
1 .

. . .

Definition 3.14. Define a partition function

S =
∑

Simple partitions P of R∞

weight(P )

Proposition 3.15.

lim
n→∞

F̃n = 1 + S

4. Conifold

0 1

0’ 1’

Figure 4. Framed Conifold Quiver
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The second example we present is the Conifold quiver, pictured in Figure 4, with muta-
tion sequence (0, 1, 0, 1, . . .). Note that the conifold is a quiver with length-2 cycles, which
according to some conventions we cannot mutate. For this example, we will just mutate the
quiver as usual, but at every step, remove any self-loops that were created.

A table again suggests that the C-matrix transformation stabilizes the cluster variables.
(Entries in the last two rows are truncated).

n Fn F̃n

1 y0 + 1 y0 + 1
2 y40y1 + 2y30y1 + y20y1 + y20 + 2y0 + 1 y20y

5
1 + y20y

4
1 + 2y0y

3
1 + 2y0y

2
1 + y1 + 1

3 . . .+ 6y30y1 + y30 + 2y20y1 + 3y20 + 3y0 + 1 . . .+ 4y40y
2
1 + 3y30y

2
1 + 2y30y1 + 2y20y1 + y0 + 1

4 . . .+ 12y30y1 + 4y30 + 3y20y1 + 6y20 + 4y0 + 1 . . .+ 4y20y
4
1 + 3y20y

3
1 + 2y0y

3
1 + 2y0y

2
1 + y1 + 1

Here is a larger number of stable terms:

. . .+ 33y100 y
6
1 + 60y90y

7
1 + 63y90y

6
1 + 8y80y

7
1 + 10y90y

5
1 + 40y80y

6
1 + 32y80y

5
1

+ 7y70y
6
1 + 3y80y

4
1 + 28y70y

5
1 + 14y70y

4
1 + 6y60y

5
1 + 16y60y

4
1 + 6y60y

3
1 + 5y50y

4
1

+ 10y50y
3
1 + y50y

2
1 + 4y40y

3
1 + 4y40y

2
1 + 3y30y

2
1 + 2y30y1 + 2y20y1 + y0 + 1

Whatever pattern these terms follow does not seem so easy to discern.

The conifold also mutates with a predictable structure, and it is easy to see that the
C-matrix has the same form as in Section 3 with the Kronecker quiver. As we did in Section
3, we will eliminate the even case to remove the fluctuation in variables in F̃n:

Lemma 4.1. Cn = C−1n =

[
n −(n+ 1)

n− 1 −n

]

For the conifold quiver the stable cluster variables converge, and the limit can be com-
binatorially interpreted in an analogous way as in the case of the Kronecker quiver. Before
we show this, we introduce some definitions.

Definition 4.2. Let ADn be the 2-color Aztec diamond pyramid with n white stones on
the top layer, as shown below.

AD1 AD2 AD3 AD4

Definitions 4.3.
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As in the previous section, a partition ofADn is a stable configuration achieved by removing
stones from ADn.

As in the previous section, for any partition P of ADn, its weight

weight(P ) = y # white stones removed
0 y# black stones removed

1

Example 4.4. A partition of AD4 with weight y40y
2
1

Theorem 4.5. The F-polynomials are partition functions of ADn.

Fn =
∑

Partitions P of ADn

weight(P )

Proof. Proven in [4] by Elkies-Kuperberg-Larsen-Propp, but using a graph perfect matching
instead of stone pyramid interpretation. (The two interpretations are equivalent). �

Note that each ADn can be decomposed into layers of row pyramids (Definition 3.3),
such that the kth layer from the top contains k row pyramids of length n− k + 1. We will
frequently refer to a row pyramid in the decomposition simply as a row of ADn.

(a) 3 rows of length 1 (b) 2 rows of length 2 (c) 1 row of length 3

Figure 5. Row pyramid decomposition of AD3, shown layer by layer.

Definitions 4.6.

A simple partition of ADn is a partition such that the restriction of the partition to each
row pyramid is simple.

For any partition P of ADn, for any row r of ADn, we call r altered if at least one stone
is removed from r.

Example 4.4 above is a simple partition with 2 altered rows.
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Analogous to the situation in Section 3, the idea of the next proof is that the stable terms
in F̃n are contributed by the simple partitions.

Theorem 4.7. For the conifold, limn→∞ F̃n converges as a formal power series.

Proof. The term 1 is clearly in the limit, since each Fn includes it, and Cn transforms it to
itself. For the same reason as in Section 3, for every monomial m̃ = ya0y

b
1 6= 1, if m̃ appears

in F̃n for any n, then a > b.

Claim: Let m̃ = ya0y
a−k
1 , with k ≥ 1. For sufficiently large n, the terms in Fn transforming

to m̃ come only from simple partitions (possibly none).

Proof:
Suppose there is a z such that there is a partition P of ADz with weight m1 transforming to
m̃. Then it must be that m1 = yzk−a+k

0 yzk−a1 . In P , k is the difference between the number
of white stones and black stones removed. Let S be the set of rows altered by P . Note that
P is a simple partition iff |S| = k, and P is a non-simple partition iff |S| < k.

Suppose |S| < k.

If Fz+1 has a term transforming to m̃, it must be m2 = yzk−a+2k
0 yzk−a+k

1 . In other words,
each exponent increases by k from m1. But increasing from z to z+1 adds only one stone of
each color to each row. So if k > |S|, then after a finite number of steps it will be impossible
for any partition altering exactly the rows in S to have a weight transforming to m̃.
Since this is true for any set S of fewer than k rows, eventually the only possible partitions
with weight transforming to m̃ will be simple partitions.

This proof easily be can be modified to show that the following stronger claim holds: For
sufficiently large n, the terms in Fn transforming to m̃ come only from simple partitions,
such that each altered row of the partition has more than y stones removed, for any fixed y.

Claim: For sufficiently large n, the coefficient in front of m̃ in F̃n is constant.

Proof:
Assume n is large enough that all partitions with weight transforming to m̃ are simple with
each altered row having strictly greater than 1 stone removed, and that n ≥ k. The second
condition guarantees that ADn is large enough for every possible set of k altered rows to
exist.

We construct a bijection φ between partitions of ADn with weight transforming to m̃
and partitions of ADn+1 with weight transforming to m̃.

Let P be such a partition of ADn. Since P is simple, then for each altered row r, P
divides the unremoved stones in r into two end sections, separated by the block of removed
stones. (With each end section possibly empty). Increasing from n to n+ 1 adds one stone
of each color to each row. To get φ(P ) we simply remove from each altered row one more
stone of each color, such that the configuration of each end section is preserved. Since we
removed k additional stones of each color in total, φ(P ) has weight transforming m̃, so the
map is well-defined. (An example of φ is shown after the end of the proof).
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φ is bijective, since the inverse map is obvious add one stone of each color such that the
end section configurations are preserved) and well-defined. Well-definedness follows from the
condition that each altered row has strictly greater than 1 stone removed, so the addition
of stones still leaves the row an altered row.

�

Example 4.8. φ(P ) where P is a simple partition of AD3.

P : φ(P ):

Definition 4.9. Let AD∞ be the following Aztec diamond pyramid extending infinitely
vertically and toward the middle:

. . .

Definitions 4.10.

A partition of AD∞ is a stable configuration achieved by removing stones from AD∞, such
that for each row in its decomposition, either no stones are removed, or an infinite
number of stones are removed such that only a finite number of stones remains.

A simple partition of AD∞ is a partition of AD∞ such that the restriction of the partition
to each row is simple.

For any row r of ADn or AD∞, define its height h(r) as its distance from the top layer,
such that the height of the top row is 0. Note that when n is finite, h(r) = n− (# of white
stones in r).

For any partition P of ADn or AD∞, define its height

h(P ) =
∑

altered rows r of P

h(r)
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For any partition P of ADn or AD∞, let

x(P ) =
∑

altered rows r of P

(# non-removed white stones in r)

Equivalently,

x(P ) =
∑

altered rows r of P

(# non-removed black stones in r)

Definition 4.11. Define a partition function

T =
∑

P a simple partition of AD∞

y
x(P )+h(P )+# altered rows
0 y

x(P )+h(P )
1

Proposition 4.12. For the conifold

lim
n→∞

F̃n = T

Proof. We show that if P is a simple partition of ADn for finite n, and m 6= 1 is its weight,

then m transforms to m̃ = y
x(P )+h(P )+# altered rows
0 y

x(P )+h(P )
1 .

Let m = ya0y
a−k
1 . Then m transforms to m̃ = ynk−a+k

0 ynk−a1 . Note that k = # altered
rows. Also observe that nk = h(P ) +

∑
altered rows r of P length of r . (Where length of

r = # white stones in r before any stones are removed). Hence nk − a = h(P ) + x(P ).

�

Remark 4.13. Comparing Definition 4.11 to Definition 3.14 from the previous section reveals
that the two are indeed analogous. In the case of the previous section, h(P ) is always 0,
and the # of altered rows is always 1.

Remark 4.14. Proposition 4.12 and Proposition 3.15 from the previous section appear to be
non-analogous, due to an addition ”+1” term in the earlier result. However, this appearance
is false. The ”+1” term happens to be built into the expression Proposition 4.12 (coming
from the partition that removes no stones whatsoever), whereas the author felt there was
not a clean way to ”build in” this term in the case of Proposition 3.15 without seeming
overly artificial.

However, after having seen the Aztec Diamond quiver, there is now a natural way to revise
Section 3 in order to build this term in. Replace all the definitions regarding partitions of
R∞ with the definitions regarding partitions of A∞ (i.e. treat R∞ exactly the same way as
A∞). Then removing no stones at all from R∞ would be considered a simple partition, it
would have 0 altered rows, it would have height 0, and hence would contribute the term 1.

5. Conclusion
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