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Multinomials and flags of subsets

The examples of

• k-subsets counted by
(

n
k

)

, and

• ordered k-subsets counted by n(n − 1) · · · (n − (k − 1)),

are special cases of objects parametrized by a composition

α = (α1, . . . , αℓ) of n.

Definition

An α-flag (of subsets) is a chain of nested subsets of

{1,2, . . . ,n}

∅ ⊂ Sα1
⊂ Sα1+α2

⊂ · · · ⊂ Sα1+···+αℓ−1
⊂ {1,2, . . . ,n}

in which each subset Sj has cardinality given by its subscript j .
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Sn acts transitively, so here we go ...

Proposition

The α-flags are counted by the multinomial coefficient

(

n

α

)

=

(

n

α1, . . . , αℓ

)

=
n!

α1! · · ·αℓ!
.

Proof.

They carry a transitive Sn-action, with the stabilizer of one

particular flag conjugate to the Young subgroup

Sα = Sα1
×Sα2

× · · · ×Sαℓ
.
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Their invariant ring, and q-analogue

Here one has

SSα = C

[

e1(x
(1)), . . . ,eα1

(x(1)), · · · , e1(x
(ℓ)), . . . ,eαℓ

(x(ℓ))
]

where x
(i) is the variable set

{xα1+···+αi−1+1, xα1+···+αi−1+2, . . . xα1+···+αi−1+αi
}

and hence

X (q) =
Hilb(SSα ,q)

Hilb(SSn,q)

=
1/((1− q) · · · (1− qα1) · · · (1− q) · · · (1− qαℓ))

1/((1− q) · · · (1− qn))

=
[n]!q

[α1]!q · · · [αℓ]!q
=:

[

n

α

]

q

the traditional q-multinomial.
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The usual CSP

Corollary

One has a triple (X ,X (q),C) giving a CSP where

X = α-flags of subsets of {1,2, . . . ,n}

X (q) :=

[

n

α

]

q

C := 〈c〉

where c is an n-cycle or (n − 1)-cycle in Sn.
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But q-multinomials have further meanings

W = Sn as a Coxeter group, has usual length function

ℓ(w) = ℓS(w) with respect to Coxeter generators S, and

∑

w∈W

qℓ(w) = [n]!q .

Similarly WJ = Sα is a Coxeter group in its own right, a

parabolic subgroup, inheriting the same length function, with

∑

w∈WJ

qℓ(w) = [α1]!q · · · [αℓ]!q .

The theory says the minimum length coset representatives W J

for W/WJ will have

∑

w∈W J

qℓ(w) =

∑

w∈W qℓ(w)

∑

w∈WJ
qℓ(w)

=
[n]!q

[α1]!q · · · [αℓ]!q
=

[

n

α

]

q

.
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Geometric meaning

Definition

For any field F and composition α of n, one can consider the

partial flag variety of all α-flags of F-subspaces in F
n

{0} ⊂ Vα1
⊂ Vα1+α2

⊂ · · · ⊂ Vα1+···+αℓ−1
⊂ F

n

Alternatively, it is the homogeneous space G/Pα where

G = GLn(F) and Pα is the block-triangular matrix subgroup

fixing a standard α-flag where Vi = Fe1 + Fe2 + · · ·+ Fei .

G/Pα turns out to be a

• smooth projective variety, with

• Schubert cell decomposition Xw , indexed by w in W J :

G/Pα =
⊔

w∈W J

Xw

• and the Schubert cell Xw = BwPα isomorphic to F
ℓ(w).
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Geometric meaning

This lets one prove these classical facts about X (q) =

[

n

α

]

q

.

Theorem

• When F = Fq, one has X (q) = |G/Pα|.

• When F = R, one has

X (q) = PoinZ2
(G/Pα,q) :=

∑

i≥0

q i · dimZ2
Hi(G/Pα;Z2).

• When F = C, one has

X (q) = PoinZ(G/Pα,q
1
2 ) :=

∑

i≥0

q i · rankZH2i(G/Pα;Z).
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Compositions and flags for reflection groups

We’ve seen the Boolean algebra 2n−1

of all compositions α = (α1, . . . , αℓ) of n generalizes from

W = Sn to real reflection groups W with simple generators S:

2n−1 generalizes to the Boolean algebra 2S,

with α corresponding to the subset J ⊆ S generating WJ = Sα

Example

For W = S9 with S = {s1, s2, s3, s4, s5, s6, s7, s8}, the

composition α = (2,4,3) corresponds to the subset

J = {s1, s3, s4, s5, s7, s8} generating WJ = S2 ×S4 ×S3.
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Parabolic subgroups and quotients

The real reflection group W has degrees (d1, . . . ,dn).
The parabolic subgroup WJ has its own degrees (dJ

1 , . . . ,d
J
n ).

One has q-analogues of |W |, |W J |, [W : WJ ] = |W
J | as before:

•
∑

w∈W qℓ(w) = [d1]q [d2]q · · · [dn]q

•
∑

w∈WJ
qℓ(w) = [dJ

1 ]q [d
J
2 ]q · · · [d

J
n ]q

•
∑

w∈W J qℓ(w) =
∑

w∈W qℓ(w)

∑
w∈WJ

qℓ(w) =
[d1]q[d2]q ···[dn]q
[dJ

1
]q [dJ

2
]q ···[dJ

n ]q
.
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Of course, the same CSP

Corollary

In the above setting, one has a CSP triple (X ,X (q),C) with

X = W/WJ

X (q) =
Hilb(SWJ ,q)

Hilb(SW ,q)
=

∑

w∈W J

qℓ(w) =
n
∏

i=1

[di ]q

[dJ
i ]q

C = 〈c〉

where c is any regular element of W,

and C acts on W/WJ via left-translation of cosets wWJ .
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Generalized partial flag varieties for Weyl groups

Furthermore, if W is also a Weyl group, then there is an

associated semisimple algebraic group G over any field F.

Corresponding to the subset J ⊆ S,

one has a parabolic subgroup PJ of G, playing the role of Pα.

One again has the generalized partial flag variety G/PJ , which

is smooth, projective, with a Schubert cell decomposition into

cells Xw
∼= F

ℓ(w) indexed by w in W J .
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The same geometric interpretations

This leads to similar geometric interpretations for

X (q) =
Hilb(SWJ ,q)

Hilb(SW ,q)
=

∑

w∈W J

qℓ(w) =

n
∏

i=1

[di ]q

[dJ
i ]q

.

Theorem

• When F = Fq, one has X (q) = |G/PJ |.

• When F = R, one has

X (q) = PoinZ2
(G/PJ ,q) :=

∑

i≥0 q i · dimZ2
Hi(G/PJ ;Z2).

• When F = C, one has

X (q) = PoinZ(G/PJ ,q
1
2 ) :=

∑

i≥0 q i · rankZH2i(G/PJ ;Z).
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CSPs for involutions are “q = −1 phenomena”

Definition (Stembridge 1994)

Suppose one has a CSP triple (X ,X (q),C) has the cyclic

group C = Z2 = 〈τ〉 of order two.

In other words, one has τ is an involution on X , and

X (+1) = |X |

X (−1) = |X τ | = {x ∈ X : τ(x) = x}

Then Stembridge called this a q = −1 phenomenon,

(pre-dating CSPs).
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A q = −1 phenomenon involving partitions

Definition

Say that a number partition λ = (λ1 ≥ λ2 ≥ λℓ > 0) fits in a

k × (n − k) rectangle if λ1 ≤ n − k and ℓ ≤ k .

Example

λ = 553 = 5530 fits in a 4× 5 rectangle:

5 � � � � �

5 � � � � �

3 � � � · ·
0 · · · · ·

V. Reiner Reflection group counting and q-counting



A q = −1 phenomenon involving partitions

Definition

Say that a number partition λ = (λ1 ≥ λ2 ≥ λℓ > 0) fits in a

k × (n − k) rectangle if λ1 ≤ n − k and ℓ ≤ k .

Example

λ = 553 = 5530 fits in a 4× 5 rectangle:

5 � � � � �

5 � � � � �

3 � � � · ·
0 · · · · ·

V. Reiner Reflection group counting and q-counting



The q-binomial q-counts partitions in a rectangle

Theorem
[

n

k

]

q

=
∑

λ fitting in a
k×(n−k) rectangle

q|λ|.

Proof.

See the exercises.

Example

22 q4

21
yy EE

+q3

20
EE

11
yy

+2q2

10 +q1

00 +q0 = 1 + q + 2q2 + q3 + q4 =

[

4
2

]

q
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An involution on partitions in a rectangle

Having fixed the dimensions k × (n− k) of the rectangle, define

an involution τ on all such λ fitting in it, by rotating the picture

180◦, and taking the complementary boxes.

Example

Having fixed k × (n − k) as 4× 5, one has τ(553) = 52:

5 � � � � �

5 � � � � �

3 � � � · ·
· · · · ·

←→

5 � � � � �

2 � � · · ·
· · · · ·
· · · · ·

How many such λ are fixed by the involution τ?
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The phenomenon

Theorem (Stembridge 1994)

The involution τ on the set X of λ in a k × (n − k) rectangle,

with X (q) =

[

n

k

]

q

, exhibits a q = −1 phenomenon.

(He really proved something more general for plane partitions.)

Example

E.g. for n = 4, k = 2,

X =
{

22
τ
↔ 00, 21

τ
↔ 10, 20τ

77

11τ
88

}

has

X τ = {20,11},

and X (q) =

[

4

2

]

q

= 1 + q + 2q2 + q3 + q4

has X (−1) = 1− 1 + 2− 1 + 1 = 2 = |X τ |.
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Eng’s generalization

Stembridge’s result is a special case, for W = Sn and

WJ = Sk ×Sn−k , of the following.

Let W be a finite real reflection group W , simple reflections S,

longest element w0, and pick any subset J ⊆ S.

Theorem (O. Eng 2001)

The involution τ on X = W/WJ defined by τ(wWJ) := w0wWJ ,

with X (q) =
∑

w∈W J qℓ(w), gives a q = −1 phenomenon.

Proof.

(Not Eng’s) It follows from our general CSP: X (q) is our usual

for X = W/WJ , and the longest element w0 is regular.
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