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Degrees and the regular representation

Recall for a representation U of a finite group G, the character

G X% c

g — xul(g) = trace(g|u)
evalues the trace of g acting on U.
In particular, its (left-)regular representation C[G] has

|G| if g = e, the identity,

xcral(9) = {0 fg+e
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Degrees and the regular representation

Corollary

Any G-representation U has its degree or dimension

dime U = xu(e)
given by the character inner product
dimc U = {(xcg)> Xu)

1 _
= 1G] > xcial@™) - xu(9)
9geqG
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Fake degrees and the coinvariant algebra

For W a complex reflection group, the Shephard-Todd and
Chevalley theorem asserted that the coinvariant algebra gives a
graded version of the regular representation:

S/(8%) = c[w]
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Fake degrees and the coinvariant algebra

For W a complex reflection group, the Shephard-Todd and
Chevalley theorem asserted that the coinvariant algebra gives a
graded version of the regular representation:

S/(sY) = C[w]

Definition
For any W-representation U, the degree

dimc U = (xcg)> XU)

)
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Fake degrees and the coinvariant algebra

For W a complex reflection group, the Shephard-Todd and
Chevalley theorem asserted that the coinvariant algebra gives a
graded version of the regular representation:

S/(8%) = c[w]

Definition
For any W-representation U, the degree

dimc U = (xcg)> XU)

has a g-analogue called the U-fake degree V(q):

Z qa - X(s/sv) )g» XU)
a>0

where (S/(S%))q is the d graded component of S/(S%).




The fake degree is a g-analogue of the degree

This U-fake degree fU(q) = >"4-097 - {X(5/(8%))4» XU)
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The fake degree is a g-analogue of the degree

This U-fake degree fU(q) = >"4-097 - (X(8/(SW )2 XU
@ lies inN[q],
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The fake degree is a g-analogue of the degree

Proposition

This U-fake degree fU(q) = >"4-097 - {X(5/(8%))4» XU)
@ lies inN[q],
Q has V(1) =dimc U
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The fake degree is a g-analogue of the degree

Proposition

This U-fake degree fU(q) = >"4-097 - (X(8/(SW )2 XU
@ lies inN[q],
Q has V(1) =dimc U

Proof.
For the 1st assertion, note <X(S/(sf))d>XU> lies in N.

)
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The fake degree is a g-analogue of the degree

This U-fake degree fU(q) = >"4-097 - (X(8/(SW )2 XU
@ lies inN[q],
9 has fY(1) = dim¢ U

For the 1st assertion, note (x(s/(swy), xv) liesin .

For the 2nd assertion, note

() = D (Xs/iswy)qr xU)

a>0
= (XS/(SW)aXU> = {xcw> xu) = dim¢ U.

O

-
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Some examples of fake degrees

Example

For a real reflection group W, both the trivial 1, and sign
representation sgny, = detyy = det;v1 have dimension 1, so
their fake degree is a power of q:

fiw(g)=q° =1
Few(q) = g

with N := |{reflections}| = |{reflecting hyperplanes}|.
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Some examples of fake degrees

For a real reflection group W, both the trivial 1, and sign
representation sgny, = detyy = det;v1 have dimension 1, so
their fake degree is a power of q:

fiw(g)=q° =1
pen(q) = g

with N := |{reflections}| = |{reflecting hyperplanes}|.

4

For W = &,, one has f€"w(q) = q(g).
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Some examples of fake degrees

Example

For W a complex reflection group, there are often more
reflections than reflecting hyperplanes:
two unitary reflections can share the same fixed hyperplane.
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Some examples of fake degrees

Example

For W a complex reflection group, there are often more
reflections than reflecting hyperplanes:
two unitary reflections can share the same fixed hyperplane.

There is also a distinction between the two linear characters
detyy, det,,, and between their fake degrees:
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Some examples of fake degrees

Example

For W a complex reflection group, there are often more
reflections than reflecting hyperplanes:
two unitary reflections can share the same fixed hyperplane.

There is also a distinction between the two linear characters
detyy, det,,, and between their fake degrees:

fdetW(q) _ q\{reflecting hyperplanes}|

1 .
fdetW (q) _ q|{reflect|ons}|
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Some examples of fake degrees

Example

For W a complex reflection group, there are often more
reflections than reflecting hyperplanes:
two unitary reflections can share the same fixed hyperplane.

There is also a distinction between the two linear characters
detyy, det,,, and between their fake degrees:

fdetW(q) _ q\{reflecting hyperplanes}|

1 .
fdetW (q) _ q|{reflect|ons}|

We’ll say more about what those exponents are in terms of
degrees and codegrees next.
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(di,...,dy) and the fake degree of V

For W a real reflection group acting on V with degrees
(di,..., dp), for homogeneous invariants fi, . .., f, having

SW =CI[f,...,f], aresult of Solomon (1963) implies

n
@)= q¢"".
i=1

One might also ask about the contragredient V* of the
reflection representation V. But in the real reflection group case
one has V* = V so that fV"(q) = fV(q).
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Codegrees versus degrees

On the other hand, for W a complex reflection group one need
not have V* = V, and we must pick our conventions. Suppose
we let S = C[xq, ..., Xp] be the symmetric algebra of V*, so that
V* =Cxq + --- + Cx,, and SW = C[fy, ..., fy] with deg(f,) = d.
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Codegrees versus degrees

On the other hand, for W a complex reflection group one need
not have V* = V, and we must pick our conventions. Suppose
we let S = C[xq, ..., Xp] be the symmetric algebra of V*, so that
V* =Cxq + --- + Cx,, and SW = C[fy, ..., fy] with deg(f,) = d.

Then it is still true that V(q) = 3>, ¢%~" but now one has ...

Definition

n
ANCEDPEN
i=1

for some uniquely defined nonnegative integers (d;, ..., d,),*
called codegrees.
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Codegrees versus degrees

For a complex reflection group W acting on V = C" with
degrees d; and codegrees d;, one has

e (Shephard-Todd 1955, Solomon 1963)

n

> ) = T+ (@ - 1)
weW i=1
In particular, Y7 ,(d; — 1) = |{reflections}|.
o (Orlik-Solomon 1980)

n

> det(w)rd™Y) = TT(t - (dF +1))

weW i=1

In particular, >"7_,(d* + 1) = |{reflecting hyperplanes}|.

-
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Degrees, codegrees for well-generated groups

Confused?

V. Reiner Reflection group counting and g-counting



Degrees, codegrees for well-generated groups

Confused?

Good news: For the well-generated groups W, and hence all
real reflection groups and all Shephard groups, the degrees
and codegrees determine each other in a simple way.

A complex reflection group W actingon V = C" is
well-generated (that is, generated by n reflections) if and only if
the degrees d; < --- < d, and codegrees di > --- > d; satisfy

d'+d=dy(:=h)fori=1,2,...,n.
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Degrees, codegrees for well-generated groups

Confused?

Good news: For the well-generated groups W, and hence all
real reflection groups and all Shephard groups, the degrees
and codegrees determine each other in a simple way.

A complex reflection group W actingon V = C" is
well-generated (that is, generated by n reflections) if and only if
the degrees d; < --- < d, and codegrees di > --- > d; satisfy

d'+d=dy(:=h)fori=1,2,...,n.

Bad news: This has only been verified case-by-case!
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Our previous X(q) was a fake degree

Proposition

For G a complex reflection group and H any subgroup, the
transitive permutation G-representation

U = C[G/H]
where G left-translates X = G/H = {gH}, has fake degree

_ Hilb(S", q)

FI(G) = X(0) = pisergy

that is, our q-analogue of [G : H] considered before.

V. Reiner Reflection group counting and g-counting



Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W-irreducibles
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Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W-irreducibles

Recall W = &, has irreducible W-representations U indexed
by number partitions \ of n.
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Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W-irreducibles

Recall W = &, has irreducible W-representations U indexed
by number partitions \ of n.

A standard Young tableau of shape \ is a filling T of the Ferrers
diagram of X\ with the numbers {1,2,..., n}, each appearing
exactly once, increasing left-to-right in rows and top-to-bottom
in columns.
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Irreducible degrees for &,

The 5 standard Young tableaux of shape A = (3,2) are

123 124 125
45 ° 35 ° 34

Theorem (Young 1927)
f* .= dim(U*) counts the standard Young tableaux of shape \.

Theorem (Frame-Robinson-Thrall

A n!
[Txex A(X)
where x runs through the cells in the Ferrers diagram of A, and
h(x) denotes the hook length at x.
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Irreducible degrees for &,

For n = 5, the partition A = 32 has hook lengths labelled here:

4 3 1
2 1

V. Reiner Reflection group counting and g-counting



Irreducible degrees for &,

Example

For n = 5, the partition A = 32 has hook lengths labelled here:

4 3 1
2 1

Hence

3 5! _ 54821
T 4.3.2.1-1 4.3.2.1-1 7
agreeing with our count of 5 standard Young tableaux.

f)\
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Lusztig’s and Stanley’s fake degree formulas

Theorem (Lusztig 1979)
fU)‘(q) _ Z qmaj(T)
T

where the sum runs over all standard Young tableaux T of
shape \, and maj(T) is the sum of the entries i in T for which
i+ 1 lies in a lower row of T.

Theorem (Stanley 1971)

Uy _ o) Mg
E) = L T

where n(\) = > (i = 1)\;.
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Lusztig’s and Stanley’s fake degree formulas

Here are the standard Young tableaux of shape A = 32,
highlighting the red entries that sum to maj(T):

4 5

1 2 1 3 4 S
"3 4 25

1 3
T2 4
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Lusztig’s and Stanley’s fake degree formulas

Here are the standard Young tableaux of shape A = 32,
highlighting the red entries that sum to maj(T):

123 124125134135
45 35 '34 25 24
o= ¢ +©  +P 4+
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Lusztig’s and Stanley’s fake degree formulas

Here are the standard Young tableaux of shape A = 32,
highlighting the red entries that sum to maj(T):

123 124125134135
45 35 34 25 24

o= ¢ +©  +P 4+
= g°[5]q
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Lusztig’s and Stanley’s fake degree formulas

Here are the standard Young tableaux of shape A = 32,
highlighting the red entries that sum to maj(T):

123 124125 134135
45 '35 '34 '25 ' 24

@)= g +q° +q? +q° +q
=q2[5]q-

Since n(32) =0-3+ 1.2 = 2, Stanley’s formula says

us2 _ 4N(32) [5]!q _ 2
@ Bl RLMaily ¢ Pl
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fY"(q) is meaningful at prime powers g

Steinberg (1951) constructed some of the complex irreducible
representations of U*(q) of GLs(Fq), particularly g-analogous
to the irreducible representations U* of &, called unipotent
representations.

Theorem (Olsson 1986)

For g the order of a finite field IFq, the fake degree f U*(q)
becomes the usual degree of Steinberg’s unipotent
GLq(F4)-representation U*(q).

Similar statements hold for other simple algebraic groups G
over [Fy beside GL,(Fg).
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fY(q) is meaningful at roots-of-unity

Here is a reformulation of Springer’s isomorphism
S/(SY) = c C[W]. Pick ¢ a regular element in complex
reflection group W, with ¢ in C* its eigenvalue on v in V
avoiding the reflecting hyperplanes, so ¢(v) = ¢ - v.

Theorem

In this setting, the character value (trace) of the regular element
¢ acting in any complex W -representation U is the evaluation of
the fake-degree at q = (:

xu(©) = [f(q))

q=¢
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fY(q) is meaningful at roots-of-unity

Here is a reformulation of Springer’s isomorphism
S/(SY) = c C[W]. Pick ¢ a regular element in complex
reflection group W, with ¢ in C* its eigenvalue on v in V
avoiding the reflecting hyperplanes, so ¢(v) = ¢ - v.

Theorem

In this setting, the character value (trace) of the regular element
¢ acting in any complex W -representation U is the evaluation of
the fake-degree at q = (:

xu(©) = |(a)] _ -

E.g. this interprets U (¢) at n and (n — 1)S!-roots-of-unity .
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