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Degrees and the regular representation

Recall for a representation U of a finite group G, the character

G
χU−→ C

g 7−→ χU(g) := trace (g|U)

evalues the trace of g acting on U.

In particular, its (left-)regular representation C[G] has

χC[G](g) =

{

|G| if g = e, the identity,

0 if g 6= e,

V. Reiner Reflection group counting and q-counting



Degrees and the regular representation

Corollary

Any G-representation U has its degree or dimension

dimC U = χU(e)

given by the character inner product

dimC U = 〈χC[G], χU〉

=
1

|G|

∑

g∈G

χC[G](g
−1) · χU(g)
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Fake degrees and the coinvariant algebra

For W a complex reflection group, the Shephard-Todd and

Chevalley theorem asserted that the coinvariant algebra gives a

graded version of the regular representation:

S/(SW
+ ) ∼= C[W ]

Definition

For any W -representation U, the degree

dimC U = 〈χC[G], χU〉

has a q-analogue called the U-fake degree f U(q):

f U(q) :=
∑

d≥0

qd · 〈χ(S/(SW
+ ))d

, χU〉

where (S/(SW
+ ))d is the d th graded component of S/(SW

+ ).
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The fake degree is a q-analogue of the degree

Proposition

This U-fake degree f U(q) =
∑

d≥0 qd · 〈χ(S/(SW
+ ))d

, χU〉

1 lies in N[q],

2 has f U(1) = dimC U

Proof.

For the 1st assertion, note 〈χ(S/(SW
+ ))d

, χU〉 lies in N.

For the 2nd assertion, note

f U(1) =
∑

d≥0

〈χ(S/(SW
+ ))d

, χU〉

= 〈χS/(SW ), χU〉 = 〈χC[W ], χU〉 = dimC U.
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Some examples of fake degrees

Example

For a real reflection group W , both the trivial 1W and sign

representation sgnW = detW = det−1
W have dimension 1, so

their fake degree is a power of q:

f 1W (q) = q0 = 1

f sgnW (q) = qN

with N := |{reflections}| = |{reflecting hyperplanes}|.

Example

For W = Sn, one has f sgnW (q) = q(
n
2).
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Some examples of fake degrees

Example

For W a complex reflection group, there are often more

reflections than reflecting hyperplanes:

two unitary reflections can share the same fixed hyperplane.

There is also a distinction between the two linear characters

detW ,det−1
W , and between their fake degrees:

f detW (q) = q|{reflecting hyperplanes}|

f det−1
W (q) = q|{reflections}|

We’ll say more about what those exponents are in terms of

degrees and codegrees next.
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(d1, . . . , dn) and the fake degree of V

Example

For W a real reflection group acting on V with degrees

(d1, . . . ,dn), for homogeneous invariants f1, . . . , fn having

SW = C[f1, . . . , fn], a result of Solomon (1963) implies

f V (q) =

n
∑

i=1

qdi−1.

Remark

One might also ask about the contragredient V ∗ of the

reflection representation V . But in the real reflection group case

one has V ∗ ∼= V so that f V∗

(q) = f V (q).
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Codegrees versus degrees

On the other hand, for W a complex reflection group one need

not have V ∗ ∼= V , and we must pick our conventions. Suppose

we let S = C[x1, . . . , xn] be the symmetric algebra of V ∗, so that

V ∗ = Cx1 + · · ·+ Cxn, and SW = C[f1, . . . , fn] with deg(fi) = di .

Then it is still true that f V (q) =
∑n

i=1 qdi−1 but now one has ...

Definition

f V∗

(q) =

n
∑

i=1

qd∗

i
+1

for some uniquely defined nonnegative integers (d∗
1 , . . . ,d

)
n∗

called codegrees.
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Codegrees versus degrees

Theorem

For a complex reflection group W acting on V = C
n with

degrees di and codegrees d∗
i , one has

• (Shephard-Todd 1955, Solomon 1963)

∑

w∈W

tdim(V w ) =

n
∏

i=1

(t + (di − 1))

In particular,
∑n

i=1(di − 1) = |{reflections}|.

• (Orlik-Solomon 1980)

∑

w∈W

det(w)tdim(V w ) =
n
∏

i=1

(t − (d∗
i + 1))

In particular,
∑n

i=1(d
∗
i + 1) = |{reflecting hyperplanes}|.
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Degrees, codegrees for well-generated groups

Confused?

Good news: For the well-generated groups W , and hence all

real reflection groups and all Shephard groups, the degrees

and codegrees determine each other in a simple way.

Theorem

A complex reflection group W acting on V = C
n is

well-generated (that is, generated by n reflections) if and only if

the degrees d1 ≤ · · · ≤ dn and codegrees d∗
1 ≥ · · · ≥ d∗

n satisfy

d∗
i + di = dn(:= h) for i = 1,2, . . . ,n.

Proof.

Bad news: This has only been verified case-by-case!
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Our previous X (q) was a fake degree

Proposition

For G a complex reflection group and H any subgroup, the

transitive permutation G-representation

U = C[G/H]

where G left-translates X = G/H = {gH}, has fake degree

fC[G/H](q) = X (q) =
Hilb(SH ,q)

Hilb(SG,q)
,

that is, our q-analogue of [G : H] considered before.
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Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W -irreducibles

Example

Recall W = Sn has irreducible W -representations Uλ indexed

by number partitions λ of n.

Definition

A standard Young tableau of shape λ is a filling T of the Ferrers

diagram of λ with the numbers {1,2, . . . ,n}, each appearing

exactly once, increasing left-to-right in rows and top-to-bottom

in columns.

V. Reiner Reflection group counting and q-counting



Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W -irreducibles

Example

Recall W = Sn has irreducible W -representations Uλ indexed

by number partitions λ of n.

Definition

A standard Young tableau of shape λ is a filling T of the Ferrers

diagram of λ with the numbers {1,2, . . . ,n}, each appearing

exactly once, increasing left-to-right in rows and top-to-bottom

in columns.

V. Reiner Reflection group counting and q-counting



Irreducible degrees and fake degrees

Particularly important are (fake) degrees of W -irreducibles

Example

Recall W = Sn has irreducible W -representations Uλ indexed

by number partitions λ of n.

Definition

A standard Young tableau of shape λ is a filling T of the Ferrers

diagram of λ with the numbers {1,2, . . . ,n}, each appearing

exactly once, increasing left-to-right in rows and top-to-bottom

in columns.

V. Reiner Reflection group counting and q-counting



Irreducible degrees for Sn

Example

The 5 standard Young tableaux of shape λ = (3,2) are

{

1 2 3

4 5
,

1 2 4

3 5
,

1 2 5

3 4
,

1 3 4

2 5
,

1 3 5

2 4

}

.

Theorem (Young 1927)

f λ := dim(Uλ) counts the standard Young tableaux of shape λ.

Theorem (Frame-Robinson-Thrall hook length formula 1954)

f λ =
n!

∏

x∈λ h(x)

where x runs through the cells in the Ferrers diagram of λ, and

h(x) denotes the hook length at x.
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Irreducible degrees for Sn

Example

For n = 5, the partition λ = 32 has hook lengths labelled here:

4 3 1

2 1

Hence

f λ =
5!

4 · 3 · 2 · 1 · 1
=

5 · 4 · 3 · 2 · 1

4 · 3 · 2 · 1 · 1
= 5,

agreeing with our count of 5 standard Young tableaux.
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Lusztig’s and Stanley’s fake degree formulas

Theorem (Lusztig 1979)

f Uλ

(q) =
∑

T

qmaj(T )

where the sum runs over all standard Young tableaux T of

shape λ, and maj(T ) is the sum of the entries i in T for which

i + 1 lies in a lower row of T .

Theorem (Stanley 1971)

f Uλ

(q) = qn(λ) [n]!q
∏

x∈λ [h(x)]q

where n(λ) =
∑

i≥1(i − 1)λi .
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Lusztig’s and Stanley’s fake degree formulas

Example

Here are the standard Young tableaux of shape λ = 32,

highlighting the red entries that sum to maj(T ):

1 2 3

4 5
,

1 2 4

3 5
,

1 2 5

3 4
,

1 3 4

2 5
,

1 3 5

2 4

f U32
(q) = q3 +q6 +q2 +q5 +q4

= q2[5]q.

Since n(32) = 0 · 3 + 1 · 2 = 2, Stanley’s formula says

f U32

(q) = qn(32) [5]!q
[4]q[3]q [2]q[1]q [1]q

= q2[5]q.
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f Uλ

(q) is meaningful at prime powers q

Steinberg (1951) constructed some of the complex irreducible

representations of Uλ(q) of GLn(Fq), particularly q-analogous

to the irreducible representations Uλ of Sn, called unipotent

representations.

Theorem (Olsson 1986)

For q the order of a finite field Fq, the fake degree f Uλ

(q)
becomes the usual degree of Steinberg’s unipotent

GLn(Fq)-representation Uλ(q).

Similar statements hold for other simple algebraic groups G

over Fq beside GLn(Fq).
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f U(q) is meaningful at roots-of-unity

Here is a reformulation of Springer’s isomorphism

S/(SW
+ ) ∼=W×C C[W ]. Pick c a regular element in complex

reflection group W , with ζ in C
× its eigenvalue on v in V

avoiding the reflecting hyperplanes, so c(v) = ζ · v .

Theorem

In this setting, the character value (trace) of the regular element

c acting in any complex W-representation U is the evaluation of

the fake-degree at q = ζ:

χU(c) =
[

f U(q)
]

q=ζ
.

E.g. this interprets f Uλ

(ζ) at nth and (n − 1)st -roots-of-unity ζ.
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