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I. The cyclic sieving phenomenon
(CSP) (=, Stanton, and White 2004)

Given

e a finite set X, and

e a polynomial X (q) € Z[q], and
e a cyclic group C permuting X,

the triple (X, X (q),C) exhibits the CSP

if for

e any c in C and

e any root-of-unity w € C* of the same order
one has

[ X = [X(Q)]q:w :



In examples,

most often X (q) € N[g|, and

sometimes X (q) is a generating function
for X of the form

X(@) =Y .

reX
Special case when C = Z»:
Stembridge’s ¢ = —1 phenomenon (1994):

[X(Q)]q:—l — |XC|

for some involution ¢: X — X



Example 1

Let
X = k-subsets of {1,2,...,n}

X (q) := g-binomial coefficient

Hl-
k|, [Kllgln — k]lg
where

[n]lq == [n]q- - [2]q[1]q

n_1
nlg =1+q++ - +q¢" =1

q—1

C = %n = ZL/n
cyclically permuting {1,2,...,n}
and thus permuting k-subsets .




Example 1 (continued)

Forn =4k =2, the set

X ={12,13,14,23,24,34}
carries this action of C = Zj:

/’23\ 13

X(q) = [g]q=mgg§]q:1+q+2q2+q3+q4

evaluates at 4t"-roots of unity as

(

6 ifw=1
X(w)y=<2 ifw=-1
0 ifw= i

matching the fixed-point cardinalities | X¢| for
elements ¢ in C of the same orders.



Example 1 (continued)

Same set X and

same polynomial X (q) = [Z work with a
q

different cyclic group C = Z,,_1,

generated by the (n — 1)-cycle

c=(12 ---n—-2n-—1)(n).

Forn =4,k = 2, one has this action of C' = Z3:

12/\ 52 14/\ 5,
NN

4

and X(q) = [2 =14+q+2¢° +¢°+¢*

q

evaluates at 37%-roots of unity as

6 ifw=1
X(w)={ +2mi

0 ifw=1e€ 3 .



Example 1 (continued)

WARNING:
Same set X and
same polynomial X (q) = [Z’
q
generally fails for cyclic actions C = (c¢)
unless ¢ acts on {1,2,...,n} as a power of

an n-cycle or (n — 1)-cycle.

In fact, for other roots of unity w,
one will generally have [X(q)],—, ¢ N.

Foreshadowing...

Powers of n-cycles and (n — 1)-cycles
are exactly the regular elements

of the symmetric group W = G,,.



Remark: The X(q) = [Z] in Example 1 had

q
many extra features:

e It's a simple generating function for X:

X(g)=)> ¢™

rzeX

where s(z) = (Y,.,i) — (5) for a k-subset z of
{1,2,...,n}.

e It has a product formula,
making [X(q)],—, €asy to evaluate

(useful for brute force proofs of CSP's).

e It has meaning for g = pk a prime power (counting
k-dimensional subspaces of an n-dimensional vector
space over F,).

e It's the Hilbert series of some naturally occurring
graded ring (from invariant theory).

e X (q) is the character of a naturally occurring rep-
resentation (of sio(C) on AFC™).



Examples 2, 3

For both of these examples, let

1 2n
X(q) := Catn(q) = ]
n [n + 1]q n q
the g-Catalan number (Firlinger-Hofbauer 1985).

Cati(q) =1
Cata(q) =14 ¢°
Cats(¢) =14+ + ¢ +¢* +¢°
Cata(q) =14+ ¢+ ¢ +2¢* + >+ 2¢°
+q"+2¢°+¢° 4+ ¢"° + ¢*°
There are plenty* of sets X counted by the
Catalan numbers
X(1) = Cat, = L(Qn)
n+1\n
many with natural cyclic group C actions.
We'll consider two such sets X...

*At least 142 on December 20, 2006, according to
Richard Stanley



Example 2

X = NC(n)
'=— noncrossing partitions
of the set {1,2,...,n},

X (q) = Catn(q) = [n_i 1, lznn]
q

C = Zy cyclically rotating {1,2,...

126/37/4589 16/79/234/5

912 912
3 8 WE
4 7 4
6 5 6 b5

Crossing Noncrossir

10



Example 2 (continued)

n = 3: the action of C =73 on X = NC(3)

Meanwhile
X(q)=Cat3(¢) =1+ ¢+ +¢* +4°
evaluates at 37%-roots of unity as

5 ifw=1

271
2 if w= eiT

X(w) = {

11



Example 3

X = triangulations of a convex (n + 2)-gon,

X(@ = Catu@) = oL |
q

C = Zy,4o via rotation.

/\

n

T

4 )
<7

%@J

X(q)=Catz3(¢) =1+ ¢+ +¢* +4°
evaluates at 5t"-roots of unity as
5 ifw=1

X(W) — 2wl .
{O ifw=1(e5 ) forj=1,2,3,4

12



II. Reflection groups
Examples 1,2,3 all generalize in some way to
reflection groups.

Q: What'’s a reflection group?
A: Not totally clear, but here's the definition
we'll use ...

Definition. Let F be any field,
V' an n-dimensional vector space over [F.
A reflection group is a finite subgroup

W C GL(V)(Z GLn(F))

for which the W-action on the symmetric al-
gebra

S =Sym(V*(Z Flxq,...,zn])
has invariant subring SW 3 polynomial algebra.

SV =TF[f1,..., fal.

13



Q: Where was the word “reflection” in that
definition?
A: It's implicit via a theorem of Serre...

Theorem(Serre 1967)

For finite subgroups W C GL(FF),
SW polynomial implies

W is generated by reflections.

But you have to interpret “reflection” broadly
when working over an arbitrary field IF...

14



Here a reflection means any element r of GL(V)
with fixed subspace V" is of codimension 1,
i.e., VT is a hyperplane.

For real reflections r...

Warning: one allows

e diagonalizable reflections whose

non-unit eigenvalue is a root of unity in F*
not necessarily —1,

e non-diagonalizable reflections,
called transvections, in positive characteristic.

1 10

= O OO

o OO

1
O
O

o O

15



Motivating precursor in characteristic zero:

Theorem

(Chevalley 1955, Shephard and Todd 1954)
For finite subgroups W C GL,(IF),

with [ of characteristic zero,

SW polynomial if and only if

W is generated by reflections.

Shephard and Todd classified

all finite complex reflection groups,
and used this to prove the theorem,
along with much amazing numerology
of the fundamental degrees

dp <dp < -+ < dn

for any choice of homogeneous
basic invariants f1,..., fn generating SV.

Chevalley proved the theorem uniformly.
16



The Shephard-Todd classification has

one infinite family G(d, e, n)

for positive integer d, e,n with e dividing d, and
34 exceptional groups

G(d,e,n) = n x n matrices with
— exactly one nonzero entry in each row/column,
— required to be dth roots-of-unity,

. th .
— whose product is a g root-of-unity.

The family G(d, e,n) contains the

e symmetric groups &, (type A,,_1) as G(1,1,n),
e Weyl groups of type By /Cras G(2,1,n),

(and wreath products Z 16, as G(d,1,n))

e Weyl groups of type D, as G(2,2,n)

e dihedral groups of order 2m as G(m,m,?2)

17



Some taxonomy of reflection groups

Eini
generated by reflections
|
Finite linear groups with
polynomial invariants
(e'g'a GLTZ(F(]))
(Example 17)
|
Complex reflection groups
(e.g., G(d,e,n))
(Example 1)
|
Well-generated complex reflection groups
= those generated by dim¢ V' reflections
(e.g., G(d,1,n),G(e,e,n))
(Example 2)
|
Finite Coxeter (=real reflection) groups
(types Bn/Cn,Dn,E6,E7,E8,F4,H3,H4,12(m))
(Example 3)
|
symmetric groups S,
(=G(1,1,n) =type A,_1)

18



Example: symmetric groups W = S,
Fundamental theorem of symmetric functions:

SW = Flzq,... ,azn]G”
= Fleq,...,en].

where e; are elementary symmetric functions

e1=x1+- -+ xn
eo =212+ 13+ + Tp_1Tn

Fundamental degrees:
1,2,3,...,n

19



Example: W = G(d,e,n).

Fundamental theorem of symmetric functions
implies

SW = Flaq,... ,wn]G(d’e’n)

:F[el(xd), Cee en_l(Xd), en(X)g]

Fundamental degrees:
d,2d,3d...,(n—2)d,(n— 1)d, and n?

20



Example: finite general linear groups
W = GLn(Fy)

Dickson's theorem (1911):

SV =F,[z1,...,a2n] )
— IE‘jC][Dn,O) Dn,la ) Dn,n—l]
where
Dn,k — Z H 0(x)
k-subspaces UCV* (gU
are called Dickson polynomials.
For example, n = 2,9 = 2

Fyla, y] 2(F2)

= Folay(z + ), 2° + zy + y°]
= F>[D2 0, D2 1]

Fundamental degrees:

=g " —q" 2, ..., q" —q,q" — 1.

21



III. Generalizing the examples

Generalizing Examples 1,2, requires
Springer’'s (1972) notion of a regular element
in a reflection group W:

an element ¢ having an eigenvector
veV =V pF
c(v) = wo

which is regular in the sense that
it is fixed by no reflections for W.

Call w ¢ F* a regular eigenvalue for c:
it will always be a root of unity,
of the same order as c.

22



Example: W = Sym,, has regular elements

e the n-cycle

c=(12 - ---n—1n)
2

regular eigenvector v = (1, w, w<,.

where w is any primitive
nth root-of-unity,

e the (n — 1)-cycle
c=(12 ---n—1)(n)

regular eigenvector v = (1,¢,¢2, . ..

where ( is any primitive
(n — 1)%t root-of-unity,

e their conjugates,
e their powers,

and no other regular elements.

C, W

n—l)

("1 0),

23



Recall Example 1: one has a CSP for

X = k-subsets of {1,2,...,n}

X(q) = [Z’]
q

C = (c¢) for ¢ an n-cycle or (n — 1)-cycle

Theorem 1: (—,Stanton,White 2004)
Let W C GL,(C) be a finite reflection group,
and ¢ € W be any regular element. Then

X = any set with transitive W-action,
say X = W/W'
X(q) = Hi'lb(SW’,q)
Hilb(SW, q)
C := (c) translating the cosets wW’
gives a triple (X, X(q),C) exhibiting the CSP.

Conjecture: F = C was unnecessary;
One needs no assumption on the field [,
just SW polynomial.

24



For Example 1,
X = k-subsets of {1,2,...,n}
= Gn/(6f x &p_1)
= Ww/W
with C-action by translating cosets;
this agrees with cycling {1,2,...,n}.

Meanwhile
/
SV =TFlei(z1,...,21), ..., ep(z1, ..., 78),
e1(Tpt1,--sTn)s - e (Tgg1,- -5 Tn)]
SO
X(g) = Hilb(SY', q)
Y = Rilb (S, ¢)

1-9)(1—¢%)---(1—q")
1-¢)---Q-¢")-Q-q (1 —qg"F)

_ [ZL

25



Example 2 generalizes to

well-generated complex reflection groups W,
where there is a notion (Bessis 2001,2004) of
W-noncrossing partitions...

Numerology shows that when W is well-generated,
for the Coxeter number

h = dpn = max{dy,...,dn}

there always exist r2eg_ular elements with
. 2m
regular eigenvalue e » , called Coxeter elements.

In fact, they're all conjugate in W.
So fix one and call it e.

E.g., for W =G, the Coxeter number h = n,
and the Coxeter elements are n-cycles, so fix

c=(12---n—1n).

26



Define the absolute or reflection length
on W (not the Coxeter group length!)

((w) ;= min{f|lw = rq---ry for reflections r;}.

In fact, ¢(w) is the codimension of the fixed
space VW,

Define the W-noncrossing partitions

NC(W) :={w e W : l(w) + &(w™tc) = nl.

Theorem (Bessis 2004, case-by-case):

nop 4 d
Neen) =T T
1=1 t

—: W-Catalan number

Note that conjugation by W preserves /(—),
conjugation by ¢ acts on NC(W).

27



Recall Example 2: one has a CSP for

X = NC(n)
= noncrossing partitions of {1,2,...,n},
1 2n
X(q) = Catn(q) = ]
n [n-l—l]q n q

C = Z, via cyclic rotation

Theorem 2:(— and Bessis, 2006) Let W be a
well-generated complex reflection groups W,
and ¢ a chosen Coxeter element. Then
X = NC(W) = W-noncrossing partitions
X(g) = Cat(W, q) = W-g-Catalan number
o ﬁ [h + d;]q
o i=1 [di]q
C = (¢) via conjugation
gives a triple (X, X (q),C) exhibiting the CSP.

28



For W =6,, andc=(12---n—1n)
the map

permutations — set partitions
w —— cycles of w

restricts to a bijection NC(W) — NC(n).

1 2 1 2
8 %3 8- we
7 4 7 4
6 (5 6 5
(1679)(234)(5)(8) 1679/234/5/

Under this correspondence, the C-action by
conjugation on NC (W) = rotation on NC(n).

29



Recall Example 3: one has a CSP for

X = triangulations of an n-gon

X(q) = Catn(q)
C' = Zy4o Via rotation

triangulations ~~» maximal clusters
in the cluster complexes of finite type
(Fomin-Zelevinksy 2003, Fomin-Reading 2006)

rotation ~~ ‘“deformed’” Coxeter element 7

Theorem 3: (Eu and Fu 2006)

Let W be a finite real reflection group,
with Coxeter number h, and

deformed Coxeter element 7. Then

X = maximal W-clusters
X(q) = Cat(W, q)
C=Zpyo = (1)
gives a triple (X, X(q),C) exhibiting the CSP.
30



IV. How invariant theory helps

The proof of Theorem 3 (on W-clusters) is
(currently) case-by-case.

The proof of Theorem 2 (on NC(W)) is partly
invariant theory, but uses some facts verified
(currently) case-by-case.

The proof of Theorem 1 (on W/W'-cosets) is
uniform, and easy via invariant theory...

31



When SW =T[fq,..., fu], consider
the coinvariant algebra

S/(SY) = S/(f1,---, fn)-

Both Chevalley, Shephard-Todd proved,
assuming |W| e F~*,
one has an isomorphism of W-representations

S/ (S—IVY) ]F[W]g—mod il

Springer generalized this, taking into account
the action of a regular element ...

32



Theorem(Springer 1972)
Assume SV is polynomial, |W| € FX%,
and let C = (c¢) for any regular element ¢, with
regular eigenvalue w~l. Then one has an
isomorphism of W x C-representations
S/syy = F[W].
F[W xC]—mod
in which on 5/(s¥),
e VW acts by linear substitutions,
e (U acts by scalar substitutions

co(x;) = wa;
c(f) = wif if deg(f) =d,
while on F[W]

e W acts by left-multiplication,
e (' acts by right-multiplication.

33



Proof of Theorem 1:

Starting with the isomorphism

S/s¥y = F[W].
F[W xC]—mod

restrict to the W'-fixed subspaces:

(S/s¥pyws = FwW
F[C]—mod

| I
/ N
SV (s) FIW/W']
and then equate the character/trace
of ¢t € C on either side:

Hib(SW /(S 9] _ o = (W/wh)e

| f
Hilb(s" ) i
s X

{

giving the CSP.

()
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What will it take to remove the assumption
that |[W| e F*?

Wighout this assumption,
SW"isn't always Cohen-Macaulay

So instead of looking at
_ W _
SV j(sWy =W @ F = Torg (sV',F),
prove the following about all of TorS" (W' ),

and the same CSP will follow:

Conjecture When SW is polynomial,
for any subgroup W/ Cc W, one has a
virtual Brauer-isomorphism

of Ny (W') x C-representations

TorS" (sW' F) N F[W/W'].
F[Ny (W) xCl—mod

Known for W/ =1 (—,Stanton,Webb, 2005).
Known without C-action (—,Smith,Webb 2005).
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Recap

Type A combinatorics
A
reflection group combinatorics

N

ARSENAL
-invariant theory/commutative algebra

-representation theory
-rational Cherednik and Hecke algebras?

-trace formulae?
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