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The middle column of the 12-fold way

| balls N | boxes X | anyf | injective f | surjective f |

dist. dist. x" )X = DX =2)-- (x — (n—1)) x! S(n,x)

indist. | dist. | (*77°7) %) )
S(n.1) _

dist. indist. | +5(72) 1 nex S(n,x)
+5(n,x)

- - p1(n) Jif e

indist. | indist. | TRe(" T nx px(n)
+px(n)
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The middle column of the 12-fold way

| balls N | boxes X | anyf | injective f | surjective f |
dist. dist. x" x—Dx—2)--x—n—1) | X! S(n,x)
indist. | dist. (X+(g:)1) ) (1
S(n
dist. indist. | +5(72) 1 nex S(n,x)
+S(n X)
. . . . p1( ) _1 f <
indist. | indist. | TRe(" T nx Px(N)
+px(n)

The nontrivial entries both count sets with transitive &,-action:
e (}) counts k-subsets, and

® n(n—1)n—2)---(n— (k1) counts ordered k-subsets
taken from the n-set {1 ,2,...,N}.
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Their traditional g-analogues

Both have some traditional g-analogues,
part of the usual list, whose ¢ — 1 limits recover certain counts:
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Their traditional g-analogues

Both have some traditional g-analogues,
part of the usual list, whose ¢ — 1 limits recover certain counts:

[nlg:=1+q+q¢*+---+q" " = n
[N]'q := [nlg[n —1]q-- - [2lg[1]q
[ngln—1]g---[n—(k—1)]q

n L [n]! g—1
[k} = KIL[-KT = ()
q
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They have more pleasant properties

All of these g-analogues
e are polynomials in g, lying in Z[q], and
e even have nonnegative coefficients, lying in N[q].
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They have more pleasant properties

All of these g-analogues
e are polynomials in g, lying in Z[q], and
e even have nonnegative coefficients, lying in N[q].

H _ Mle [l
D - 1 = P P P
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They have more pleasant properties

All of these g-analogues
e are polynomials in g, lying in Z[q], and
e even have nonnegative coefficients, lying in N[q].

H __[4l'q _ [414[Blq
2], [%9[2]'q  [2ql1]q
(1+9+F+3)(1+9+3°)
1+q
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They have more pleasant properties

All of these g-analogues
e are polynomials in g, lying in Z[q], and
e even have nonnegative coefficients, lying in N[q].

H __[4l'q _ [414[Blq
2], [%9[2]'q  [2ql1]q
(1+9+3*+3)(1+9+3°)
1+qg
=(1+@)(1+9+7)
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They have more pleasant properties

All of these g-analogues
e are polynomials in g, lying in Z[q], and
e even have nonnegative coefficients, lying in N[q].

H _ 4y 448l
D - 1 = P P P
(1+9+3*+3)(1+9+3°)
1+gq
=(1+@)(1+9+7)
=1+g+2¢°+q°+¢*
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And a cyclic sieving phenomenon

Consider a finite set X permuted by a
cyclic group C = (¢) = {e,c,c?,...,c" "} =2 7,
and a generating function X(q) lying in Z[q].

V. Reiner Reflection group counting and g-counting



And a cyclic sieving phenomenon

Consider a finite set X permuted by a
cyclic group C = (¢) = {e,c,c?,...,c" "} =2 7,
and a generating function X(q) lying in Z[q].

Definition
Say (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP)

if each ¢ in C, has the cardinality of its fixed point set
X = {x € X : ¢9(x) = x} predicted by

X% | = [X(Q)]g—ca

2mi
where ¢ = e .

In other words, the m™ root-of-unity evaluations of X(q) encode
all the information about the C-orbit sizes on X
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The prototype CSP

Theorem (R.-Stanton-White 2004)
This triple (X, X(q), C) exhibits the CSP:

X := k-subsets of {1,2,...,n}
n
x@)= |j
q

C=(c)=ZnorZn1

where c is either an n-cycle or (n — 1)-cycle in &,
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The prototype CSP

This triple (X, X(q), C) exhibits the CSP:

X := k-subsets of {1,2,...,n}

X(q) = [ZL

C=(c)=ZnorZn1

where c is either an n-cycle or (n — 1)-cycle in &,

Exercises do a brute force proof; we’'ll discuss a better one. [

V. Reiner Reflection group counting and g-counting



The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):

{1,2} —°~{2,3}, {1,3}
|k |
{1,4} <——{3.4} {2,4}

J
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The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):

{1,2} —°~{2,3}, {1,3}
|k |
{1,4} <——{3.4} {2,4}

4
X(q) = [2} =14+9+2¢°+q°+q*
q

J
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The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):

{1,2} —°~{2,3}, {1,3}
|k |
{1,4} <——{3.4} {2,4}

4
X(q) = [2} =14+9+2¢°+q°+q*
q

X(P®)=14+1+24+1+1=6=|X|=|X%|

J
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The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):

{1,2} —°~{2,3}, {1,3}
|k |
{1,4} <——{3.4} {2,4}

4
X(q) = [2} =14+9+2¢°+q°+q*
q

X(P®)=14+1+24+1+1=6=|X|=|X%|
X" =1+i-2—i+1=0=|X|

J
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The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):

{1,2} —°~{2,3}, {1,3}
|k |
{1,4} <——{3.4} {2,4}

q
) =1+1+2+1+1=6=|X|=|X"|

X(M=1+i-2-i+1=0=|X"|
P)=1-1+4+2-1+1=2= X"

J
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The prototype CSP

n=4 k=2and C=(c) =74 withc=(1,2,3,4):
{1,2} —°~{2,3}, {1,3}
4

X(q):M —1+94+2¢°+q°+q
q
X(®)=1+14+24+1+1=6=|X|=|X"|
X" =1+i-2—i+1=0=|X|
X(P)=1-14+2-14+1=2= X%
X(P)=1-i-24i+1=0=|X"].

ot
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The prototype CSP

n=4,k=2,and C = (c) = Zz with c = (1,2,3)(4):

{1.2} : {2,3}, {1,4} ° {2,4},

{2,3} {3,4}
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The prototype CSP

n=4,k=2,and C = (c) = Zz with c = (1,2,3)(4):

{1.2} : {2,3}, {1,4} ° {2,4},

{2,3} {3,4}

4
X(q) = [2] =14+9+2¢°+q°+q*
q
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The prototype CSP

n=4,k=2,and C = (c) = Zz with c = (1,2,3)(4):

{1.2} : {2,3}, {1,4} ° {2,4},

{2,3} {3,4}

4
X(q) = [2] =14+9+2¢°+q°+q*
q

X =1+1+2+1+1=6=|X| = X"
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The prototype CSP

n=4,k=2,and C = (c) = Zz with c = (1,2,3)(4):

{1.2} : {2,3}, {1,4} ° {2,4},
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The prototype CSP

n=4,k=2,and C = (c) = Zz with c = (1,2,3)(4):

{1.2} : {2,3}, {1,4} ° {2,4},
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Note that this CSP can fail for C = (c) with ¢ in &, that are
neither n-cycles nor (n — 1)-cycles.

Example
n=4,k=1,and C = (¢) = Z, with ¢ = (1,2)(3)(4):

M= (B £@
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Note that this CSP can fail for C = (c) with ¢ in &, that are
neither n-cycles nor (n — 1)-cycles.

Example
n=4,k=1,and C = (¢) = Z, with ¢ = (1,2)(3)(4):

M= (B £@

4
X(q) = H =1+9+¢+q°
q
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Note that this CSP can fail for C = (c) with ¢ in &, that are
neither n-cycles nor (n — 1)-cycles.

Example
n=4,k=1,and C = (¢) = Z, with ¢ = (1,2)(3)(4):

M= (B £@

4
X(q) = H =1+9+¢+q°
q

X(=1)) =14+1+1+1=4=|X|=|X"|
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Note that this CSP can fail for C = (c) with ¢ in &, that are
neither n-cycles nor (n — 1)-cycles.

Example
n=4,k=1,and C = (¢) = Z, with ¢ = (1,2)(3)(4):

M= (B £@

4
X(q) = H =1+9+¢+q°
q

X(=1)) =14+1+1+1=4=|X|=|X"|
X(=)HY=1-1+1-1=0#|X
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Another CSP

The same would work also for ordered k-subsets:

This triple (X, X(q), C) exhibits the CSP:

X := ordered k-subsets of {1,2,...,n}

X(q) = [nlgln—1]g---[n— (k= 1)]q
C=(c)=7ZnorZn1

where c is either an n-cycle or (n — 1)-cycle in &,
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Another CSP

The same would work also for ordered k-subsets:

Theorem
This triple (X, X(q), C) exhibits the CSP:

X := ordered k-subsets of {1,2,...,n}
X(q) == [nlg[n —1]g---[n— (k= 1)]q
C=(c)=7ZnorZn1

where c is either an n-cycle or (n — 1)-cycle in &,

But this one is not as interesting, and there is something much
more general, due to the transitive &,-action.
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Transitive actions are coset actions

Recall that for a group G permuting a set X transitively, the
elements xp in X all have G-conjugate stabilizer subgroups

Gy, :=1{9 € G: 9(%) = Xo}-
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Transitive actions are coset actions

Recall that for a group G permuting a set X transitively, the
elements xp in X all have G-conjugate stabilizer subgroups

Gy, :=1{9 € G: 9(%) = Xo}-
Fixing some Xp in X and defining H := Gy, the map

G— X
g—9(x)
induces a G-equivariant bijection

G/H— X
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Transitive actions are coset actions

Recall that for a group G permuting a set X transitively, the
elements xp in X all have G-conjugate stabilizer subgroups

Gy, :=1{9 € G: 9(%) = Xo}-
Fixing some Xp in X and defining H := Gy, the map

G— X
9—9(x)
induces a G-equivariant bijection

G/H— X

Transitive G-actions are always coset actions of Gon X = G/H.
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A g-analogue of [G : H]

In particular, when G acts transitively on X,
with H the stabilizer of x in X, one has

IX| =[G: H].

But when G is a finite subgroup of GL,(F), we claim that there
is also an appropriate g-analogue.
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A g-analogue of [G : H]

In particular, when G acts transitively on X,
with H the stabilizer of x in X, one has

IX| =[G: H].

But when G is a finite subgroup of GL,(F), we claim that there
is also an appropriate g-analogue.

Recall that G acts via linear substitutions on
S=F[x1,...,Xn]
with graded G-invariant subring S€, having Hilbert series

Hilb(S%, q) := > g7 - dimg(S%),.
a>0
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It really is a g-analogue of [G : H]

Definition

For a finite subgroup G of GL,(F) acting transitively on X,
with H the stabilizer of xg, define

__Hilb(S", q)
X(a) = Hilb(SC%, q)
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It really is a g-analogue of [G : H]

For a finite subgroup G of GL,(F) acting transitively on X,
with H the stabilizer of xg, define

__Hilb(S", q)
X(a) = Hilb(SC%, q)

X(q) is a rational function in q with no pole at g = 1, and

X(1) =[G : H].
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It really is a g-analogue of [G : H]

For a finite subgroup G of GL,(F) acting transitively on X,
with H the stabilizer of xg, define

__Hilb(S", q)
X(a) = Hilb(SC%, q)

X(q) is a rational function in q with no pole at g = 1, and

X(1) =[G : H].

See exercises! O
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Unhappy that X(q) is rational, not polynomial?

When SC = F[fy,...,f,] is a polynomial algebra,

then any subgroup H of G has X(q) := giiggggg;

@ apolynomial in q, that is, lying in Z[q], and
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Unhappy that X(q) is rational, not polynomial?

When SC = F[fy,...,f,] is a polynomial algebra,

then any subgroup H of G has X(q) := gﬁggggg;

@ apolynomial in q, that is, lying in Z[q], and
Q if furthermore |G| is in F*, then X(q) lies in N[q].

In particular, both hold when G is a complex reflection group.

V. Reiner Reflection group counting and g-counting



Unhappy that X(q) is rational, not polynomial?

When SC = F[fy,...,f,] is a polynomial algebra,

. Hilb(S",q)
"~ Hilb(S%,q)

@ apolynomial in q, that is, lying in Z[q], and
Q if furthermore |G| is in F*, then X(q) lies in N[q].

then any subgroup H of G has X(q)

In particular, both hold when G is a complex reflection group.

Proof.

(Sketch)

The first assertion comes from Hilbert’s syzygy theorem, saying
SH will have a finite free S-module resolution.
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Unhappy that X(q) is rational, not polynomial?

When SC = F[fy,...,f,] is a polynomial algebra,

then any subgroup H of G has X(q) := giiggggg;

@ apolynomial in q, that is, lying in Z[q], and
Q if furthermore |G| is in F*, then X(q) lies in N[q].

In particular, both hold when G is a complex reflection group.

Proof.

(Sketch)

The first assertion comes from Hilbert’s syzygy theorem, saying
SH will have a finite free S-module resolution.

In the second case, S" will be Cohen-Macaulay, and hence
actually a free SG-module. O
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And these X(q) have a general CSP!

Definition

For G a complex reflection group in GL,(C), say that cin Gis a
regular element if there is some c-eigenvector v in V = C" that
avoids all reflecting hyperplanes for G.

(Equivalently, G permutes the eigenvector v freely.)
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And these X(q) have a general CSP!

Definition

For G a complex reflection group in GL,(C), say that cin Gis a
regular element if there is some c-eigenvector v in V = C" that
avoids all reflecting hyperplanes for G.

(Equivalently, G permutes the eigenvector v freely.)

Theorem (R.-Stanton-White 2004)

In the above setting and for any subgroup H of G, the triple
(X, X(q), C) exhibits the CSP, where

e X=G/H
__ Hilb(S",q)
* X(q) = Hilb(S%,q)

e C = (c) permuting X via c(gH) = cgH
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Regular elements in &,

How does this generalize the CSP’s that we saw?
Firstly, who are the regular elements in &,?
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Regular elements in &,

How does this generalize the CSP’s that we saw?
Firstly, who are the regular elements in &,?
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Regular elements in &,

How does this generalize the CSP’s that we saw?
Firstly, who are the regular elements in 6,7

An n-cycle ¢ =(1,2,3,...,n) is aregular element, since it has
an eigenvector v = (1,¢,,¢2, .. ., 1=1) avoiding all reflection

hyperplanes x; = Xx;.
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Regular elements in &,

How does this generalize the CSP’s that we saw?
Firstly, who are the regular elements in 6,7

An n-cycle ¢ =(1,2,3,...,n) is aregular element, since it has
an eigenvector v = (1,¢,,¢2, .. ., 1=1) avoiding all reflection
hyperplanes x; = Xx;.

An (n—1)-cyclec=(1,2,3,...,n— 1)(n) is a regular element,
since it has an eigenvector v = ( Cne1,C2 4, (0 12,0)
avoiding all x; = x;.
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Regular elements in &,

Powers of regular elements are always regular.

In &,, the longest permutation wp = (1,n)(2,n—1)--- isa
power of an n-cycle (n even) or of an (n — 1)-cycle (nis odd),
hence always a regular element.
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Regular elements in &,

Powers of regular elements are always regular.

In &,, the longest permutation wp = (1,n)(2,n—1)--- isa
power of an n-cycle (n even) or of an (n — 1)-cycle (nis odd),
hence always a regular element.

(In finite real reflection groups, the longest element v is always
a regular element.)
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Regular elements in &,

Powers of regular elements are always regular.

In &,, the longest permutation wp = (1,n)(2,n—1)--- isa
power of an n-cycle (n even) or of an (n — 1)-cycle (nis odd),
hence always a regular element.

(In finite real reflection groups, the longest element wy is always
a regular element.)

All regular elements in &, are powers of n- and (n — 1)-cycles.
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Regular elements in &,

Powers of regular elements are always regular.

In &,, the longest permutation wp = (1,n)(2,n—1)--- isa
power of an n-cycle (n even) or of an (n — 1)-cycle (nis odd),
hence always a regular element.

(In finite real reflection groups, the longest element wy is always
a regular element.)

All regular elements in &, are powers of n- and (n — 1)-cycles.

See the exercises! O
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Why were our traditional g-analogues appropriate?

k-subsets X of {1,2,..., n}, have transitive action of G = &,
and xo = {1,2,...,k} has H = Gy, = 6« x 6,_, the Young
subgroup permuting {1,2,... ,k},{k+1,k+2,...,n}.
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Why were our traditional g-analogues appropriate?

k-subsets X of {1,2,..., n}, have transitive action of G = &,
and xo = {1,2,...,k} has H = Gy, = 6« x 6,_, the Young
subgroup permuting {1,2,... ,k},{k+1,k+2,...,n}.

SG:(C[e1(x1,...,Xn),...,en(x1,...,x,,)]
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Why were our traditional g-analogues appropriate?

k-subsets X of {1,2,..., n}, have transitive action of G = &,
and xo = {1,2,...,k} has H = Gy, = 6« x 6,_, the Young
subgroup permuting {1,2,... ,k},{k+1,k+2,...,n}.
SC=Cle1(X1,...,Xn), ..., €n(X1, ..., Xn)]
S =Cles(X1, ..., xk), -, ex(X1, ..., Xk),

ei(xk+1,...,%n)s -y en—k(Xka1,- -+, Xn)]

X1,
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Why were our traditional g-analogues appropriate?

k-subsets X of {1,2,..., n}, have transitive action of G = &,
and xo = {1,2,...,k} has H = Gy, = 6« x 6,_, the Young
subgroup permuting {1,2,... ,k},{k+1,k+2,...,n}.
SG = Clet1(X1, .-, Xn), -, en(X1, ..., Xn)]
S =Cles(X1, ..., xk), -, ex(X1, ..., Xk),

ei(xk+1,...,%n)s -y en—k(Xka1,- -+, Xn)]

_ Hilb(S",q)

~ Hilb(S€, q)

(=9 (1-¢)) (1 -q")---(1 -q""))
1/(1-9")(1 -¢%)---(1-9")

-[d,
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Why were our customary g-analogues correct?

Similarly, ordered k-subsets X of {1,2,..., n}, have transitive
actionof G=G,,and xo = (1,2,...,k) has

H = Gy, = 61 x -+ x 61 x &,_, the Young subgroup
permuting {k +1,k+2,...,n}.
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Why were our customary g-analogues correct?

Similarly, ordered k-subsets X of {1,2,..., n}, have transitive
actionof G=G,,and xo = (1,2,...,k) has

H = Gy, = 61 x -+ x 61 x &,_, the Young subgroup
permuting {k +1,k+2,...,n}.

SG:(C[e1(x1,...,xn),...,en(x1,...,x,,)]
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Why were our customary g-analogues correct?

Similarly, ordered k-subsets X of {1,2,..., n}, have transitive
actionof G=G,,and xo = (1,2,...,k) has
H = Gy, = 61 x -+ x 61 x &,_, the Young subgroup
permuting {k +1,k+2,...,n}.

S6 = Cle1(X1, .-, Xn), -, €n(X1, ..., Xn)]

S =Clx,..., x,

er(xk+1,...,%n), -y en—k(Xkx1,- -, Xn)]
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Why were our customary g-analogues correct?

Similarly, ordered k-subsets X of {1,2,..., n}, have transitive
actionof G=G,,and xo = (1,2,...,k) has

H = Gy, = 61 x -+ x 61 x &,_, the Young subgroup
permuting {k +1,k+2,...,n}.

SG:(C[e1(x1,...,xn),...,en(x1,...,x,,)]

S =Clx,..., x,
er(xk+1,...,%n), -y en—k(Xkx1,- -, Xn)]

_ Hilb(8", q)

= Hib(5°,9)

_ 1/(1=gHk- (1 =qg")---(1 = g" ")
1/(1-9")(1 -¢%)---(1-9")

= [nlg[n —1]g---[n— (k= 1)]q

X(q)
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What is magical about regular elements?

So what made this general CSP work?

Theorem

For any subgroup H of G a complex reflection group, and any
regular element c of G, the triple (X, X(q), C) exhibits the CSP,
where

« X=G/H
__ Hilb(S",q)
e X(q) = Hilb(5C,q)

e C = (c) permuting X via c(gH) = cgH

It is a shadow of Springer’s theory of regular elements,
generalizing work of Shephard-Todd and Chevalley on the
coinvariant algebra for G.
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The coinvariant algebra

Definition

The coinvariant algebra is the quotient S/(S%) of S by the ideal
generated by G-invariant elements Sf of positive degree.
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The coinvariant algebra

The coinvariant algebra is the quotient S/(S%) of S by the ideal
generated by G-invariant elements Sf of positive degree.

When S€ = F[fy,...,f], then S€ = (f,...,f,) and
S/(S8) =F[xy,...,xa]/(Fr, ... Fx).
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The coinvariant algebra

The coinvariant algebra is the quotient S/(S%) of S by the ideal
generated by G-invariant elements Sf of positive degree.

When S€ = F[fy,...,f], then S€ = (f,...,f,) and
S/(Sf) =F[x1,...,xn]/(f1,...,fn).

In particular, the symmetric group &, has
S/(S$") =Fx, ..., xn]/(€1(X), . .., en(X)).
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The coinvariant algebra

Theorem (Shephard-Todd 1955, Chevalley 1955)

For G a complex reflection group inside GL,(C), one has an
isomorphism of G-representations

5/(8%) = C[q]

where G acts via
e linear substitutions on S/(S§), and
e via the (left-)regular representation on C[G].
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The coinvariant algebra

Theorem (Shephard-Todd 1955, Chevalley 1955)

For G a complex reflection group inside GL,(C), one has an
isomorphism of G-representations

S/(8%) = C[q]

where G acts via
e linear substitutions on S/(S§), and
e via the (left-)regular representation on C[G].

Thus S/(S%) is a natural graded version of C[G].
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Springer’s theorem

Springer enhanced this with a commuting cyclic action.
Given a regular element ¢ in G, with eigenvector v avoiding the
reflecting hyperplanes, let ¢(v) = ¢ - v for some ¢ in C*.
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Springer’s theorem

Springer enhanced this with a commuting cyclic action.
Given a regular element ¢ in G, with eigenvector v avoiding the
reflecting hyperplanes, let ¢(v) = ¢ - v for some ¢ in C*.

Theorem (Springer 1974)

For G any complex reflection group and letting C be the cyclic
group generated by any regular element c, one has an
isomorphism of G x C-representations

S/(8%) = C[q]

where G acts as before, but now C acts
e Via scalar substitutions x; *> (x; on S/ (S%), and
e via right-multiplication on C[G].
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How does this help?

Taking H-fixed subspaces in Springer’s G x C-isomorphism

S/(8§) = C[G]
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How does this help?

Taking H-fixed subspaces in Springer’s G x C-isomorphism
5/(8§) = C(a]
it becomes an isomorphism of C-representations:

(S/(SH)7 = (clap”
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How does this help?

Taking H-fixed subspaces in Springer's G x C-isomorphism
S/(8§) = C[G]
it becomes an isomorphism of C-representations:
(S/(s§H7 = (clap”

|| ||
S"/(s%)  CIG/H]
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How does this help?

Taking H-fixed subspaces in Springer's G x C-isomorphism
S/(8§) = C[G]
it becomes an isomorphism of C-representations:
(S/(s§H7 = (clap”
SH/|(|SE) C[cg/hﬂ

Any ¢? in C acts with same trace on the two extreme ends:
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How does this help?

Taking H-fixed subspaces in Springer’s G x C-isomorphism
5/(8§) = C(a]
it becomes an isomorphism of C-representations:

(S/(SH)7 = (clap”

|| ||
S"/(s%)  CIG/H]

Any ¢? in C acts with same trace on the two extreme ends:
« One can show the trace on the left side S"/(S$) is X(¢9)

where X(q) = %&Zi,
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How does this help?

Taking H-fixed subspaces in Springer’s G x C-isomorphism
5/(8§) = C(a]
it becomes an isomorphism of C-representations:

(S/(SH)7 = (clap”

|| ||
S"/(s%)  CIG/H]

Any ¢? in C acts with same trace on the two extreme ends:
« One can show the trace on the left side S"/(S$) is X(¢9)

where X(q) = %&Zi, and

o the trace on the right size is | X°°| where X = G/H.

This proves that general CSP theorem.
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