Twisted Gelfand pairs from reflection groups

arxiv.org:1102.2460
Victor Reiner (Univ. of Minnesota)
Franco Saliola (UQAM)
Volkmar Welker (Univ. Marburg)

q-Series 2011

Georgia Southern University
March 14-16, 2011

Outline

(1) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair
(3) Mystery solved!

Outline

(1) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair

Outline

(1) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair
(3) Mystery solved!

A mystery haunted our fair city...

Outline

(1) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair
(3) Mystery solved!

Consider the matrix A whose rows and columns are indexed by permutations σ in \mathfrak{S}_{n}, with (σ, τ)-entry the number of pairs $i<j$ that appear in σ, τ in the same order. That is, $A_{\sigma, \tau}$ counts noninversions of $\sigma \circ \tau^{-1}$

Consider the matrix A whose rows and columns are indexed by permutations σ in \mathfrak{S}_{n}, with (σ, τ)-entry the number of pairs $i<j$ that appear in σ, τ in the same order.

That is, $A_{\sigma, \tau}$ counts noninversions of $\sigma \circ \tau^{-1}$

Consider the matrix A whose rows and columns are indexed by permutations σ in \mathfrak{S}_{n}, with (σ, τ)-entry the number of pairs $i<j$ that appear in σ, τ in the same order.

That is, $A_{\sigma, \tau}$ counts noninversions of $\sigma \circ \tau^{-1}$.
E.g., for $n=3$, the matrix A is
$(1,2,3) \quad(1,3,2)$
$(2,1,3)$
$(2,3,1) \quad(3,1,2)$
$(3,2,1)$
$(1,2,3)$
3
2
2
1
1
0
$(1,3,2)$
2
3
1
0
2
1
$(2,1,3)$
2
1
3
2
0
1
$(2,3,1)$
1
0
2
3
1
2
$(3,1,2)$
1
2
0
1
3
2
$(3,2,1)$
0
1
1
2
2
3

Easy to see that

$$
A_{\sigma, \tau}=A_{\tau, \sigma}
$$ and hence A will have eigenvalues in \mathbf{R}.

We'll see in a bit that it can be factored

$\mathrm{A}=\pi \circ \pi^{t}$

so it even has nonnegative eigenvalues.

MYSTERY.
Why does A seem to have all eigenvalues in Z ?

Easy to see that

$$
A_{\sigma, \tau}=A_{\tau, \sigma}
$$

and hence A will have eigenvalues in \mathbf{R}.

We'll see in a bit that it can be factored

$$
A=\pi \circ \pi^{t}
$$

so it even has nonnegative eigenvalues.
MYSTERY.
Why does A seem to have all eigenvalues in Z ?

Easy to see that

$$
A_{\sigma, \tau}=A_{\tau, \sigma}
$$

and hence A will have eigenvalues in \mathbf{R}.

We'll see in a bit that it can be factored

$$
A=\pi \circ \pi^{t}
$$

so it even has nonnegative eigenvalues.
MYSTERY.
Why does A seem to have all eigenvalues in \mathbf{Z} ?

Furthermore, empirically it has only four eigenspaces:

$$
\begin{aligned}
\operatorname{det}(t l-A) & =(t-0)^{n!-1-\binom{n}{2}} \\
& \times\left(t-\frac{n!\binom{n}{2}}{2}\right)^{1} \\
& \times\left(t-\frac{(n+1)!}{6}\right)^{n-1} \\
& \times\left(t-\frac{n!}{6}\right)^{\binom{n-1}{2}}
\end{aligned}
$$

Why?

Furthermore, empirically it has only four eigenspaces:

$$
\begin{aligned}
\operatorname{det}(t l-A) & =(t-0)^{n!-1-\binom{n}{2}} \\
& \times\left(t-\frac{n!\binom{n}{2}}{2}\right)^{1} \\
& \times\left(t-\frac{(n+1)!}{6}\right)^{n-1} \\
& \times\left(t-\frac{n!}{6}\right)^{\binom{n-1}{2}}
\end{aligned}
$$

Why?

Outline

(1) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pairMystery solved!

More to the mystery

The matrix A represents multiplication on the right by

$$
A:=\sum_{\sigma \in \mathfrak{S}_{n}} \#\{\text { noninversions of } \sigma\} \cdot \sigma
$$

as a linear operator on the group algebra $\mathbf{R} \mathfrak{S}_{n}$:

$$
\mathbf{R} \mathfrak{S}_{n} \xrightarrow{(-) \cdot A} \mathbf{R} \mathfrak{S}_{n}
$$

It commutes with the left-regular action of $\mathbf{R} \mathfrak{S}_{n}$ on itself, so its eigenspaces are \mathfrak{S}_{n}-representations.

It also happens that A commutes with an extra $\mathbf{Z} / 2 \mathbf{Z}$-action coming from right-multiplication in $\mathbf{R} \mathfrak{S}_{n}$ by the longest element

$$
w_{0}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right)
$$

So its eigenspaces are actually $\mathfrak{S}_{n} \times \mathbf{Z} / 2 \mathbf{Z}$-representations.

It also happens that A commutes with an extra $\mathbf{Z} / 2 \mathbf{Z}$-action coming from right-multiplication in $\mathbf{R} \mathfrak{S}_{n}$ by the longest element

$$
w_{0}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right) .
$$

So its eigenspaces are actually $\mathfrak{S}_{n} \times \mathbf{Z} / 2 \mathbf{Z}$-representations.

In fact, these operators arose at the intersection of three families that we conjectured had integer spectra. Two families we understood pretty well.

One family starts with a finite real reflection group W, and a choice of positive root normals $\{+\alpha\}$ for its collection of reflecting hyperplanes $\{H\}$

Say H is a noninversion for w in W if
w sends the positive root $+\alpha$ normal to H
to another positive root

In fact, these operators arose at the intersection of three families that we conjectured had integer spectra. Two families we understood pretty well.

One family starts with a finite real reflection group W, and a choice of positive root normals $\{+\alpha\}$ for its collection of reflecting hyperplanes $\{H\}$.

Say H is a noninversion for w in W if
w sends the positive root $+\alpha$ normal to H
to another positive root

In fact, these operators arose at the intersection of three families that we conjectured had integer spectra. Two families we understood pretty well.

One family starts with a finite real reflection group W, and a choice of positive root normals $\{+\alpha\}$ for its collection of reflecting hyperplanes $\{H\}$.

Say H is a noninversion for w in W if w sends the positive root $+\alpha$ normal to H to another positive root $+\beta$.

Now choose a particular reflecting hyperplane H. Let \mathcal{O} be the W-orbit of hyperplanes containing H. Define an element A in the group algebra $\mathbf{R} W$ by

$$
A:=\sum_{w \in W} \#\left\{\begin{array}{c}
H^{\prime} \in \mathcal{O} \text { which are } \\
\text { noninversions for } w
\end{array}\right\} \cdot w
$$

Consider the eigenvalues of the linear operator $\mathbf{R} W \xrightarrow{(-) \cdot A} \mathbf{R} W$.

Its eigenspaces are again $W \times \mathbf{Z} / 2 \bar{Z}$-representations.

Now choose a particular reflecting hyperplane H. Let \mathcal{O} be the W-orbit of hyperplanes containing H. Define an element A in the group algebra $\mathbf{R} W$ by

$$
A:=\sum_{w \in W} \#\left\{\begin{array}{c}
H^{\prime} \in \mathcal{O} \text { which are } \\
\text { noninversions for } w
\end{array}\right\} \cdot w
$$

Consider the eigenvalues of the linear operator

$$
\mathbf{R} W \xrightarrow{(-) \cdot A} \mathbf{R} W .
$$

Its eigenspaces are again $W \times \mathbf{Z} / 2 Z$-representations.

Then our original mystery for $W=\mathfrak{S}_{n}$ seemed to generalize as follows.

THEOREM.
For Weyl (= crystallographic finite reflection) groups W, and any choice of a W-orbit \mathcal{O} of hyperplanes, the operator

has all its eigenvalues in \mathbf{Z}.

Then our original mystery for $W=\mathfrak{S}_{n}$ seemed to generalize as follows.

THEOREM.

For Weyl (= crystallographic finite reflection) groups W, and any choice of a W-orbit \mathcal{O} of hyperplanes, the operator

$$
\mathbf{R} W \xrightarrow{(-) \cdot A} \mathbf{R} W .
$$

has all its eigenvalues in \mathbf{Z}.

A recent development

We also made an empirically-based finer conjecture, independently proven recently (2011) by P. Renteln:

THEOREM.

For W simply-laced, i.e. types $A_{\ell}, D_{\ell}, E_{6}, E_{7}, E_{8}$, of rank ℓ, with N hyperplanes, and Coxeter number h, the operator A on RW has

A recent development

We also made an empirically-based finer conjecture, independently proven recently (2011) by P. Renteln:

THEOREM.

For W simply-laced, i.e. types $A_{\ell}, D_{\ell}, E_{6}, E_{7}, E_{8}$, of rank ℓ, with N hyperplanes, and Coxeter number h, the operator A on RW has

$$
\begin{aligned}
\operatorname{det}(t \mid-A) & =(t-0)^{|W|-1-N} \\
& \times\left(t-\frac{|W| N}{2}\right)^{1} \\
& \times\left(t-\frac{|W|(h+1)}{6}\right)^{\ell} \\
& \times\left(t-\frac{|W|}{6}\right)^{N-\ell}
\end{aligned}
$$

Outline

(9) An eigenvalue mystery...

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair
(3) Mystery solved!

An eigenvalue integrality principle

PROPOSITION:

Think of a matrix A in $\mathbf{Z}^{N \times N}$ as an operator $\mathbf{R}^{N} \xrightarrow{A} \mathbf{R}^{N}$. If A commutes with the action of a finite group W on \mathbf{R}^{N}, decomposing \mathbf{R}^{N} into W-irreducibles

- all realizable over \mathbf{Q},
- with no multiplicities
then A has all its eigenvalues in \mathbf{Z}.

PROOF (sketch): The above assumptions, together with
Schur's lemma, imply the eigenvalues of A lie in \mathbf{Q}.
But the eigenvalues are also roots of the
monic polynomial $\operatorname{det}(t I-A)$ in $\mathbf{Z}[t]$.
So they lie in Z.

An eigenvalue integrality principle

PROPOSITION:

Think of a matrix A in $\mathbf{Z}^{N \times N}$ as an operator $\mathbf{R}^{N} \xrightarrow{A} \mathbf{R}^{N}$. If A commutes with the action of a finite group W on \mathbf{R}^{N}, decomposing \mathbf{R}^{N} into W-irreducibles

- all realizable over \mathbf{Q},
- with no multiplicities
then A has all its eigenvalues in \mathbf{Z}.
PROOF (sketch): The above assumptions, together with Schur's lemma, imply the eigenvalues of A lie in \mathbf{Q}.

But the eigenvalues are also roots of the monic polynomial $\operatorname{det}(t l-A)$ in $\mathbf{Z}[t]$.
So they lie in \mathbf{Z}.

Outline

(1) An eigenvalue mystery..

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair

3 Mystery solved!

Let $\Phi_{\mathcal{O}}$ be the union of all roots $\{+\alpha,-\alpha\}$ normal to hyperplanes in the W-orbit \mathcal{O}.

Then it turns out $A=\pi^{t} \circ \pi$ where

$$
\mathbf{R} W \xrightarrow{\pi} \mathbf{R}^{\Phi_{\mathcal{O}}}
$$

is defined by

$$
\pi_{e_{w}, e_{\alpha}}= \begin{cases}1 & \text { if } w(\alpha) \text { is a positive root } \\ 0 & \text { otherwise }\end{cases}
$$

In fact, the map π is even $W \times \mathbf{Z} / 2 \mathbf{Z}$-equivariant if one lets $\mathbf{Z} / 2 \mathbf{Z}$ act on $\mathbf{R}^{\Phi_{\mathcal{O}}}$ swapping the basis elements $\boldsymbol{e}_{+\alpha} \leftrightarrow \boldsymbol{e}_{-\alpha}$.

Let $\Phi_{\mathcal{O}}$ be the union of all roots $\{+\alpha,-\alpha\}$ normal to hyperplanes in the W-orbit \mathcal{O}.

Then it turns out $A=\pi^{t} \circ \pi$ where

$$
\mathbf{R} W \xrightarrow{\pi} \mathbf{R}^{\Phi_{\mathcal{O}}}
$$

is defined by

$$
\pi_{e_{w}, e_{\alpha}}= \begin{cases}1 & \text { if } w(\alpha) \text { is a positive root } \\ 0 & \text { otherwise }\end{cases}
$$

In fact, the map π is even $W \times \mathbf{Z} / 2 \mathbf{Z}$-equivariant if one lets $\mathbf{Z} / 2 \mathbf{Z}$ act on $\mathbf{R}^{\Phi_{\mathcal{O}}}$ swapping the basis elements $\boldsymbol{e}_{+\alpha} \leftrightarrow \boldsymbol{e}_{-\alpha}$.

Rather than considering eigenspaces of

$$
\mathbf{R} W \xrightarrow{A=\pi^{t_{0} \pi}} \mathbf{R} W
$$

lets consider instead the eigenspaces of

General theory says they have the same nonzero eigenvalues, with eigenspaces carrying the same $W \times \mathbf{Z} / 2 Z$-representations.

Rather than considering eigenspaces of

$$
\mathbf{R} W \xrightarrow{A=\pi^{t_{0} \pi}} \mathbf{R} W
$$

lets consider instead the eigenspaces of

$$
\mathbf{R}^{\Phi_{\mathcal{O}}} \xrightarrow{B=\pi 0 \tau^{t}} \mathbf{R}^{\Phi_{\mathcal{O}}} .
$$

General theory says they have the same nonzero eigenvalues, with eigenspaces carrying the same $W \times \mathbf{Z} / 2 \mathbf{Z}$-representations.

Rather than considering eigenspaces of

$$
\mathbf{R} W \xrightarrow{A=\pi^{t_{0} \pi}} \mathbf{R} W
$$

lets consider instead the eigenspaces of

$$
\mathbf{R}^{\Phi_{\mathcal{O}}} \xrightarrow{B=\pi \bigcirc \pi^{t}} \mathbf{R}^{\Phi_{\mathcal{O}}} .
$$

General theory says they have the same nonzero eigenvalues, with eigenspaces carrying the same $W \times \mathbf{Z} / 2 \mathbf{Z}$-representations.

Together with the representation theory, this already explains two of the four eigenspaces that we observed...

Decompose $\mathbf{R}^{\Phi_{\mathcal{O}}}$ as $\mathbf{Z} / 2 \mathbf{Z}$-module

$$
\mathbf{R}^{\Phi_{\mathcal{O}}}=\left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{+} \oplus\left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{-}
$$

where

$$
\begin{aligned}
& \left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{+} \text {has basis } \mathbf{R}\left\{\boldsymbol{e}_{\alpha}+\boldsymbol{e}_{-\alpha}\right\}_{\alpha \in \Phi_{\mathcal{O}} \cap \Phi_{+}} \\
& \left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{-} \text {has basis } \mathbf{R}\left\{\boldsymbol{e}_{\alpha}-\boldsymbol{e}_{-\alpha}\right\}_{\alpha \in \Phi_{\mathcal{O}} \cap \Phi_{+}}
\end{aligned}
$$

The summand $\left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{+}$carries the coset action of W on W / Z, where Z is the subgroup of W stabilizing the hyperplane H.

The easy calculation

$$
B\left(e_{\alpha}+e_{-\alpha}\right)=\frac{|W|}{2} \sum_{\beta \in \Phi_{\mathcal{O}}} e_{\beta}
$$

shows that $\left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{+}$

- lies almost entirely in the kernel (0-eigenspace) of B,
- except for containing a 1 -dimensional $\frac{|\mathcal{O}||W|}{2}$-eigenspace.

The other summand $\left(\mathbf{R}^{\Phi_{\mathcal{O}}}\right)_{-}$, as W-representation

 carries the twisted coset action $\operatorname{Ind}_{Z}^{W} \chi$ where$$
\begin{array}{ll}
Z \xrightarrow{\chi} & \{ \pm 1\} \\
w \longmapsto & \left.w\right|_{H^{\perp}} .
\end{array}
$$

It would be nice if $\operatorname{Ind}_{Z}^{W} \chi$ were W-multiplicity-free, so that we could apply that eigenvalue integrality principle...

Outline

(1) An eigenvalue mystery..

- A matrix indexed by permutations
- A matrix indexed by a reflection group
(2) Some ideas
- Idea 1: Representations
- Idea 2: Flipping a factorization
- Idea 3: A twisted Gelfand pair
(3) Mystery solved!

What's a Gelfand pair?

A Gelfand pair (W, Z) is

- a group W
- and subgroup Z
such that the transitive action on the coset space $X=W / Z$ is multiplicity-free for W.

In other words, $\operatorname{Ind}_{Z}^{W} 1$ has no multiplicity
in its W-irreducible decomposition.

What's a twisted Gelfand pair?

More generally, a twisted Gelfand pair (W, Z, χ) is

- a group W
- and subgroup Z
- and degree-one character $\chi: Z \rightarrow \mathbf{C}$
such that $\operatorname{Ind}_{Z}^{W} \chi$ has no multiplicity in its W-irreducible decomposition.

Who can resist a juicy Gelfand pair?

Not this guy...

SOME q-KRAWTCHOUK POLYNOMIALS
 ON CHEVALLEY GROUPS

By Dennis Stanton*

1. Introduction. The Krawtchouk polynomials are the eigenmatrices of the binary Hamming scheme, which is the set of all N-tuples of ± 1 's. The automorphism group of this set consists of all sign changes and a permutation group on N entries. This group is the Weyl group of a simple Lie algebra. We can also describe the Krawtchouk polynomials as the spherical functions on the Weyl group modulo a maximal Weyl subgroup. Thus there is a natural set of q-Krawtchouk polynomials by replacing the

Need a Gelfand pair review...?

... and want it from the viewpoint of orthogonal polynomials and hypergeometric functions, as spherical functions on W, or on $X=W / Z$?

```
AN INTROODUC"IOON TO GROUP' REPRESENTATIONS
ANI) ORTHOGONAL POLYNOMIALS
```

```
Denus Stautoa
Bchool of Alathernatzes
#Yawhoity of Mingicsota
```



```
\BSTRACT An elemebtary non Im-linal oblrodaction to kromp representations and or-
```



```
grapho gavigg a tuite spt of discole orthogental polsmomuals as given Explirit uxamplic.
inctude graphe grving the kraworlouk and Itahu poljsomals.
```


The twisted Hecke algebra

How to show $\operatorname{Ind}_{Z}^{W} \chi$ is W-multiplicity-free?
It's equivalent to show that its ring of W-endomorphisms, the (twisted) Hecke algebra inside RW

$$
\mathcal{H}:=e_{\chi} \cdot \mathbf{R} W \cdot e_{\chi}
$$

is commutative.
Here

$$
e_{\chi}:=\frac{1}{|Z|} \sum_{w \in Z} \chi\left(w^{-1}\right) w
$$

The twisted version of Gefland's trick

How to show \mathcal{H} is commutative?
\mathcal{H} is spanned by the nonzero elements $\left\{e_{\chi} w e_{\chi}\right\}$ obtained when one runs through the double cosets $Z w Z$ in W.

PROPOSITION("twisted Gelfand's trick").
\mathcal{H} is commutative if every double coset $Z w Z$ with $e_{\chi} w e_{\chi} \neq 0$ contains an involution $w=w^{-1}$.

Proof.
These elements $e_{\chi} w e_{\chi}=e_{\chi} w^{-1} e_{\chi}$ are all fixed by the anti-automorphism $x \mapsto x^{-1}$ on $\mathbf{R} W$,
and hence span a commutative subalgebra \mathcal{H}.

The twisted version of Gefland's trick

How to show \mathcal{H} is commutative?
\mathcal{H} is spanned by the nonzero elements $\left\{e_{\chi} w e_{\chi}\right\}$ obtained when one runs through the double cosets $Z w Z$ in W.

PROPOSITION("twisted Gelfand's trick").
\mathcal{H} is commutative if every double coset $Z w Z$
with $e_{\chi} w e_{\chi} \neq 0$ contains an involution $w=w^{-1}$.

Proof.

These elements $e_{\chi} w e_{\chi}=e_{\chi} w^{-1} e_{\chi}$ are all fixed by the anti-automorphism $x \mapsto x^{-1}$ on $\mathbf{R} W$, and hence span a commutative subalgebra $\mathcal{H} . \quad \square$

The twisted Gelfand trick works for us

The double cosets $Z w Z$ in our case (roughly) correspond to the dihedral angles $\angle\left\{H, H^{\prime}\right\}$ between hyperplanes H, H^{\prime} in the chosen W-orbit \mathcal{O}.

The cosets $Z w Z$ giving $e_{\chi} w e_{\chi}=0$ turn out to be those with H, H^{\prime} orthogonal.

When the dihedral angle $\angle\left\{H, H^{\prime}\right\}$ is not orthgonal reduction to the dihedral case shows that the coset $Z w Z$ contains an involution.

This gives the first theorem: the eigenvalues of A lie in \mathbb{Z}.

The twisted Gelfand trick works for us

The double cosets $Z w Z$ in our case (roughly) correspond to the dihedral angles $\angle\left\{H, H^{\prime}\right\}$ between hyperplanes H, H^{\prime} in the chosen W-orbit \mathcal{O}.

The cosets $Z w Z$ giving $e_{\chi} w e_{\chi}=0$ turn out to be those with H, H^{\prime} orthogonal.

When the dihedral angle $\angle\left\{H, H^{\prime}\right\}$ is not orthgonal
reduction to the dihedral case shows that
the coset $Z w Z$ contains an involution.
This gives the first theorem: the eigenvalues of A lie in \mathbf{Z}.

The twisted Gelfand trick works for us

The double cosets $Z w Z$ in our case (roughly) correspond to the dihedral angles $\angle\left\{H, H^{\prime}\right\}$ between hyperplanes H, H^{\prime} in the chosen W-orbit \mathcal{O}.

The cosets $Z w Z$ giving $e_{\chi} w e_{\chi}=0$ turn out to be those with H, H^{\prime} orthogonal.

When the dihedral angle $\angle\left\{H, H^{\prime}\right\}$ is not orthgonal reduction to the dihedral case shows that the coset $Z w Z$ contains an involution.

This gives the first theorem: the eigenvalues of A lie in \mathbf{Z}.

The twisted Gelfand trick works for us

The double cosets $Z w Z$ in our case (roughly) correspond to the dihedral angles $\angle\left\{H, H^{\prime}\right\}$ between hyperplanes H, H^{\prime} in the chosen W-orbit \mathcal{O}.

The cosets $Z w Z$ giving $e_{\chi} w e_{\chi}=0$ turn out to be those with H, H^{\prime} orthogonal.

When the dihedral angle $\angle\left\{H, H^{\prime}\right\}$ is not orthgonal reduction to the dihedral case shows that the coset $Z w Z$ contains an involution.

This gives the first theorem: the eigenvalues of A lie in \mathbf{Z}.

And for the simply-laced theorem...

... one only needs double cosets $Z w Z$ where $\angle\left\{H, H^{\prime}\right\} \in\left\{0, \frac{\pi}{3}\right\}$.
In this case, it turns out (stealing an idea from Renteln) that

$$
\operatorname{Ind}_{Z}^{W} \chi \cong \mathbf{R}^{\ell} \oplus U
$$

where U is a W-irreducible spanned by the vectors

$$
\left\{\boldsymbol{e}_{\alpha}+\boldsymbol{e}_{\beta}+\boldsymbol{e}_{\gamma}-\left(e_{-\alpha}+\boldsymbol{e}_{-\beta}+\boldsymbol{e}_{-\gamma}\right)\right\}
$$

running over α, β, γ as shown:

One mystery remains: Who was that masked man?

Mystery solved!

