New combinatorics from the invariant theory of reflection groups

AMS-MAA Winter meeting
New Orleans
January 8, 2007

Vic Reiner
School of Mathematics
University of Minnesota
Minneapolis, MN 55455

Outline

I. New combinatorics: the cyclic sieving phenomenon with three examples.
II. Reflection groups
III. Generalizations of the three examples.
IV. How invariant theory helps.

I. The cyclic sieving phenomenon (CSP) (-, Stanton, and White 2004)

Given

- a finite set X, and
- a polynomial $X(q) \in \mathbb{Z}[q]$, and
- a cyclic group C permuting X,
the triple $(X, X(q), C)$ exhibits the CSP
if for
- any c in C and
- any root-of-unity $\omega \in \mathbb{C}^{\times}$of the same order one has

$$
\left|X^{c}\right|=[X(q)]_{q=\omega} .
$$

In examples,
most often $X(q) \in \mathbb{N}[q]$, and
sometimes $X(q)$ is a generating function for X of the form

$$
X(q)=\sum_{x \in X} q^{s(x)} .
$$

Special case when $C=\mathbb{Z}_{2}$:
Stembridge's $q=-1$ phenomenon (1994):

$$
[X(q)]_{q=-1}=\left|X^{c}\right|
$$

for some involution $c: X \rightarrow X$

Example 1

Let

$$
X:=k \text {-subsets of }\{1,2, \ldots, n\}
$$

$X(q):=q$-binomial coefficient

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{[n]!_{q}}{[k]!q[n-k]!_{q}},
$$

where

$$
\begin{aligned}
{[n]!_{q} } & :=[n]_{q} \cdots[2]_{q}[1]_{q} \\
{[n]_{q} } & :=1+q+q^{2}+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1} \\
C & :=\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z} \\
& \text { cyclically permuting }\{1,2, \ldots, n\} \\
& \quad \text { and thus permuting } k \text {-subsets. }
\end{aligned}
$$

Example 1 (continued)

For $n=4, k=2$, the set

$$
X=\{12,13,14,23,24,34\}
$$

carries this action of $C=\mathbb{Z}_{4}$:

$X(q)=\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q}=\frac{[4]_{q}[3]_{q}}{[2]_{q}}=1+q+2 q^{2}+q^{3}+q^{4}$
evaluates at $4^{\text {th }}$-roots of unity as

$$
X(\omega)= \begin{cases}6 & \text { if } \omega=1 \\ 2 & \text { if } \omega=-1 \\ 0 & \text { if } \omega= \pm i\end{cases}
$$

matching the fixed-point cardinalities $\left|X^{c}\right|$ for elements c in C of the same orders.

Example 1 (continued)

Same set X and
same polynomial $X(q)=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ work with a
different cyclic group $C=\mathbb{Z}_{n-1}$,
generated by the ($n-1$)-cycle

$$
c=(12 \cdots n-2 n-1)(n) .
$$

For $n=4, k=2$, one has this action of $C=\mathbb{Z}_{3}$:

$$
\text { and } X(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
$$

evaluates at $3^{r d}$-roots of unity as

$$
X(\omega)= \begin{cases}6 & \text { if } \omega=1 \\ 0 & \text { if } \omega=e^{\frac{ \pm 2 \pi i}{3}} .\end{cases}
$$

Example 1 (continued)

WARNING:
Same set X and
same polynomial $X(q)=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$
generally fails for cyclic actions $C=\langle c\rangle$ unless c acts on $\{1,2, \ldots, n\}$ as a power of an n-cycle or ($n-1$)-cycle.

In fact, for other roots of unity ω, one will generally have $[X(q)]_{q=\omega} \notin \mathbb{N}$.

Foreshadowing...
Powers of n-cycles and ($n-1$)-cycles are exactly the regular elements of the symmetric group $W=\mathfrak{S}_{n}$.

Remark: The $X(q)=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ in Example 1 had

many extra features:

- It's a simple generating function for X :

$$
X(q)=\sum_{x \in X} q^{s(x)}
$$

where $s(x)=\left(\sum_{i \in x} i\right)-\binom{k}{2}$ for a k-subset x of $\{1,2, \ldots, n\}$.

- It has a product formula,
making $[X(q)]_{q=\omega}$ easy to evaluate (useful for brute force proofs of CSP's).
- It has meaning for $q=p^{k}$ a prime power (counting k-dimensional subspaces of an n-dimensional vector space over \mathbb{F}_{q}).
- It's the Hilbert series of some naturally occurring graded ring (from invariant theory).
- $X(q)$ is the character of a naturally occurring representation (of $\operatorname{sl}_{2}(\mathbb{C})$ on $\wedge^{k} \mathbb{C}^{n}$).

Examples 2, 3

For both of these examples, let

$$
X(q):=\operatorname{Cat}_{n}(q)=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}
$$

the q-Catalan number (Fürlinger-Hofbauer 1985).

$$
\begin{aligned}
& \operatorname{Cat}_{1}(q)=1 \\
& \operatorname{Cat}_{2}(q)=1+q^{2} \\
& \operatorname{Cat}_{3}(q)=1+q^{2}+q^{3}+q^{4}+q^{6} \\
& \operatorname{Cat}_{4}(q)=1+q^{2}+q^{3}+2 q^{4}+q^{5}+2 q^{6} \\
& \quad+q^{7}+2 q^{8}+q^{9}+q^{10}+q^{12}
\end{aligned}
$$

There are plenty* of sets X counted by the Catalan numbers

$$
X(1)=\text { Cat }_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

many with natural cyclic group C actions. We'll consider two such sets $X \ldots$
*At least 142 on December 20, 2006, according to Richard Stanley

Example 2

$$
\begin{aligned}
X & =N C(n) \\
: & =\text { noncrossing partitions } \\
& \text { of the set }\{1,2, \ldots, n\}, \\
X(q) & =\operatorname{Cat}_{n}(q)=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q} \\
C & =\mathbb{Z}_{n} \text { cyclically rotating }\{1,2, \ldots, n\} .
\end{aligned}
$$

Example 2 (continued)

$n=3$: the action of $C=\mathbb{Z}_{3}$ on $X=N C(3)$

Meanwhile

$$
X(q)=\operatorname{Cat}_{3}(q)=1+q^{2}+q^{3}+q^{4}+q^{6}
$$

evaluates at $3^{r d}$-roots of unity as

$$
X(\omega)= \begin{cases}5 & \text { if } \omega=1 \\ 2 & \text { if } \omega=e^{ \pm \frac{2 \pi i}{3}}\end{cases}
$$

Example 3

$X=$ triangulations of a convex $(n+2)$-gon,
$X(q)=\operatorname{Cat}_{n}(q)=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}$,
$C=\mathbb{Z}_{n+2}$ via rotation.

$$
X(q)=\operatorname{Cat}_{3}(q)=1+q^{2}+q^{3}+q^{4}+q^{6}
$$

evaluates at $5^{\text {th }}$-roots of unity as

$$
X(\omega)= \begin{cases}5 & \text { if } \omega=1 \\ 0 & \text { if } \omega=\left(e^{\frac{2 \pi i}{5}}\right)^{j} \text { for } j=1,2,3,4\end{cases}
$$

II. Reflection groups

Examples 1,2,3 all generalize in some way to reflection groups.

Q: What's a reflection group?
A: Not totally clear, but here's the definition we'll use ...

Definition. Let \mathbb{F} be any field, V an n-dimensional vector space over \mathbb{F}. A reflection group is a finite subgroup

$$
W \subset G L(V)\left(\cong G L_{n}(\mathbb{F})\right)
$$

for which the W-action on the symmetric algebra

$$
S:=\operatorname{Sym}\left(V^{*}\right)\left(\cong \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\right)
$$

has invariant subring S^{W} a polynomial algebra.

$$
S^{W}=\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]
$$

Q: Where was the word "reflection" in that definition?
A: It's implicit via a theorem of Serre...

Theorem(Serre 1967)
For finite subgroups $W \subset G L_{n}(\mathbb{F})$, S^{W} polynomial implies
W is generated by reflections.

But you have to interpret "reflection" broadly when working over an arbitrary field \mathbb{F}...

Here a reflection means any element r of $G L(V)$ with fixed subspace V^{r} is of codimension 1 , i.e., V^{r} is a hyperplane.

For real reflections r...

Warning: one allows

- diagonalizable reflections whose non-unit eigenvalue is a root of unity in \mathbb{F}^{\times} not necessarily -1 ,
- non-diagonalizable reflections, called transvections, in positive characteristic.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Motivating precursor in characteristic zero:

Theorem
(Chevalley 1955, Shephard and Todd 1954)
For finite subgroups $W \subset G L_{n}(\mathbb{F})$, with \mathbb{F} of characteristic zero, S^{W} polynomial if and only if
W is generated by reflections.

Shephard and Todd classified all finite complex reflection groups, and used this to prove the theorem, along with much amazing numerology of the fundamental degrees

$$
d_{1} \leq d_{2} \leq \cdots \leq d_{n}
$$

for any choice of homogeneous basic invariants f_{1}, \ldots, f_{n} generating S^{W}.

Chevalley proved the theorem uniformly.

The Shephard-Todd classification has
one infinite family $G(d, e, n)$
for positive integer d, e, n with e dividing d, and 34 exceptional groups
$G(d, e, n)=n \times n$ matrices with

- exactly one nonzero entry in each row/column,
- required to be $d^{\text {th }}$ roots-of-unity,
- whose product is a $\frac{d}{e}^{\text {th }}$ root-of-unity.

The family $G(d, e, n)$ contains the

- symmetric groups \mathfrak{S}_{n} (type A_{n-1}) as $G(1,1, n)$,
- Weyl groups of type B_{n} / C_{n} as $G(2,1, n)$,
(and wreath products $\mathbb{Z}_{d} \imath \mathfrak{S}_{n}$ as $G(d, 1, n)$)
- Weyl groups of type D_{n} as $G(2,2, n)$
- dihedral groups of order $2 m$ as $G(m, m, 2)$

Some taxonomy of reflection groups

Finite groups generated by reflections

Finite linear groups with polynomial invariants
(e.g., $G L_{n}\left(\mathbb{F}_{q}\right)$)
(Example 1?)
Complex reflection groups
(e.g., $G(d, e, n)$)
(Example 1)
|
Well-generated complex reflection groups
$=$ those generated by $\operatorname{dim}_{\mathbb{C}} V$ reflections

$$
(e . g ., G(d, 1, n), G(e, e, n))
$$

(Example 2)

Finite Coxeter (=real reflection) groups
(types $B_{n} / C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}, I_{2}(m)$)
(Example 3)
symmetric groups \mathfrak{S}_{n}
($=G(1,1, n)=$ type $\left.A_{n-1}\right)$

Example: symmetric groups $W=\mathfrak{S}_{n}$

Fundamental theorem of symmetric functions:

$$
\begin{aligned}
S^{W} & \left.=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\right]_{n}^{\mathfrak{S}_{n}} \\
& =\mathbb{F}\left[e_{1}, \ldots, e_{n}\right] .
\end{aligned}
$$

where e_{i} are elementary symmetric functions

$$
\begin{aligned}
e_{1} & =x_{1}+\cdots+x_{n} \\
e_{2} & =x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n} \\
\quad & \\
e_{n} & =x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

Fundamental degrees:
$1,2,3, \ldots, n$

Example: $W=G(d, e, n)$.

Fundamental theorem of symmetric functions implies

$$
\begin{aligned}
& S^{W}=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{G(d, e, n)} \\
& \quad=\mathbb{F}\left[e_{1}\left(\mathrm{x}^{d}\right), \ldots, e_{n-1}\left(\mathrm{x}^{d}\right), e_{n}(\mathrm{x})^{\frac{d}{e}}\right]
\end{aligned}
$$

Fundamental degrees:
$d, 2 d, 3 d \ldots,(n-2) d,(n-1) d$, and $n \frac{d}{e}$

Example: finite general linear groups

$$
W=G L_{n}\left(\mathbb{F}_{q}\right)
$$

Dickson's theorem (1911):

$$
\begin{aligned}
S^{W} & =\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{G L_{n}\left(\mathbb{F}_{q}\right)} \\
& =\mathbb{F}_{q}\left[D_{n, 0}, D_{n, 1}, \ldots, D_{n, n-1}\right]
\end{aligned}
$$

where

$$
D_{n, k}=\sum_{k \text {-subspaces } U \subset V^{*}} \prod_{\ell \notin U} \ell(\mathrm{x})
$$

are called Dickson polynomials.
For example, $n=2, q=2$

$$
\begin{aligned}
& \mathbb{F}_{2}[x, y]^{G L_{2}\left(\mathbb{F}_{2}\right)} \\
& =\mathbb{F}_{2}\left[x y(x+y), x^{2}+x y+y^{2}\right] \\
& =\mathbb{F}_{2}\left[D_{2,0}, D_{2,1}\right]
\end{aligned}
$$

Fundamental degrees:
$q^{n}-q^{n-1}, q^{n}-q^{n-2}, \ldots, q^{n}-q, q^{n}-1$.

III. Generalizing the examples

Generalizing Examples 1,2, requires
Springer's (1972) notion of a regular element in a reflection group W :
an element c having an eigenvector

$$
\begin{gathered}
v \in \bar{V}:=V \otimes_{\mathbb{F}} \overline{\mathbb{F}} \\
c(v)=\omega v
\end{gathered}
$$

which is regular in the sense that it is fixed by no reflections for W.

Call $\omega \in \overline{\mathbb{F}}^{\times}$a regular eigenvalue for c; it will always be a root of unity, of the same order as c.

Example: $W=\operatorname{Sym}_{n}$ has regular elements

- the n-cycle

$$
c=(12 \cdots n-1 n)
$$

regular eigenvector $v=\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right)$, where ω is any primitive $n^{\text {th }}$ root-of-unity,

- the $(n-1)$-cycle

$$
c=(12 \cdots n-1)(n)
$$

regular eigenvector $v=\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}, 0\right)$, where ζ is any primitive
($n-1)^{\text {st }}$ root-of-unity,

- their conjugates,
- their powers, and no other regular elements.

Recall Example 1: one has a CSP for

$$
\begin{aligned}
X & =k \text {-subsets of }\{1,2, \ldots, n\} \\
X(q) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \\
C & =\langle c\rangle \text { for } c \text { an } n \text {-cycle or }(n-1) \text {-cycle }
\end{aligned}
$$

Theorem 1: (-,Stanton,White 2004) Let $W \subset G L_{n}(\mathbb{C})$ be a finite reflection group, and $c \in W$ be any regular element. Then
$X=$ any set with transitive W-action,

$$
\text { say } X=W / W^{\prime}
$$

$$
X(q)=\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, q\right)}{\operatorname{Hilb}\left(S^{W}, q\right)}
$$

$C:=\langle c\rangle$ translating the cosets $w W^{\prime}$ gives a triple ($X, X(q), C$) exhibiting the CSP.

Conjecture: $\mathbb{F}=\mathbb{C}$ was unnecessary;
One needs no assumption on the field \mathbb{F}, just S^{W} polynomial.

For Example 1,

$$
\begin{aligned}
X & =k \text {-subsets of }\{1,2, \ldots, n\} \\
& =\mathfrak{S}_{n} /\left(\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}\right) \\
& =W / W^{\prime}
\end{aligned}
$$

with C-action by translating cosets; this agrees with cycling $\{1,2, \ldots, n\}$.

Meanwhile

$$
\begin{aligned}
S^{W^{\prime}}=\mathbb{F} & {\left[e_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, e_{k}\left(x_{1}, \ldots, x_{k}\right),\right.} \\
& \left.e_{1}\left(x_{k+1}, \ldots, x_{n}\right), \ldots, e_{n-k}\left(x_{k+1}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

so

$$
\begin{aligned}
X(q) & =\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, q\right)}{\operatorname{Hilb}\left(S^{W}, q\right)} \\
& =\frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}{(1-q) \cdots\left(1-q^{k}\right) \cdot(1-q) \cdots\left(1-q^{n-k}\right)} \\
& =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
\end{aligned}
$$

Example 2 generalizes to

 well-generated complex reflection groups W, where there is a notion (Bessis 2001,2004) of W-noncrossing partitions...Numerology shows that when W is well-generated, for the Coxeter number

$$
h:=d_{n}=\max \left\{d_{1}, \ldots, d_{n}\right\}
$$

there always exist regular elements with regular eigenvalue $e^{\frac{2 \pi i}{h}}$, called Coxeter elements.

In fact, they're all conjugate in W. So fix one and call it c.
E.g., for $W=\mathfrak{S}_{n}$, the Coxeter number $h=n$, and the Coxeter elements are n-cycles, so fix

$$
c=(12 \cdots n-1 n) .
$$

Define the absolute or reflection length on W (not the Coxeter group length!)
$\ell(w):=\min \left\{\ell \mid w=r_{1} \cdots r_{\ell}\right.$ for reflections $\left.r_{i}\right\}$.
In fact, $\ell(w)$ is the codimension of the fixed space V^{w}.

Define the W-noncrossing partitions

$$
N C(W):=\left\{w \in W: \ell(w)+\ell\left(w^{-1} c\right)=n\right\} .
$$

Theorem (Bessis 2004, case-by-case):

$$
|N C(W)|=\prod_{i=1}^{n} \frac{h+d_{i}}{d_{i}}=: W \text {-Catalan number }
$$

Note that conjugation by W preserves $\ell(-)$, conjugation by c acts on $N C(W)$.

Recall Example 2: one has a CSP for

$$
\begin{aligned}
X & =N C(n) \\
& =\text { noncrossing partitions of }\{1,2, \ldots, n\} \\
X(q) & =\operatorname{Cat}_{n}(q)=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q} \\
C & =\mathbb{Z}_{n} \text { via cyclic rotation }
\end{aligned}
$$

Theorem 2:(- and Bessis, 2006) Let W be a well-generated complex reflection groups W, and c a chosen Coxeter element. Then

$$
\begin{aligned}
X & =N C(W)=W \text {-noncrossing partitions } \\
X(q) & =\operatorname{Cat}(W, q)=W \text { - } q \text {-Catalan number } \\
& :=\prod_{i=1}^{n} \frac{\left[h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}} \\
C & =\langle c\rangle \text { via conjugation }
\end{aligned}
$$

gives a triple $(X, X(q), C)$ exhibiting the CSP.

For $W=\mathfrak{S}_{n}$, and $c=(12 \cdots n-1 n)$ the map
permutations \rightarrow set partitions

restricts to a bijection $N C(W) \rightarrow N C(n)$.

1679/234/5/8

Under this correspondence, the C-action by conjugation on $N C(W)=$ rotation on $N C(n)$.

Recall Example 3: one has a CSP for

$$
\begin{aligned}
X & =\text { triangulations of an } n \text {-gon } \\
X(q) & =\text { Cat }_{n}(q) \\
C & =\mathbb{Z}_{n+2} \text { via rotation }
\end{aligned}
$$

triangulations \rightsquigarrow maximal clusters
in the cluster complexes of finite type
(Fomin-Zelevinksy 2003, Fomin-Reading 2006)
rotation \rightsquigarrow "deformed" Coxeter element τ

Theorem 3: (Eu and Fu 2006)
Let W be a finite real reflection group,
with Coxeter number h, and deformed Coxeter element τ. Then

$$
\begin{aligned}
X & =\text { maximal } W \text {-clusters } \\
X(q) & =\operatorname{Cat}(W, q) \\
C & :=\mathbb{Z}_{h+2}=\langle\tau\rangle
\end{aligned}
$$

gives a triple ($X, X(q), C$) exhibiting the CSP.

IV. How invariant theory helps

The proof of Theorem 3 (on W-clusters) is (currently) case-by-case.

The proof of Theorem 2 (on $N C(W)$) is partly invariant theory, but uses some facts verified (currently) case-by-case.

The proof of Theorem 1 (on W / W^{\prime}-cosets) is uniform, and easy via invariant theory...

When $S^{W}=\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]$, consider the coinvariant algebra

$$
S /\left(S_{+}^{W}\right)=S /\left(f_{1}, \ldots, f_{n}\right)
$$

Both Chevalley, Shephard-Todd proved, assuming $|W| \in \mathbb{F}^{\times}$, one has an isomorphism of W-representations

$$
S /\left(S_{+}^{W}\right) \underset{\mathbb{F}[W]-\bmod }{\cong} \mathbb{F}[W] .
$$

Springer generalized this, taking into account the action of a regular element ...

Theorem(Springer 1972)
Assume S^{W} is polynomial, $|W| \in \mathbb{F}^{\times}$,
and let $C=\langle c\rangle$ for any regular element c, with regular eigenvalue ω^{-1}. Then one has an isomorphism of $W \times C$-representations

$$
S /\left(S_{+}^{W}\right)_{\overline{\mathbb{F}}[W \times C]-\bmod }^{\cong} \overline{\mathbb{F}}[W] .
$$

in which on $S /\left(S_{+}^{W}\right)$,

- W acts by linear substitutions,
- C acts by scalar substitutions

$$
\begin{aligned}
c\left(x_{i}\right) & =\omega x_{i} \\
c(f) & =\omega^{d} f \text { if } \operatorname{deg}(f)=d,
\end{aligned}
$$

while on $\overline{\mathbb{F}}[W]$

- W acts by left-multiplication,
- C acts by right-multiplication.

Proof of Theorem 1:

Starting with the isomorphism

$$
S /\left(S_{+}^{W}\right)_{\overline{\mathbb{F}}[W \times C]-\bmod }^{\cong} \overline{\mathbb{F}}[W] .
$$

restrict to the W^{\prime}-fixed subspaces:

$$
\begin{array}{ccc}
\left(S /\left(S_{+}^{W}\right)\right)^{W^{\prime}} & \overline{\mathbb{F}}[C]-\bmod & \overline{\mathbb{F}}[W]^{W^{\prime}} \\
\| & \| \\
S^{W^{\prime}} /\left(S_{+}^{W}\right) & & \overline{\mathbb{F}}\left[W / W^{\prime}\right]
\end{array}
$$

and then equate the character/trace of $c^{i} \in C$ on either side:

$$
\begin{array}{cc}
{\left[\operatorname{Hilb}\left(S^{W^{\prime}} /\left(S_{+}^{W}\right), q\right)\right]_{q=\omega^{i}}=\left(W / W^{\prime}\right)^{c^{i}}} \\
\| & \| \\
{\left[\frac{\operatorname{Hilb}\left(S^{\left.W^{\prime}, q\right)}\right.}{\operatorname{Hilb}\left(S^{W}, q\right)}\right]_{q=\omega^{i}}} & \left|X^{c^{i}}\right| \\
\| \\
{[X(q)]_{q=\omega^{i}}} &
\end{array}
$$

giving the CSP.

What will it take to remove the assumption that $|W| \in \mathbb{F}^{\times}$?

Without this assumption, $S^{W^{\prime}}$ isn't always Cohen-Macaulay

So instead of looking at

$$
S^{W^{\prime}} /\left(S_{+}^{W}\right)=S^{W^{\prime}} \otimes_{S^{W}} \overline{\mathbb{F}}=\operatorname{Tor}_{0}^{S^{W}}\left(S^{W^{\prime}}, \overline{\mathbb{F}}\right)
$$

prove the following about all of $\operatorname{Tor}_{*}^{S^{W}}\left(S^{W^{\prime}}, \overline{\mathbb{F}}\right)$, and the same CSP will follow:

Conjecture When S^{W} is polynomial, for any subgroup $W^{\prime} \subset W$, one has a virtual Brauer-isomorphism of $N_{W}\left(W^{\prime}\right) \times C$-representations

$$
\operatorname{Tor}_{*}^{S^{W}}\left(S^{W^{\prime}}, \overline{\mathbb{F}}\right) \underset{\overline{\mathbb{W}}\left[N^{W}\left(W^{\prime}\right)\right.}{\sim} \overline{\mathbb{F}}\left[W / W^{\prime}\right] .
$$

Known for $W^{\prime}=1$ (-,Stanton, Webb, 2005). Known without C-action (-,Smith,Webb 2005).

Recap

Type A combinatorics
reflection group combinatorics
\leadsto
ARSENAL
-invariant theory/commutative algebra
-representation theory
-rational Cherednik and Hecke algebras?
-trace formulae?

