Counting trees and nipotent endomorphisms

(based on Tom Lemster's arXiv: 1912. 12562)

U. Minnesota Combinatorics Seminar Mar. 27, 2020

Vic Remer

1. Cayley's formula combigbres e reformulations

2. Transfents/recurrents & Joyal's proof

3. Fitting's Lemma

4. Fine-Herstein Theorem coming nilpotents

5. Lanster's proof

1. Cayley's tree formula

$$& reformulations$$

THEOREM (Borchardt 1880,
Cayley 1889)
{ brees on vertex set } = n^{n-2}
 $[n]:=\{1,2,...,n\}$
e.g. $n=12$
 $6 10-4-2$
 $8 10-4-2$
 $1-5$
 $3 11$
There are 12^{10} of these.

nⁿ⁻²

A reformulation:

THEOREM $# \left\{ \left(vertex - \right) rooted \right\} = n - n^{n-2} = n^{n-1}$ trees on [n]

So there are 12^m of these.

Another reformulation:
THEOREM
{ eventually constant } = nⁿ
endofunctions f = nⁿ
f: [n]
$$\rightarrow$$
 [n]
because there is an easy bijection
{ nooted trees on [n] } \leftarrow { eventually constant f
on [n] } \leftarrow { [n] \rightarrow [n]]
 $f: [n] \rightarrow [n]$ }
 $f: [n] \rightarrow [n]$ $f: [n] \rightarrow [n]$]
 $f: [n] \rightarrow [n]$ $f: [n] \rightarrow [n]$ $f: [n] \rightarrow [n]$]
 $f: [n] \rightarrow [n]$ $f: [n] \rightarrow$

Or equivalently, since there are n endofunctions f: [n] -, [n] total ...

THEOREM

 $\left(\begin{array}{c} \text{snce if } n=\#X\\ \text{then } LHS=\frac{n^{n-1}}{n^n}=\frac{1}{n} \end{array}\right)$

2. Transients/recurrents & Joyal's proof (1981) One more reformulation THEOREM vertebrates on $[n]_{n.n.n.n} = n$:= trees [n.n.n.n] = n#) of head vertex and tail vertex # endofunctions f: [n]->[n]

[vertebrates on [n]] Joyal 6 head 12 10-4-2 f: [n]->[n] 10 ls head (0)-4 jendofunctions on [n] } .1. [vertebrates on [n]] s decompositions decompositions [n]:= R is T [n]:=RIJT with a permutation of K with a linear order on R, and Ta collection of trees rooted at elements of R and Ta collection of bees rooted at elements of R

Need for every subset $R \subseteq [n]$, a bijection { linear nR} $\in \mathbb{R}$ permutations? orders nR} $\in \mathbb{R}$ of R So just pick a reference linear order (r, r, r, r, r, R) for R and biject $(r_{\sigma(i)}, r_{\sigma(2)}, ..., r_{\sigma(tR)}) \leftrightarrow (r_{\sigma(i)}, r_{\sigma(2)}, ..., r_{\sigma(tR)})$ head tail (24910) $(0-4-2-9) \iff (24910)$ (0429)(249)=(4)(2109 head tai 10-4-2-9 12

3. Fitting's Lemma (1930's) X a finite dimensional vector space and $f: X \longrightarrow X$ in End(X)

gives rise to a unique f-stable decomposition

Fitting's Lemma X a finite dimensional vector space and $f: X \rightarrow X$ in End(X)gives rise to a unique f-stalde decomposition X = V € W with fly nvertible, flw nilpotent

proof: These chains stabilize in
$$\leq \dim(X)$$
 steps:
 $X \supseteq im(f) \supseteq im(f^2) \supseteq im(f^\infty)$
 $\{o\} \subseteq ker(f) \subseteq ker(f^\alpha) \subseteq ker(f^\infty)$
because any equality persists thereafter.

Fitting's Lemma X a finite dimensional vector space and $f: X \rightarrow X$ in End(X)gives rise to a unique f-stalde decomposition $\chi = \bigvee \oplus W$ with fly mertible, fly nilpotent

proof: Once they stabilize ... $X \supseteq in(f) \supseteq in(f^2) \supseteq \dots in(f^{\infty}) =: V$ $\{o\} \subseteq ker(f) \subseteq ker(f^{\alpha}) \subseteq \dots ker(f^{\infty}) =: V$ dins sum to dont via rank-rullity formula in(fr)nker(fr) × = {0}

4. The fine-Herstein Theorem
Recall Cayley's Theorem was
equivalent to saying for all finite sets X

$$Prob(f: X \rightarrow X) = \frac{1}{4X}$$

 $Prob(f: X \rightarrow X) = \frac{1}{4X}$
 $Prob(f: X \rightarrow X) = \frac{1}{4X}$

(of Fine-Herstein Thm) 5. Leinster's proof To prove $Plob(fetnd(X)) = \frac{1}{\#X}$ Leinster gives a bijection \rightarrow End(X) Nilp(X) * X nilpotent Inear maps N:X-1X all linear maps f:X-7X But analogous to Joyal's choice of a reference linear order on each subset R C MJ, he needs a choice for every subspace V C X of • a reference ordered basis $(v_1, v_2, ..., v_k)$ of V_2 • a référence complement space V¹ with $X = V \oplus V^{\perp}$ no counterpart for RCMJ where [n]=RwRL forces R¹ = UNJ~R

GOAL: A bijection $N(lp(X) \times X \xrightarrow{\sim} End(X)$ fitting a bijection \ suffice dei $X = V \oplus W$ $\int O = Aut(V) = Nip(W)$

RENSED GOAL: A bijection $\operatorname{Nilp}(X) \times X \xrightarrow{\sim} \begin{cases} decompositions \\ X = V \oplus W \\ & \bigcup_{w \notin U} & \Im \in \operatorname{Nilp}(W) \end{cases}$ Given $(N, v) \in Nilp(X) \times X$, let k := smallest power with N^k(v)=0and let V:= span {v, N(v), N(v), ..., N^{k-1}(v)} an N-stable subspace, annihilated by N^k. Since N acts nilpolently on V its minimal polynomial is some power of X, dividing Rk, so equal to Xk, by definition of k. Hence (v, N(v), N²(v),..., N^{k-1}(v)) is an ordered basis for V, and we can define ge Aut (V) by $(V_1, V_2, V_3, \dots, V_k) <$ 2 the chosen reference ordered basis $\begin{array}{c} g \overline{J} & \overline{J} & \overline{J} \\ (v, N(v), N(v), \dots, N(v)) \end{array}$ for

So for we achieved

$$(N,v) \mapsto \begin{pmatrix} X = V \oplus V^{\perp} \\ G & G \\ g \in Aut(V) & N_{r_{3}v^{\perp}} \in Nilp(V^{\perp}) \\ g \mapsto N_{Vv^{\perp}} : V^{\perp} \to V \end{pmatrix}$$

which looks almost, but not quite right,
since we really want

$$(N, V) \mapsto \begin{pmatrix} X = V \notin W \\ G \in Aud(V) \end{pmatrix} \xrightarrow{} ne Nilp(W) \end{pmatrix}$$

So now we can fix ...

$$\begin{split} & (N, v) \longmapsto \begin{pmatrix} X = V \oplus V^{\perp} & \\ G & G \\ g \in Aut(v) & N_{v!,v!} \in Nilp(V^{\perp}) \\ p \underset{N_{VV} \perp}{\text{plus}} & N_{VV} \perp : V^{\perp} \rightarrow V \\ & \downarrow & \text{by replacing} \\ & N_{v,v!} & \text{by } W = graph(N_{v,v!}) \\ & \equiv V^{\perp} \\ & \bullet & N_{v!,v!} \in Nilp(V^{\perp}) \\ & \downarrow & \downarrow & \text{be amespanding} \\ & & N_{v!,v!} \in Nilp(W) \\ & (N, v) \longmapsto \begin{pmatrix} X = V \oplus W \\ G & G \\ g \in Aut(v) & n \in Nilp(W) \end{pmatrix} \end{split}$$

... and check it's all reversible!

REMARKS:

· His proof should lend itself to more geometry, maybe of nilpotent cone $Nilp(X) \subset End(X)$?

Thanks for your attention / (... and contact me or Chris Fraser if you would like to speak.)