
Catalan numbers,

parking functions,

and invariant theory

Vic Reiner

Univ. of Minnesota

CanaDAM

Memorial University, Newfoundland

June 10, 2013

Vic Reiner Univ. of Minnesota Catalan numbers, parking functions, and invariant theory



Outline

1 Catalan numbers and objects

2 Parking functions and parking space (type A)

3 q-Catalan numbers and cyclic symmetry

4 Reflection group generalization

Vic Reiner Univ. of Minnesota Catalan numbers, parking functions, and invariant theory



Catalan numbers

Definition

The Catalan number is

Catn :=
1

n + 1

(

2n

n

)

Example

Cat3 =
1

4

(

6

3

)

= 5.

It’s not even completely obvious it is always an integer.

But it counts many things, at least 205, as of June 6, 2013,

according to Richard Stanley’s Catalan addendum.
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Catalan numbers

Definition

The Catalan number is

Catn :=
1

n + 1

(

2n

n

)

Example

Cat3 =
1

4

(

6

3

)

= 5.

It’s not even completely obvious it is always an integer.

But it counts many things, at least 205, as of June 6, 2013,

according to Richard Stanley’s Catalan addendum.

Let’s recall a few of them.
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Triangulations of an (n + 2)-gon

Example

There are 5 = Cat3 triangulations of a pentagon.
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Catalan paths

Definition

A Catalan path from (0,0) to (n,n) is a path taking unit north or

east steps staying weakly below y = x .

Example

The are 5 = Cat3 Catalan paths from (0,0) to (3,3).

•
• •

• • •
• • • •

•
• •

• • •
• • •

•
• •

• •
• • •

•
• •

• • •
• •

•
• •

• •
• •
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Increasing parking functions

Definition

An increasing parking function of size n is

an integer sequence (a1,a2, . . . ,an) with 1 ≤ ai ≤ i .

They give the heights of horizontal steps in Catalan paths.

Example

1 1 1
•

• •
• • •

• • • •

1 1 2
•

• •
• • •

• • •

1 1 3
•

• •
• •

• • •

1 2 2
•

• •
• • •

• •

1 2 3
•

• •
• •

• •
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Nonnesting and noncrossing partitions of {1, 2, . . . , n}

Example

nesting: 1 2 3 4 5 nonnesting: 1 2 3 4 5
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Nonnesting and noncrossing partitions of {1, 2, . . . , n}

Example

nesting: 1 2 3 4 5 nonnesting: 1 2 3 4 5

Example

crossing: 1

*
*
*
*
**
*
*
* 2

8
TTT

TTT
TTT 3

7
??

4

6 5

noncrossing: 1

*
*
*
*
**
*
*
* 2

8

//
//
/ 3

7
??

4

6 5
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Nonnesting partitions NN(3) of {1, 2, 3}

Example

There are 5 = Cat3 nonnesting partitions of {1,2,3}.

1 2 3

1 2 3 1 2 3 1 2 3

1 2 3
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Noncrossing partitions NC(3) of {1, 2, 3}

Example

There are 5 = Cat3 noncrossing partitions of {1,2,3}.

1 2
��
�

3

999

1 2

3

1
99
9 2

3

1 2
��
�

3

1 2

3
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NN(4) versus NC(4) is slightly more interesting

Example

For n = 4, among the 15 set partitions of {1,2,3,4},

exactly one is nesting,

1 2 3 4

and exactly one is crossing,

1
<<

< 2
��
�

4 3

leaving 14 = Cat4 nonnesting or noncrossing partitions.
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So what are the parking functions?

Definition

Parking functions of length n are sequences (f (1), . . . , f (n)) for

which |f−1({1,2, . . . , i})| ≥ i for i = 1,2, . . . ,n.

Definition (The cheater’s version)

Parking functions of length n are sequences (f (1), . . . , f (n))
whose weakly increasing rearrangement is an

increasing parking function!

Vic Reiner Univ. of Minnesota Catalan numbers, parking functions, and invariant theory



The parking function number (n + 1)n−1

Theorem (Konheim and Weiss 1966)

There are (n + 1)n−1 parking functions of length n.

Example

For n = 3, the (3 + 1)3−1 = 16 parking functions of length 3,

grouped by their increasing parking function rearrangement,

leftmost:

111

112 121 211

113 131 311

122 212 221

123 132 213 231 312 321
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Parking functions as coset representatives

Proposition (Haiman 1993)

The (n + 1)n−1 parking functions give coset representatives for

Z
n/ (Z[1,1, . . . ,1] + (n + 1)Zn)
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Parking functions as coset representatives

Proposition (Haiman 1993)

The (n + 1)n−1 parking functions give coset representatives for

Z
n/ (Z[1,1, . . . ,1] + (n + 1)Zn)

or equivalently, by a Noether isomorphism theorem, for

(Zn+1)
n/Zn+1[1,1, . . . ,1]
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Parking functions as coset representatives

Proposition (Haiman 1993)

The (n + 1)n−1 parking functions give coset representatives for

Z
n/ (Z[1,1, . . . ,1] + (n + 1)Zn)

or equivalently, by a Noether isomorphism theorem, for

(Zn+1)
n/Zn+1[1,1, . . . ,1]

or equivalently, by the same isomorphism theorem, for

Q/(n + 1)Q

where here Q is the rank n − 1 lattice

Q := Z
n/Z[1,1, . . . ,1] ∼= Z

n−1.

Vic Reiner Univ. of Minnesota Catalan numbers, parking functions, and invariant theory



So what’s the parking space?

The parking space is the permutation representation of

W = Sn, acting on the (n + 1)n−1 parking functions of length n.

Example

For n = 3 it is the permutation representation of W = S3 on

these words, with these orbits:

111

112 121 211

113 131 311

122 212 221

123 132 213 231 312 321
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Wondrous!

Just about every natural question about this W -permutation

representation Parkn has a beautiful answer.

Many were noted by Haiman in his 1993 paper

“Conjectures on diagonal harmonics”.
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Wondrous!

Just about every natural question about this W -permutation

representation Parkn has a beautiful answer.

Many were noted by Haiman in his 1993 paper

“Conjectures on diagonal harmonics”.

As the parking functions give coset representatives for the

quotient Q/(n + 1)Q where Q := Z
n/Z[1,1, . . . ,1] ∼= Z

n−1, one

can deduce this.

Corollary

Each permutation w in W = Sn acts on Parkn with

character value = trace = number of fixed parking functions

χParkn(w) = (n + 1)#(cycles of w)−1.
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Orbit structure?

We’ve seen the W -orbits in Parkn are parametrized by

increasing parking functions, which are Catalan objects.

The stabilizer of an orbit is always a Young subgroup

Sλ := Sλ1
× · · · ×Sλℓ

where λ are the multiplicities in any orbit representative.

Example

λ

111 (3)

112 121 211 (2,1)

113 131 311 (2,1)

122 212 221 (2,1)

123 132 213 231 312 321 (1,1,1)
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Orbit structure via the nonnesting or noncrossing

partitions

That same stabilizer data Sλ is predicted by the block sizes in

nonnesting partitions, or

noncrossing partitions

of {1,2, . . . ,n}.
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Nonnesting partitions NN(3) of {1, 2, 3}

1 2 3

(3)

1 2 3

(2,1)

1 2 3

(2,1)

1 2 3

(2,1)

1 2 3

(1,1,1)

Theorem (Shi 1986, Cellini-Papi 2002)

NN(n) bijects to increasing parking functions respecting λ.
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Noncrossing partitions NC(3) of {1, 2, 3}

1 2
{{{

3

CCC

(3)

�� _ _ _ ��
�
�

�
�

�� _ _ _ ��

1 2

3

(2,1)

�� _ _ _ _ ��
�
�

�
�

�� _ _ _ _ ��

1
II

II 2

3

(2,1)

�� _ _ _ _ ��
�
�

�
�

�� _ _ _ _ ��

1 2
uu
uu

3

(2,1)

�� _ _ _ _ ��
�
�

�
�

�� _ _ _ _ ��

1 2

3

(1,1,1)

�� _ _ _ _ _ ��
�
�

�
�

�� _ _ _ _ _ ��

Theorem (Athanasiadis 1998)

There is a bijection NN(n) → NC(n), respecting λ.
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The block size equidistribution for NN(4) versus NC(4)

Example

Recall that among the 15 set partitions of {1,2,3,4},

exactly one was nesting,

1 2 3 4

and exactly one was crossing,

1
<<

< 2
��
�

4 3

and note that both correspond to λ = (2,2).
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More wonders: Irreducible multiplicities in Parkn

For W = Sn, the irreducible characters are {χλ} indexed by

partitions λ of n. Haiman gave a product formula for any of the

irreducible multiplicities

〈χλ,Parkn〉.
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More wonders: Irreducible multiplicities in Parkn

For W = Sn, the irreducible characters are {χλ} indexed by

partitions λ of n. Haiman gave a product formula for any of the

irreducible multiplicities

〈χλ,Parkn〉.

The special case of hook shapes λ = (n − k ,1k ) becomes this .

Theorem (Pak-Postnikov 1997)

The multiplicity 〈χ(n−k ,1k ), χParkn〉W is

the number of subdivisions of an (n + 2)-gon using

n − 1 − k internal diagonals, or

the number of k-dimensional faces in the

(n − 1)-dimensional associahedron.
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Example: n=4

〈χ(3), χPark3
〉S3

= 5

〈χ(2,1), χPark3
〉S3

= 5

〈χ(1,1,1), χPark3
〉S3

= 1

〈χ(4), χPark4
〉S4

= 14

〈χ(3,1), χPark4
〉S4

= 21

〈χ(2,1,1), χPark4
〉S4

= 9

〈χ(1,1,1,1), χPark4
〉S4

= 1
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q-Catalan numbers

Let’s rewrite the Catalan number as

Catn =
1

n + 1

(

2n

n

)

=
(n + 2)(n + 3) · · · (2n)

(2)(3) · · · (n)
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q-Catalan numbers

Let’s rewrite the Catalan number as

Catn =
1

n + 1

(

2n

n

)

=
(n + 2)(n + 3) · · · (2n)

(2)(3) · · · (n)

and consider MacMahon’s q-Catalan number

Catn(q) =
1

[n + 1]q

[

2n

n

]

q

:=
(1 − qn+2)(1 − qn+3) · · · (1 − q2n)

(1 − q2)(1 − q3) · · · (1 − qn)
.
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The q-Catalan hides information on cyclic symmetries

The noncrossings NC(n) have a Z/nZ-action via rotations,

whose orbit structure is completely predicted by root-of-unity

evaluations of this q-Catalan number.
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The q-Catalan hides information on cyclic symmetries

The noncrossings NC(n) have a Z/nZ-action via rotations,

whose orbit structure is completely predicted by root-of-unity

evaluations of this q-Catalan number.

Theorem (Stanton-White-R. 2004)

For d dividing n, the number of noncrossing partitions of n with

d-fold rotational symmetry is

[Catn(q)]q=ζd

where ζd is any primitive d th root of unity in C.

We called such a set-up a cyclic sieving phenomenon.
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NC(4),Cat4(q) and rotational symmetry

Example

Via L’Hôpital’s rule, for example, one can evaluate

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.
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NC(4),Cat4(q) and rotational symmetry

Example

Via L’Hôpital’s rule, for example, one can evaluate

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

predicting 14 elements of NC(4) total,
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NC(4),Cat4(q) and rotational symmetry

Example

Via L’Hôpital’s rule, for example, one can evaluate

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

predicting 14 elements of NC(4) total, 6 with 2-fold symmetry,

1 2

3 4

1 2

3 4

1
==

2

3 4

1 2

��
3 4

1 2

3 4

1 2

3 4
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NC(4),Cat4(q) and rotational symmetry

Example

Via L’Hôpital’s rule, for example, one can evaluate

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

predicting 14 elements of NC(4) total, 6 with 2-fold symmetry,

1 2

3 4

1 2

3 4

1
==

2

3 4

1 2

��
3 4

1 2

3 4

1 2

3 4

2 of which have 4-fold rotational symmetry.
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Catn(q) does double duty hiding cyclic orbit data

Definition

For a finite poset P, the Duchet-FonDerFlaass (rowmotion)

cyclic action maps an antichain A 7−→ Ψ(A) to the minimal

elements Ψ(A) among elements below no element of A. That is,

Ψ(A) := min{P \ P≤A}.

Example

In P the (3,2,1) staircase poset, one has

A = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•

7−→ Ψ(A) = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•
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The Ψ-orbits for the staircase poset (3, 2, 1)

There is a size 2 orbit:

•
• •

• • •

•
• •

• • •
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The Ψ-orbits for the staircase poset (3, 2, 1)

There is a size 2 orbit:

•
• •

• • •

•
• •

• • •

A size 4 orbit (= the rank sets of the poset, plus A = ∅):

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •
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The Ψ-orbits for the staircase poset (3, 2, 1)

There is a size 2 orbit:

•
• •

• • •

•
• •

• • •

A size 4 orbit (= the rank sets of the poset, plus A = ∅):

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •

A size 8 orbit:

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •

•
• •

• • •
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Catn(q) is doing double duty

Theorem (part of Armstrong-Stump-Thomas 2011)

For d dividing 2n (not n this time), the number of antichains in

the (n − 1,n − 2, . . . ,2,1) staircase poset fixed by Ψd is

[Catn(q)]q=ζd

(And these antichains are really disguised Catalan paths.)

Example

•
@@

•
~~

@@
•

@@

•
~~

@@
•

~~

@@
•

@@

•
~~

•
~~

•
~~

•

↔ •
• •

• • •
• • • •

• • • • •
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How did their theorem predict those orbit sizes?

Example

For n = 4 it predicted that, of the 14 = Cat4 antichains, we’d see

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)

=























14 fixed by Ψ8 from setting q = +1 = ζ1

6 fixed by Ψ4 from setting q = −1 = ζ2

2 fixed by Ψ2 from setting q = i = ζ4

0 fixed by Ψ1 from setting q = e
πi
4 = ζ8.
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How did their theorem predict those orbit sizes?

Example

For n = 4 it predicted that, of the 14 = Cat4 antichains, we’d see

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)

=























14 fixed by Ψ8 from setting q = +1 = ζ1

6 fixed by Ψ4 from setting q = −1 = ζ2

2 fixed by Ψ2 from setting q = i = ζ4

0 fixed by Ψ1 from setting q = e
πi
4 = ζ8.

This means there are no singleton orbits, one orbit of size 2,

one of size 4 = 6 − 2, and one orbit of size 8 = 14 − 6,

that is, one free orbit.
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Actually Catn(q) is doing triple duty!

Theorem (Stanton-White-R. 2004)

For d dividing n + 2, the number of d-fold rotationally symmetric

triangulations of an (n + 2)-gon is [Catn(q)]q=ζd

Example

For n = 4, these rotation orbit sizes for triangulations of a hexagon

6 •










44
44
4

•
rr

•

LL

• •

•

LL rr

3 •










•
rr

•

LL

• •

•

LL rr








3 •










•
rr

•

LL

•

nnnnnn
•

•

LL rr








2 •










44
44
4

•
rr

•

LL

• •

•

LL rr

are predicted by

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=



















14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = e2πi3 = ζ3

0 if q = e2πi6 = ζ6
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On to the reflection group generalizations

Generalize to irreducible real ref’n groups W acting on V = R
n.

Example

W = Sn acts irreducibly on V = R
n−1,

realized as x1 + x2 + · · ·+ xn = 0 within R
n.

It is generated transpositions (i , j),
which are reflections through the hyperplanes xi = xj .

1

4

2
3

1

4

2
3

1

3

2

s2 s

s

3

1
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Invariant theory enters the picture

Theorem (Chevalley, Shephard-Todd 1955)

When W acts on polynomials S = C[x1, . . . , xn] = Sym(V ∗), its

W-invariant subalgebra is again a polynomial algebra

SW = C[f1, . . . , fn]

One can pick f1, . . . , fn homogeneous, with degrees

d1 ≤ d2 ≤ · · · ≤ dn, and define h := dn the Coxeter number.
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Invariant theory enters the picture

Theorem (Chevalley, Shephard-Todd 1955)

When W acts on polynomials S = C[x1, . . . , xn] = Sym(V ∗), its

W-invariant subalgebra is again a polynomial algebra

SW = C[f1, . . . , fn]

One can pick f1, . . . , fn homogeneous, with degrees

d1 ≤ d2 ≤ · · · ≤ dn, and define h := dn the Coxeter number.

Example

For W = Sn, one has

SW = C[e2(x), . . . ,en(x)],

so the degrees are (2,3, . . . ,n), and h = n.
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Weyl groups and the first W -parking space

When W is a Weyl (crystallographic) real finite reflection group,

it preserves a full rank lattice

Q ∼= Z
n

inside V = R
n. One can choose a root system Φ of normals to

the hyperplanes, in such a way that the root lattice Q := ZΦ is a

W -stable lattice.
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Weyl groups and the first W -parking space

When W is a Weyl (crystallographic) real finite reflection group,

it preserves a full rank lattice

Q ∼= Z
n

inside V = R
n. One can choose a root system Φ of normals to

the hyperplanes, in such a way that the root lattice Q := ZΦ is a

W -stable lattice.

Definition (Haiman 1993)

We should think of the W -permutation representation on the set

Park(W ) := Q/(h + 1)Q

as a W -analogue of parking functions.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.

Any w in W acts with trace (character value)

χPark(W )(w) = (h + 1)dim V w

.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.

Any w in W acts with trace (character value)

χPark(W )(w) = (h + 1)dim V w

.

The W-orbit count #W\Q/(h + 1)Q is the W-Catalan:

〈1W , χPark(W )〉 =

n
∏

i=1

h + di

di
=: Cat(W )
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W -Catalan example: W = Sn

Example

Recall that W = Sn acts irreducibly on V = R
n−1

with degrees (2,3, . . . ,n) and h = n.

One can identify the root lattice Q ∼= Z
n/(1,1, . . . ,1)Z.

One has #Q/(h + 1)Q = (n + 1)n−1, and

Cat(Sn) = #W\Q/(h + 1)Q

=
(n + 2)(n + 3) · · · (2n)

2 · 3 · · · n

=
1

n + 1

(

2n

n

)

= Catn.
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Exterior powers of V

One can consider multiplicities in Park(W ) not just of

1W = ∧0V

det W = ∧nV

but all the exterior powers ∧kV for k = 0,1,2, . . . ,n,

which are known to all be W -irreducibles (Steinberg).

Example

W = Sn acts irreducibly on V = R
n−1 with character χ(n−1,1),

and on ∧kV with character χ(n−k ,1k ).
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Theorem (Armstrong-Rhoades-R. 2012)

For Weyl groups W, the multiplicity 〈χ∧k V , χPark(W )〉 is

the number of (n − k)-element sets of compatible cluster

variables in a cluster algebra of finite type W,

or the number of k-dimensional faces in the

W-associahedron of Chapoton-Fomin-Zelevinsky (2002).
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Two W -Catalan objects: NN(W ) and NC(W )

The previous result relies on an amazing coincidence for two

W -Catalan counted families generalizing NN(n),NC(n).

Definition (Postnikov 1997)

For Weyl groups W , define W -nonnesting partitions NN(W ) to

be the antichains in the poset of positive roots Φ+.

Example

1 2 3 4 5 corresponds to this antichain A:

e1 − e5

qqq
qq NNN

NN

e1 − e4

qqq
qq MMM

MM
e2 − e5

qqq
qq MMM

MM

e1 − e3

qqq
qq MMM

MM
e2 − e4

qqq
qq MMM

MM
e3 − e5

qqq
qq MMM

MM

e1 − e2 e2 − e3 e3 − e4 e4 − e5
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W -noncrossing partitions

Definition (Bessis 2003, Brady-Watt 2002)

W -noncrossing partitions NC(W ) are the interval [e, c]abs from

identity e to any Coxeter element c in absolute order ≤abs on W :

x ≤abs y if ℓT (x) + ℓT (x
−1y) = ℓT (y)

where the absolute (reflection) length is

ℓT (w) = min{w = t1t2 · · · tℓ : ti reflections}

and a Coxeter element c = s1s2 · · · sn is any product of a

choice of simple reflections S = {s1, . . . , sn}.

1

4

2
3

1

4

2
3

1

3

2

s2 s

s

3

1
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The case W = Sn

Example

For W = Sn, the n-cycle c = (1,2, . . . ,n) is one choice of a

Coxeter element.

And permutations w in NC(W ) = [e, c]abs come from orienting

clockwise the blocks of the noncrossing partitions NC(n).

4

2

3

6

8
9 1

7

5
4

2

3

6

8
9 1

7

5
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The absolute order on W = S3 and NC(S3)

Example

1
((
2

uu3

QQ 1

))

2
ww

3

MM

1
((
2hh

3

1
��

2

3

QQ 1 2

uu3

55

1 2

3
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Generalizing NN,NC block size coincidence

We understand why NN(W ) is counted by Cat(W ).

We do not really understand why the same holds for NC(W ).

Worse, we do not really understand why the following holds– it

was checked case-by-case.

Theorem (Athanasiadis-R. 2004)

The W-orbit distributions coincidea for subspaces arising as

intersections X = ∩α∈Aα
⊥ for A in NN(W ), and as

fixed spaces X = V w for w in NC(W ).

a...and have a nice product formula via Orlik-Solomon exponents.
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...
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∏
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)
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∏
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...

(θ1, . . . , θn) are homogeneous, all of degree h + 1,

their C-span carries W -rep’n V ∗, like {x1, . . . , xn}, and

S/(Θ) is finite-dim’l (=: the graded W -parking space).
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Do you believe in magic?

These magical hsop’s do exist, and they’re not unique.

Example

For W = Bn, the hyperoctahedral group of signed permutation

matrices, acting on V = R
n, one has h = 2n, and one can take

Θ = (x2n+1
1 , . . . , x2n+1

n ).

Example

For W = Sn they’re tricky. A construction by Kraft appears in

Haiman (1993), and Dunkl (1998) gave another.

For general real reflection groups, Θ comes from rep theory of

the rational Cherednik algebra for W , with parameter h+1
h .
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Cat(W , q) and cyclic symmetry

Cat(W ,q) interacts well with a cyclic Z/hZ-action on

NC(W ) = [e, c]abs that comes from conjugation

w 7→ cwc−1,

generalizing rotation of noncrossing partitions NC(n).

Theorem (Bessis-R. 2004)

For any d dividing h, the number of w in NC(W ) that have

d-fold symmetry, meaning that c
h
d wc− h

d = w, is

[Cat(W ,q)]q=ζd

where ζd is any primitive d th root of unity in C.
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Cat(W , q) and cyclic symmetry

Cat(W ,q) interacts well with a cyclic Z/hZ-action on

NC(W ) = [e, c]abs that comes from conjugation

w 7→ cwc−1,

generalizing rotation of noncrossing partitions NC(n).

Theorem (Bessis-R. 2004)

For any d dividing h, the number of w in NC(W ) that have

d-fold symmetry, meaning that c
h
d wc− h

d = w, is

[Cat(W ,q)]q=ζd

where ζd is any primitive d th root of unity in C.

But the proof again needed some of the case-by-case facts!
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Cat(W , q) does double duty

Generalizing behavior of A 7−→ Ψ(A) in the staircase posets,

Armstrong, Stump and Thomas (2011) actually proved the

following general statement, conjectured in Bessis-R. (2004),

suggested by weaker conjectures of Panyushev (2007).

Theorem (Armstrong-Stump-Thomas 2011)

For Weyl group W, and for d dividing 2h (not h this time), the

number of antichains in the positive root poset Φ+ fixed by Ψd is

[Cat(W ,q)]q=ζd

A = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•

7−→ Ψ(A) = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•
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Cat(W , q) does double duty

Generalizing behavior of A 7−→ Ψ(A) in the staircase posets,

Armstrong, Stump and Thomas (2011) actually proved the

following general statement, conjectured in Bessis-R. (2004),

suggested by weaker conjectures of Panyushev (2007).

Theorem (Armstrong-Stump-Thomas 2011)

For Weyl group W, and for d dividing 2h (not h this time), the

number of antichains in the positive root poset Φ+ fixed by Ψd is

[Cat(W ,q)]q=ζd

A = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•

7−→ Ψ(A) = •
@@

•
~~

@@
•

@@

•
~~

•
~~

•

Again, part of the arguments rely on case-by-case verifications.
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Cat(W , q) does triple duty

Generalizing what happens for rotating triangulations of

polygons, Eu and Fu proved the following statement that we

had conjectured.

Theorem (Eu and Fu 2011)

For Weyl group W, and for d dividing h + 2 (not h, nor 2h this

time), the number of clusters having d-fold symmetry under

Fomin and Zelevinsky’s deformed Coxeter element is

[Cat(W ,q)]q=ζd
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Cat(W , q) does triple duty

Generalizing what happens for rotating triangulations of

polygons, Eu and Fu proved the following statement that we

had conjectured.

Theorem (Eu and Fu 2011)

For Weyl group W, and for d dividing h + 2 (not h, nor 2h this

time), the number of clusters having d-fold symmetry under

Fomin and Zelevinsky’s deformed Coxeter element is

[Cat(W ,q)]q=ζd
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The big question

Question

Can we get rid of the case-by-case, and really understand why

these things hold so generally?
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The big question

Question

Can we get rid of the case-by-case, and really understand why

these things hold so generally?

Thanks for listening!
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