The Art Gallery Theorem

Vic Reiner, Univ. of Minnesota

Monthly Math Hour at UW
May 18, 2014

(1) The players
(2) The theorem
(3) The proof from THE BOOK

4 Variations

Victor Klee, formerly of UW

Klee's question posed to V. Chvátal

Given the floor plan of a weirdly shaped art gallery having N straight sides, how many guards will we need to post, in the worst case, so that every bit of wall is visible to a guard?

Klee's question posed to V. Chvátal

Given the floor plan of a weirdly shaped art gallery having N straight sides, how many guards will we need to post, in the worst case, so that every bit of wall is visible to a guard?

Can one do it with $N / 3$ guards?

Vasek Chvátal: Yes, I can prove that!

Steve Fisk: OK, but I have a proof from THE BOOK!

Our weirdly-shaped art museum: The Weisman

The floor plan

Outline
The players
The theorem
The proof from THE BOOK
Variations

Who designed that thing?

Does Frank Gehry ever design reasonable things?

They can get crazier!

Enough fooling around- let's understand Klee's question!

A convex gallery needs only one guard

A convex gallery needs only one guard

A star-shaped gallery needs only one guard

A star-shaped gallery needs only one guard

A 4-sided gallery needs only one guard

A 4-sided gallery needs only one guard

A 5-sided gallery needs only one guard

A 5-sided gallery needs only one guard

A 6-sided gallery might need two guards

N-sided galleries might need $N / 3$ guards: the comb

$N=21$
$N / 3=7$

Klee's question for Chvátal

Question (V. Klee, 1973)
How many guards does an N-sided gallery need? Is the comb the worst case?

Theorem (V. Chvátal, 1973, shortly thereafter)
Yes, the combs achieve the worst case:
every N-sided gallery needs at most $N / 3$ guards.
(Of course, you can still have star-shaped galleries with a huge number of sides N, but they'll only need one guard.)

Klee's question for Chvátal

Question (V. Klee, 1973)
How many guards does an N-sided gallery need?
Is the comb the worst case?
Theorem (V. Chvátal, 1973, shortly thereafter)
Yes, the combs achieve the worst case:
every N-sided gallery needs at most $N / 3$ guards.
(Of course, you can still have star-shaped galleries with a huge number of sides N, but they'll only need one guard.)

Outline
The players
The theorem
The proof from THE BOOK
Variations

What if N isn't divisible by 3 ?

$\mathrm{N}=22$
$N / 3=71 / 3$

Steve Fisk's wonderful 1978 proof appears in this book

Martin Aigner • Günter M. Ziegler
Proofs from THE BOOK

Fourth Edition
gi) Springer

... by Gunter Ziegler ...

Outline
The players
The theorem
The proof from THE BOOK
Variations

... and Martin Aigner

Outline
The players
The theorem
The proof from THE BOOK
Variations

... aided and inspired by Paul Erdős

Outline
The players
The theorem
The proof from THE BOOK
Variations

Guess which museum appears on page 231?

Here is an appeaing problem which was raised by Victor Klee in 1973. Suppose the manager of a museum wants to make sure that at all times every point of the muscum is watched by a guard. The guards are stationed needed?
We piecture the walk of the museam as a polygon consisting of n sides. Of course, if the polygon is conver, then one guard is enough. In fact, the
guard mayy be stationed at any point of the museum. But, in general, the walls of the museum may have the shape of any closed polygon.
Consider a comb-shaped museum with $n=3 m$ walls, as depicted on the nght. It is easy to see that this requires at least $m=\frac{\pi}{3}$ guards. In fack, here are n walls. Now notice that the pont I can only be observed by a ther points $2,3 \mathrm{~m}$. Since all these triangles are disisoint we conclude dher points $2,3, \ldots, m$. Since all these triangles are disjonnt we cosct they can be placed at the top lines of the triangles. By cutting off one or two alls at the end, we conclude that for any n there is an n-walled museum Mich requires (n) guards.

Fisk's proof from THE BOOK that $N / 3$ guards suffice

First triangulate the gallery without new vertices

Then 3-color its vertices

The least popular color gets used at most $N / 3$ times

$\mathrm{N}=19$ sides, so 19 vertices.
6 red, 7 blue, 6 yellow vertices

Post guards near the least popular color vertices

How to triangulate without new vertices? Induct!

How to triangulate without new vertices? Induct!

How to 3-color the vertices? Induct!

One can always glue the colorings back together

How to get the red dividing line to start inducting?
 The flashlight argument!

The flashlight argument

Starting at a vertex X, shine a flashlight along the wall to an adjacent vertex Y, and swing it in an arc until you first hit another vertex Z. Then either $X Z$ or $Y Z$ works as the red dividing line.

How good is Fisk's method for convex galleries?

It depends on the triangulation

A couple of variations one might wonder about

- Three dimensional galleries?
- Only right-angled walls in two dimensions?

Schoenhardt's (1928) untriangulable sphere in 3D!

Existence of such examples makes the 3-D theory harder.

What about when the walls meet only at right angles?

J. Kahn, M. Klawe, and D. Kleitman proved this result in a 1983 paper titled "Traditional galleries require fewer watchmen"

Theorem

For right-angled galleries with N sides, $N / 4$ guards suffice.
One might guess how they feel about Frank Gehry.

Right-angled combs again achieve the worst case

$\mathrm{N}=20$ sides
$\mathrm{N} / 4=5$ guards

Does the Art Gallery Theorem have real applications?

Not directly that I know. But related ideas from the areas of discrete geometry and combinatorics get used in designing algorithms for

- searching terrains,
- robot-motion planning,
- motorized vacuum cleaners (!)

The set of triangulations of a polygon is interesting!

A polyhedron beloved to me: the associahedron

Thanks for listening!

Bibliography

- Norman Do’s "Mathellaneous" article on Art Gallery Theorems, Australian Math. Society Gazette, Nov. 2004.
- Art Gallery Theorems, by J. O'Rourke
- Proofs from THE BOOK, by M. Aigner and G. Ziegler
- Triangulations: Structures for algorithms and applications, by J. De Loera, J. Rambau and F. Santos.

