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What is a reflection?

An element r in GL,(FF) fr some field F is a reflection if

e it has finite order, and
e its fixed space

Vi={veV:r(v)=v}

when acting on V = F"is a hyperplane, that is, a linear
subspace of codimension 1.
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Orthogonal reflections

Example
Orthogonal reflections r through a hyperplane H in R”.
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Unitary reflections

Unitary reflections r = Matrices in C"*" diagonalizable to

¢ 00 0]
010 0
001 - 0
. o

1_

0 0O

with ¢ a root-of-unity in C.
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Transvections

Transvections r = Matrices in F"*" with char(F) = p similar to
(1 0 0 0]
110 0
0 0 1 0
Do 0
0 0 0 1
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Transvections

Transvections r = Matrices in F"*" with char(F) = p similar to
(1 0 0 0]
110 0
0 0 1 0
Do 0
0 0 0 1

Not diagonalizable!
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Transvections

Example

Transvections r = Matrices in F"*" with char(F) = p similar to
(1 0 0 0]
110 0
0 0 1 0
Do 0
0 0 0 1

Not diagonalizable!
But can occur only in characteristic p.
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The theorem of Shephard-Todd and Chevalley

Let W be a finite subgroup of GL,(C),
acting on the polynomial algebra S = C[xq, ..., x5]
by linear substitutions.
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The theorem of Shephard-Todd and Chevalley

Let W be a finite subgroup of GL,(C),
acting on the polynomial algebra S = C[xq, ..., x5]
by linear substitutions.

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra S" = C|f,, ..., f,] is a polynomial
algebra if and only if W is generated by (unitary) reflections.

V. Reiner Reflection group counting and g-counting



The theorem of Shephard-Todd and Chevalley

Let W be a finite subgroup of GL,(C),
acting on the polynomial algebra S = C[xq, ..., x5]
by linear substitutions.

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra S" = C|f,, ..., f,] is a polynomial
algebra if and only if W is generated by (unitary) reflections.

Such groups W are called complex reflection groups
or unitary groups generated by reflections.

V. Reiner Reflection group counting and g-counting



The theorem of Shephard-Todd and Chevalley

Let W be a finite subgroup of GL,(C),
acting on the polynomial algebra S = C[xq, ..., x5]
by linear substitutions.

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra S" = C|f,, ..., f,] is a polynomial
algebra if and only if W is generated by (unitary) reflections.

Such groups W are called complex reflection groups
or unitary groups generated by reflections.

Same holds replacing C by fields F of characteristic zero,

V. Reiner Reflection group counting and g-counting



The theorem of Shephard-Todd and Chevalley

Let W be a finite subgroup of GL,(C),
acting on the polynomial algebra S = C[xq, ..., x5]
by linear substitutions.

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra S" = C|f,, ..., f,] is a polynomial
algebra if and only if W is generated by (unitary) reflections.

Such groups W are called complex reflection groups
or unitary groups generated by reflections.

Same holds replacing C by fields F of characteristic zero,
or even F in which |W/| is invertible.
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Degrees

When SW =TF[f, ..., f,], although there are many choices
of the basic invariants fy, . .., fn,
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Degrees

When SW =TF[f, ..., f,], although there are many choices
of the basic invariants fy, . .., fn,

e they can always be chosen homogeneous, and

e their degrees dy, do, . .., d, are uniquely determined as a
multiset.

For example, they are determined by the Hilbert series

Hilb(S", q) :== ) _ g% - dimg(S")4
a>0
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When SW =TF[f, ..., f,], although there are many choices
of the basic invariants fy, . .., fn,
e they can always be chosen homogeneous, and
e their degrees dy, do, . .., d, are uniquely determined as a
multiset.

For example, they are determined by the Hilbert series

Hilb(S", q) :== ) _ g% - dimg(S")4
a>0
1

(1—q®)(1 —q%)---(1 - q™)

See the exercises. O
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Definition

For W a subgroup of GL,(F) having S polynomial, define the
degrees of W to be the multiset (di, ..., d,) of degrees of any

homogenous invariants fi, ..., f, for which SW = F[f;, ..., f)].

Very important for us! Let’s see some exampiles ...
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Examples of degrees-symmetric groups

The symmetric group W = &, inside GL,(R) € GL,(C) acts on
S =R[xq,...,Xn] or C[xq, ..., Xs] by permuting variables.
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Examples of degrees-symmetric groups

The symmetric group W = &, inside GL,(R) € GL,(C) acts on
S =R[x1,...,Xy) or C[xy, ..., Xp] by permuting variables.

S =Cley,..., e

where e; are the elementary symmetric polynomials:

€1 =Xt +Xo+- -+ Xp
€1 = X1 Xo + X1 X3 + -+ + Xp_1Xp

en = Xy Xz Xn

So W = &, has degrees (di, s, ...,dp) =(1,2,...,n).
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Examples of degrees-hyperoctahedral groups

The hyperoctahedral group W = &7 inside GL,(R) consists of
all possible permutations and sign changes,
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Examples of degrees-hyperoctahedral groups

Example

The hyperoctahedral group W = &7 inside GL,(R) consists of
all possible permutations and sign changes,

that is, all n x n monomial matrices with one nonzero entry,
equal to 1, in each row and column.
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Examples of degrees-hyperoctahedral groups

Example

The hyperoctahedral group W = &7 inside GL,(R) consists of
all possible permutations and sign changes,

that is, all n x n monomial matrices with one nonzero entry,
equal to 1, in each row and column.

SW = Clei(x?), ..., en(x?)]

where
f(x?) == f(x2,...,x2).

2
n
So W = &7 has degrees (dy, b, ..., dn) = (2,4,...,2n).

(See exercises.)
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Examples of degrees-general linear groups

The finite general linear group W = GL(Fg) acts on
S = Fg[x1, ..., Xn] by Fy-linear subsitutions of variables.

Theorem (L.E. Dickson 1911)

SW = IE‘q[Dn,O’ Dn,1 Yy Dn,n—1]

where D, ; are the coefficients in the expansion

H (t—(c1X1 +---Cnxn)) = th Dp, i(x).

(See exercises.)
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Examples of degrees-general linear groups

The finite general linear group W = GL(Fg) acts on
S = Fg[x1, ..., Xn] by Fy-linear subsitutions of variables.

Theorem (L.E. Dickson 1911)

SW = IE‘q[Dn,O’ Dn,1 Yy Dn,n—1]

where D, ; are the coefficients in the expansion

H (t—(c1X1 +---Cnxn)) = th Dp, i(x).

(See exercises.) '
Here the Dickson polynomial D, ; has degree " — ¢',
so W = GLn(F4) has degrees (¢" —q"',...,9" - q",q" — q°).
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Aside: characteristic p and Serre’s theorem

This last example raises a question:
Which finite subgroups of GL,(F) with |W/| not invertible in F
have S polynomial?
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This last example raises a question:

Which finite subgroups of GL,(F) with |W/| not invertible in F
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Not known in general, although one has this result:

Theorem (Serre 1967)

If SV is polynomial, then W is generated by reflections
(but one needs transvections, in general).
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Aside: characteristic p and Serre’s theorem

This last example raises a question:
Which finite subgroups of GL,(F) with |W/| not invertible in F
have S polynomial?

Not known in general, although one has this result:

Theorem (Serre 1967)

If SV is polynomial, then W is generated by reflections
(but one needs transvections, in general).

The converse fails, e.g. finite symplectic, orthogonal groups
are generated by reflections, but have S not polynomial.

The cases where W acts irreducibly and SW is polynomial were
classified by Kemper and Malle in 1997.
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The generalization of n! is dia> - - - d,

Here is a taste of the numerology of reflection groups.

A finite subgroup W of GLp(F) with S" polynomial and
degrees (dy, ..., dp) has |W| =d; --- dp.
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Here is a taste of the numerology of reflection groups.

A finite subgroup W of GLp(F) with S" polynomial and
degrees (dy, ..., dp) has |W| =d; --- dp.

Molien’s theorem on Hilb(SY, q) (at least for F = C);
See the exercises! Ol
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e W=G,has|W|=n=1-2---n,
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The generalization of n! is dia> - - - d,

Here is a taste of the numerology of reflection groups.

A finite subgroup W of GLp(F) with S" polynomial and
degrees (dy, ..., dp) has |W| =d; --- dp.

Molien’s theorem on Hilb(SY, q) (at least for F = C);
See the exercises! Ol

e W=6,has|W|=n'=1-2...n,
e W=6} has |W|=2"-n=2-4...2n,
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