Counting trees and milpotent endomorphisms
(based on Tom Leister's

$$
\text { ar Xiv: } 1912.12562 \text {) }
$$

U. Minnesota

Combinatorics Seminar
Mar. 27, 2020
Vic Reined

1. Cayley's formula countingtrees \& reformulations
2. Transients/recurents \& Joyal's proof
3. Fittong's lemma
4. Fine-Herstein Theorem counting nilpotents
5. Leinster's proof
6. Cayley's tree formula \& reformulations

THEOREM (Borchavat 1880, Cayley 1889)

$$
\begin{gathered}
\text { \#\{trees on vertex set } \\
{[n]:=\{1,2, \ldots, n\}}
\end{gathered}
$$

$$
e \cdot g \cdot n=12
$$

There are 12^{10} of these.

$$
\ddot{n}^{n-2}
$$

A reformulation:

THEOREM

So there are 12^{11} of these.

Another reformulation:
THEOREM

$$
\begin{aligned}
& \text { THEOREM Y } \\
& \text { \# }\left\{\begin{array}{c}
\text { eventually constant } \\
\text { endofinctions } \\
f:[n] \rightarrow m]
\end{array}\right\}=n^{n-1} \\
& f
\end{aligned}
$$

because there is an easy bijection

$$
\left\{\begin{array}{c}
\text { rooted trees } \\
\text { on }[n]
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { evervanally constant } \\
f:[n] \rightarrow[n]
\end{array}\right\}
$$

noted tree

eventually constant f

Or equivalently, since there are n^{n}
endofunctions $f:[n] \rightarrow[n]$ total ...
THEOREM
For amy finite set X,

$$
\operatorname{Prob}\left(\begin{array}{c}
f: X \rightarrow X \\
\text { is eventual } \\
\text { constant }
\end{array}\right)=\frac{1}{\# X}
$$

$$
\binom{\text { sue if } n=\# X}{\text { then LHS }=\frac{n^{n-1}}{n^{n}}=\frac{1}{n}}
$$

2. Transients/recurrents
\& Joyal's proof (1981)
One more retormulation...
THEOREM

Need for every subset $R \subseteq[n]$, a bijection $\left\{\begin{array}{l}\text { linear } \\ \text { orders on } R\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { permutations } \\ \text { of } R\end{array}\right\}$
so just pick a reference linear order $\left(r_{1}, r_{2}, \ldots, r_{11}\right)$ for R and biject

$$
\begin{aligned}
& \left(r_{\left.\sigma_{1}\right)}, r_{\sigma_{(2)}, \ldots,} r_{\sigma(\pm R)}\right) \leftrightarrow\binom{r_{1} r_{2} \ldots r_{\# R}}{r_{\sigma_{11}} r_{\sigma_{(2)}} \ldots r_{\sigma_{(1+R)}}}
\end{aligned}
$$

$$
\begin{aligned}
& =(4)(2109)
\end{aligned}
$$

3. Fitting's Lemma (1930's) X a finite dimensional vector space and $f: X \rightarrow X$ in $\operatorname{End}(X)$
gives rise to a unique f-stable decomposition

$$
\begin{aligned}
& X=V_{\sigma} \oplus W \\
& \text { with } f f_{v} \text { invertible, } f l_{w} \text { nilpotent } \\
& \in \operatorname{Ant}(V) \in \operatorname{Nilp}(V) \\
& =G(V)
\end{aligned}
$$

Fitting's Lemma
X a finite dimensional vector space and $f: X \rightarrow X$ in End (X) gives rise to a unique f-stable decomposition
proof: These chains stabilize in $\leq \operatorname{dim}(x)$ steps:

$$
\begin{aligned}
& X \supseteq \operatorname{im}(f) \supseteq \operatorname{im}\left(f^{2}\right) \supseteq \ldots \operatorname{im}\left(f^{\infty}\right) \\
& \{0\} \subseteq \operatorname{ker}(f) \subseteq \operatorname{ker}\left(f^{2}\right) \subseteq \ldots \operatorname{ker}\left(f^{\infty}\right)
\end{aligned}
$$

because any equality persists thereafter.

Fitting's Lemma
X a finite dimensional vector space and $f: X \rightarrow X$ in $\operatorname{End}(X)$ gives rise to a unique f-stable decomposition

$$
\begin{aligned}
& X=\bigvee_{\text {with }}^{f} f_{V} \text { invertible, } \\
& \overbrace{W} \text { nilpotent }
\end{aligned}
$$

proof: Once they stabilize...
4. The Fine-Herstein Theorem

Recall Cayley's Theorem was equivalent to saying for all finite sets X

$$
\operatorname{Prob}\left(\begin{array}{c}
f: X \rightarrow X \\
\text { is eventually } \\
\text { constant }
\end{array}\right)=\frac{1}{\# X}
$$

THEOREM (Fine a Herstein 1958) For all finite vector spaces $X\left(\right.$ so $\left.X \cong \mathbb{F}_{D}^{n}\right)$, $\operatorname{Prob}\left(\begin{array}{c}\text { linear map } \\ f: X \rightarrow X \\ \text { is eventually } \\ \text { constant, } \\ \text { ie. ni potent }\end{array}\right)=\frac{1}{\# X}$

In other words,
\#\{ $\left\{\begin{array}{l}\text { nilpotent } \text { linear } \\ \text { maps } f: \mathbb{F}_{g}^{n} \rightarrow \mathbb{F}_{q}^{n}\end{array}\right\}=\frac{q^{\text {nan }}}{q^{n}}=q^{n(n-1)}$
5. Leinster's proof (of Fine-Herstern Thu)

To prove

$$
\operatorname{Prob}\binom{f \in \operatorname{fnd}(X)}{B \text { nilpotent }}=\frac{1}{\# X}
$$

Leinster gives a bijection

$$
\underset{\substack{\text { Nip }(X) \\ \text { nilpotent } \\ \text { invar mops } N: X \rightarrow X}}{\operatorname{Ln} d(X)} \underset{\substack{\text { all linear } \\ \text { maps } f: x \rightarrow X}}{\operatorname{En}}
$$

But analogous to Joyal's choice of a reference linear order on each subset $R \subset[h]$, he needs a choice for every subspace $V \subset X$ of

- a reference ordered basis $\left(v_{1}, v_{2},-, v_{k}\right)$ ot V,
- a reference complement space V^{\perp} with

$$
X=\bigvee \oplus V^{1}
$$

where $[n]=R \omega R^{\perp}$
forces $R^{\perp}=[n], R$

GoAl: A bijection

$$
\operatorname{Nilp}(X) \times X \xrightarrow{\sim} \operatorname{End}(X)
$$

a bijection 1 here would suffice

REVISED GOAL: A bijection

Given $(N, v) \in \operatorname{Nilp}(X) \times X$,

- let $k:=$ smallest power with $N^{k}(v)=0$
and let $V:=\operatorname{span}\left\{v v_{0} N(v), N^{2}(v), \ldots, N^{l d-1}(v)\right\}$ an N-stable subspace, annihilated by N^{k}.
- Since N acts nilposertly on V its minimal polynomial is some power of x, dining x^{k},
so equal it x^{k}, by definition of k, so equal to x^{k}, by definition of k.
- Hence $\left(v, N(v), N^{2}(v), \ldots, N^{k-1}(v)\right)$ is an ordered basis for V, and we can define $g \in A u t(V)$ by

$\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right) \leftarrow$	the chosen	
$I I$		
I	I	I
reference		
$\left(v, N(v), N^{2}(v), \ldots, N^{k-1}(v)\right)$	ordered	
for V		

REVSED GOAL: A bijection

Given (N, V) we found $V D_{g \in \operatorname{Ant}}(V)$. For the rest, consider N acting on

Considering N acting on

So for we achieved
which looks almost, but not quite right, since we really want

$$
(N, v) \mapsto\left(\begin{array}{ll}
X=W^{X} \oplus W^{\prime} \\
\underset{g \in A_{n}(v)}{ } & j \in \operatorname{Nip}_{i p}(w)
\end{array}\right)
$$

LINEAR ALGEBRA FACT:

$$
\begin{aligned}
&\left\{\begin{array}{c}
\text { linear maps } \\
V^{\perp} \underline{\varphi} \\
\longrightarrow
\end{array}\right\} \longleftrightarrow \\
&\left.\varphi \longmapsto \begin{array}{c}
\text { complements } W \\
\text { for } V \text { in } \\
V \oplus V^{\perp}=: X
\end{array}\right\} \\
&\left.=\left\{\begin{array}{c}
\mid(u) \\
u
\end{array}\right]: u \in V^{\perp}\right\}
\end{aligned}
$$

$\left(\begin{array}{c}\text { along } \\ \text { with an isomorphism } \\ \text { W }\end{array} \stackrel{\pi_{2}}{\sim} V^{\perp}\right)$

So now we can fix...

$$
\begin{aligned}
& (N, v) \mapsto\left(\begin{array}{l}
X=V \oplus V^{\perp} \\
\sigma \in \operatorname{Aut}(v) \\
N_{V V_{s} V^{\perp}} \in N_{i \mid p}\left(V^{\perp}\right) \\
p h s \\
N_{V V^{\perp}}: V^{\perp} \rightarrow V
\end{array}\right) \\
& \{\text { by replacing ... } \\
& \text { - } N_{V, \nu^{\perp}} \text { by } W=\operatorname{graph}\left(N_{V, \nu} \nu^{2}\right) \\
& \cong V^{\perp} \\
& \text { - } N_{v^{\prime}, v^{1}} \in N^{i l} \operatorname{lo}^{\prime}\left(V^{1}\right) \\
& \text { by the corresponding } \\
& n \in \operatorname{Milp}(w)
\end{aligned}
$$

... and check it's all reversible!

REMARKS:

- Leinster's prepuint is - only 5 pages (!)
- beautifully written
- has more history and useful comments
- His proof should lend itself to more geometry, maybe of nilpotent cone

$$
\operatorname{Nilp}(x) \subset \operatorname{End}(x) \text { ? }
$$

Thanks for your attention / (... and contact me or Chris Fraser
if you would like to speak.)

