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Multinomials and flags of subsets

The examples of
e k-subsets counted by (}), and
e ordered k-subsets counted by n(n—1)---(n— (k — 1)),

are special cases of objects parametrized by a composition
o= (051,...,015) of n.
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Multinomials and flags of subsets

The examples of

e k-subsets counted by (}), and

e ordered k-subsets counted by n(n—1)---(n— (k — 1)),
are special cases of objects parametrized by a composition
a=(ay,...,ap)0of n.
Definition
An a-flag (of subsets) is a chain of nested subsets of
{1,2,...,n}

@ C Say C Saytap C - C Sayqega,_, €{1,2,...,0}

in which each subset S; has cardinality given by its subscript j.
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&, acts transitively, so here we go ...

Proposition

The a-flags are counted by the multinomial coefficient

n n n!
« B Qq,...,0p _051!”‘ag!'

They carry a transitive &,-action, with the stabilizer of one
particular flag conjugate to the Young subgroup

Go =64 X By, X - X By,.
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Their invariant ring, and g-analogue

Here one has

S% =Clei(xM),.... e, (x1), - e (x),... e, (xD)
where x() is the variable set

{Xa1+~~~+a,',1+17 Xog+toj_14+2) - Xa1+"'+ai71+0ri}
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Their invariant ring, and g-analogue

Here one has

S% =Clei(xM),.... e, (x1), - e (x),... e, (xD)

where x()) is the variable set

{Xa1+~~~+a,',1+17 Xog+toj_14+2) - Xa1+"'+ai71+0ri}
and hence
Hilb(S%, q)
X(q) = —\2 4
(@) Hilb(S%9)
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Their invariant ring, and g-analogue

Here one has

S =Cle;(x), ..., e.,(x), - e(x), ... e, (xD)

where x()) is the variable set

{Xa1+~~~+a,',1+17 Xog+toj_14+2) - Xa1+"'+ai71+0ri}
and hence
Hilb(S%, q)
X(q) = —\2 4
(@) Hilb(S%9)

(@ =9)---(1=9g")---(01=9q)---(1=-g"))
1/((0=q)---(1-97)
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Their invariant ring, and g-analogue

Here one has

S =Cle;(x), ..., e.,(x), - e(x), ... e, (xD)

where x()) is the variable set

{Xa1+~~~+a,',1+17 Xog+toj_14+2) - Xa1+"'+ai71+0ri}
and hence
Hilb(S%, q)
X(q) = —\2 4
(@) Hilb(S%9)

(@ =9)---(1=9g")---(01=9q)---(1=-g"))
1/((0=q)---(1-97)

:ﬁ: mq
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Their invariant ring, and g-analogue

Here one has

S% = ey (xM), ... 6., (x1), -, e (x9),... e, (x?)

where x()) is the variable set

{Xa1+~~~+a,',1+17 Xog+toj_14+2) - Xa1+"'+aif1+ﬂi}
and hence
Hilb(S%, q)
X(q) = —\2 H)
(@) Hilb(S%9)

(@ =9)---(1=9g")---(01=9q)---(1=-g"))
1/((0=q)---(1-97)

_ [n]'g . {”}
o]l [oddly Lo,
the traditional g-multinomial.

V. Reiner Reflection group counting and g-counting




The usual CSP
(Coollary ]

Corollary
One has a triple (X, X(q), C) giving a CSP where

X = a-flags of subsets of {1,2,...,n}

x@)= ||
C = (c) ’

where c is an n-cycle or (n — 1)-cycle in G,.
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But g-multinomials have further meanings

W = &, as a Coxeter group, has usual length function
/(w) = ls(w) with respect to Coxeter generators S, and

> g™ =[n]l,.

weW
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But g-multinomials have further meanings

W = &, as a Coxeter group, has usual length function
/(w) = ls(w) with respect to Coxeter generators S, and

> g™ =n]l,.
weW

Similarly W, = &, is a Coxeter group in its own right, a
parabolic subgroup, inheriting the same length function, with

Z q@(w) = [a1]lg- - [au]'q-

weW,
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But g-multinomials have further meanings

W = &, as a Coxeter group, has usual length function
/(w) = ls(w) with respect to Coxeter generators S, and

> g™ =n]l,.
weW

Similarly W, = &, is a Coxeter group in its own right, a
parabolic subgroup, inheriting the same length function, with

Z q@(w) = [a1]lg- - [au]'q-

we WJ

The theory says the minimum length coset representatives WY
for W/W, will have

(w) |
qﬂ(w) ~ 2wewd [n]'q _nl
> 4,

o - > wew, g™ ]l [l Lo
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Geometric meaning

For any field F and composition « of n, one can consider the
partial flag variety of all a-flags of F-subspaces in F”

{0} € Vo, € Viay40, €+ C Viy4tay_y CE”

Alternatively, it is the homogeneous space G/P,, where
G = GL,(F) and P, is the block-triangular matrix subgroup
fixing a standard a-flag where V; = Fe; + Fes + - - - + Fe;.

V. Reiner Reflection group counting and g-counting



Geometric meaning

For any field F and composition « of n, one can consider the
partial flag variety of all a-flags of F-subspaces in F”
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Alternatively, it is the homogeneous space G/P,, where
G = GL,(F) and P, is the block-triangular matrix subgroup
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G/ P, turns out to be a
e smooth projective variety,
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G/Pa: |_| XW

we WY
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Geometric meaning

For any field F and composition « of n, one can consider the
partial flag variety of all a-flags of F-subspaces in F”

{0} € Vo, € Viay40, €+ C Viy4tay_y CE”

Alternatively, it is the homogeneous space G/P,, where
G = GL,(F) and P, is the block-triangular matrix subgroup
fixing a standard a-flag where V; = Fe; + Fes + - - - + Fe;.

G/ P, turns out to be a
e smooth projective variety, with
e Schubert cell decomposition Xy, indexed by w in Ww:

G/Pa: |_| XW

we WY

e and the Schubert cell X,, = BwP,, isomorphic to F/("),



Geometric meaning

This lets one prove these classical facts about X(q) = [ﬂ .
q
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Geometric meaning

o

Thoorom

e WhenF =TF,, one has X(q) = |G/P,|.

This lets one prove these classical facts about X(q) = {n} .
q
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Geometric meaning

This lets one prove these classical facts about X(q) = L’ﬂ .
q

Thoorom

e WhenF =TF,, one has X(q) = |G/P,|.
e WhenF =R, one has

X(q) = Poing,(G/Pa,q) ==Y _ q - dimz, Hi(G/Pa; Zs).

i>0
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Geometric meaning

This lets one prove these classical facts about X(q) = L’ﬂ .
q

e WhenF =TF,, one has X(q) = |G/P,|.
e WhenF =R, one has

X(q) = Poing,(G/Pa,q) ==Y _ q - dimz, Hi(G/Pa; Zs).

i>0

e WhenF = C, one has

X(q) = Poing(G/Pa,q2) = Y q' - rankz Hyi(G/ P Z).

i>0
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Compositions and flags for reflection groups

We've seen the Boolean algebra 2"
of all compositions a = (a4, . .., ay) of n generalizes from
W = &, to real reflection groups W with simple generators S:
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Compositions and flags for reflection groups

We've seen the Boolean algebra 2"
of all compositions a = (a4, . .., ay) of n generalizes from
W = &, to real reflection groups W with simple generators S:

271 generalizes to the Boolean algebra 2°,
with « corresponding to the subset J C S generating W, = &,

For W = &g with S = {s1, sp, 3, S4, S5, S, S7, Sg }, the
composition a = (2, 4, 3) corresponds to the subset
J={s1, s3,54,55, S7,58} generating W, = G, x &4 x Gg.
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Parabolic subgroups and quotients

The real reflection group W has degrees (d, ..., dy).
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Parabolic subgroups and quotients

The real reflection group W has degrees (d;, .. ., dn).

The parabolic subgroup W, has its own degrees (d¢. ..., dy).
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Parabolic subgroups and quotients

The real reflection group W has degrees (ds, .. ., dn)-

The parabolic subgroup W, has its own degrees (d¢. ..., dy).
One has g-analogues of |W|, [WY|,[W : W,] = |WY| as before:
o > wew ™) = [dilgldelg - - [dnlg
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Parabolic subgroups and quotients

The real reflection group W has degrees (ds, .. ., dn)-

The parabolic subgroup W, has its own degrees (d¢. ..., dy).
One has g-analogues of |W|, [WY|,[W : W,] = |WY| as before:
o Ywew @M = [dilgldblg - - [dhlg
o Ywew, 9™ = [dlq[ds]q - [dF]q
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Parabolic subgroups and quotients

The real reflection group W has degrees (ds, .. ., dn)-

The parabolic subgroup W, has its own degrees (d¢. ..., dy).
One has g-analogues of |W|, [WY|,[W : W,] = |WY| as before:
* D wew q‘™) = [di]gldb]g - - [ahlg
°* > W) = [d]q[dy]q - - - [d]
wew, 9 11ql95]q nlg

Suew @™ _ [0]g[oblg-1]
* Twews @) = 350G = a0
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Of course, the same CSP

Corollary .

In the above setting, one has a CSP triple (X, X(q), C) with
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Of course, the same CSP

Corollary .

In the above setting, one has a CSP triple (X, X(q), C) with
X=W/W,

V. Reiner Reflection group counting and g-counting



Of course, the same CSP

Corollary .

In the above setting, one has a CSP triple (X, X(q), C) with

X=W/W,
Hilb(S", q) ; T [dl]
X(g)= ST _ 5~ gt — [ s
Hilb(SY, q) W;/J E [d/]q
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Of course, the same CSP

Corollary

In the above setting, one has a CSP triple (X, X(q), C) with

X=W/W,
_ Hilb(8"%,q) wy _ 77 1]
X(9) = Hiin(ew, q) ng:w g = ,1} [d,J]Z
C = (c)

where c is any regular element of W,
and C acts on W /W, via left-translation of cosets wW,.
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Generalized partial flag varieties for Weyl groups

Furthermore, if W is also a Weyl group, then there is an
associated semisimple algebraic group G over any field F.
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Generalized partial flag varieties for Weyl groups

Furthermore, if W is also a Weyl group, then there is an
associated semisimple algebraic group G over any field F.

Corresponding to the subset J C S,
one has a parabolic subgroup P, of G, playing the role of P,,.
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Generalized partial flag varieties for Weyl groups

Furthermore, if W is also a Weyl group, then there is an
associated semisimple algebraic group G over any field F.

Corresponding to the subset J C S,
one has a parabolic subgroup P, of G, playing the role of P,,.

One again has the generalized partial flag variety G/P,, which
is smooth, projective with a Schubert cell decomposition into
cells X,, = F") indexed by w in W,
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The same geometric interpretations

This leads to similar geometric interpretations for

1 W,
X(q) = Hilb( S q Z C] H [d]q'

J
Hilb(S S (0]
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The same geometric interpretations

This leads to similar geometric interpretations for
Hilb(SW, q [dilq
X(@) = Hilb(SW, g =2 av H Hallg”
we W/

e WhenF =TF,, one has X(q) = |G/P,|.
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The same geometric interpretations

This leads to similar geometric interpretations for

Hilb(SW, q [dilq
X(a) = Hilb(SY, q =2 qv H [d1q
wew’ qa

e WhenF =TF,, one has X(q) = |G/P,|.
e WhenF =R, one has _
X(q) = Poing,(G/Py,q) ==} >0 q' - dimg, Hi(G/P,; Z>).
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The same geometric interpretations

This leads to similar geometric interpretations for

Hilb(SW, q [dilq
X(a) = Hilb(SY, q =2 qv H [d1q
wew’ qa

e WhenF =TF,, one has X(q) = |G/P,|.
e WhenF =R, one has _
X(q) = Poing,(G/Py,q) ==} >0 q' - dimg, Hi(G/P,; Z>).

e WhenT = C, one has1 _
X(q) = Poinz(G/Py,qz) := ;50 q' - rankz Hai(G/ Py; Z).
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CSPs for involutions are “g = —1 phenomena”

Definition (Stembridge 1994)

Suppose one has a CSP triple (X, X(q), C) has the cyclic
group C = Zp, = (1) of order two.
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CSPs for involutions are “g = —1 phenomena”

Definition (Stembridge 1994)

Suppose one has a CSP triple (X, X(q), C) has the cyclic
group C = Zp, = (1) of order two.

In other words, one has 7 is an involution on X, and

X(+1) = |X|
X(=1) = |X"| = {x € X : 7(x) = x}

Then Stembridge called this a g = —1 phenomenon,
(pre-dating CSPs).
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—1 phenomenon involving partitions

Definition
Say that a number partition A = (A > Ao > Ay > 0) fitsin a
k x (n— k) rectangle if \{ < n— k and ¢ < k.
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—1 phenomenon involving partitions

Say that a number partition A = (A > Ao > Ay > 0) fitsin a
k x (n— k) rectangle if \{ < n— k and ¢ < k.

4

o d
o o

A =553 = 5530 fits in a 4 x 5 rectangle:

o wu u,
- O0Od
- OO0
- OO0
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The g-binomial g-counts partitions in a rectangle

Iz

A fitting in a
kx(n—k) rectangle
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The g-binomial g-counts partitions in a rectangle

Iz

A fitting in a
kx(n—k) rectangle

See the exercises. O
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The g-binomial g-counts partitions in a rectangle

Iz

A fitting in a
kx(n—k) rectangle

See the exercises. O

22 q*
I
21 +q°

/N

20 1 4242

N S
10 +q'
! 0 2 3 4 4
00 +q =14+9+29°+q° +q" = |,
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An involution on partitions in a rectangle

Having fixed the dimensions k x (n — k) of the rectangle, define
an involution 7 on all such X fitting in it, by rotating the picture
180°, and taking the complementary boxes.

Example

Having fixed k x (n — k) as 4 x 5, one has 7(553) = 52:
5 0 00 0O 0 5 000 0 0
5 00000 PN 2 0O 0O
3 oo o - .

How many such X are fixed by the involution 77
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The phenomenon

Theorem (Stembridge 1994)
The involution T on the set X of \ in a k x (n — k) rectangle,

n

with X(q) = [ p

] , exhibits a g = —1 phenomenon.
q

(He really proved something more general for plane partitions.)

Example

E.g.forn=4k =2,

X = {22&00, 21510, €20 {1 } has
X = {20,11},
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The phenomenon

Theorem (Stembridge 1994)
The involution T on the set X of \ in a k x (n — k) rectangle,

n

with X(q) = [ p

] , exhibits a g = —1 phenomenon.
q

(He really proved something more general for plane partitions.)

Example

E.g.forn=4k =2,

X = {22&00, 21510, €20 {1 } has
X = {20,11},

and X(q) = [‘2‘] =1+9+20°+q +4q"'
q
has X(—1)=1-1+2-1+1=2=X"].
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Eng’s generalization

Stembridge’s result is a special case, for W = &, and
W, = &, x &,_, of the following.

Let W be a finite real reflection group W, simple reflections S,
longest element wy, and pick any subset J C S.

Theorem (O. Eng 2001)

The involution T on X = W /W, defined by T(wW,) := wowW,,
with X(q) = 3" ews "), gives a g = —1 phenomenon.

(Not Eng’s) It follows from our general CSP: X(q) is our usual
for X = W/W,, and the longest element w is regular. O
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