

Vic Reiner University of Minnesota

Summer School in Algebraic Combinatorics Kraków 2022

Lecture	Invitation to q-counts
1:	& representation theory
Monday	- quotients of Bodean algebras
2:	Representation theory review
Tuesday	& reflection groups
3:	Molien's Theorem
Thursday	& coinvariant algebras
4: Thursday	Ayclic Siewing Phenomena (CSP) & Springer's Theorem see ECCO 2018 lecture notes
5:	More CSP's
Friday	& the deformation idea

TODAY'S GOAL: Discover how to add in a "?" into the regular representation CG for a finite reflection group G, by mucking around with graded traces on polynomial rings $C[x_1,...,x_n] = Sym(V)$ symmetric algebra where $V = \mathbb{C}^n$ has \mathbb{C} -basis X1, ---, Kn

Let's examine behavior of characters under multilinear constructions applied to group representations ...

1. Direct sum
We've noted (and used) that if

$$\mathcal{P} = \mathcal{P}_1 \oplus \mathcal{P}_2$$
 so $\mathcal{P}(g) = \bigvee_1 \left[\begin{array}{c} \mathcal{P}_1(g) & \mathcal{O} \\ \mathcal{V}_2 & \mathcal{V}_2 \end{array} \right]$
on $\mathcal{V} = \mathcal{V}_1 \oplus \mathcal{V}_2$

then
$$\chi_{p_1 \oplus p_2} = \chi_{p_1} + \chi_{p_2}$$

(since Trace
$$\begin{bmatrix} A_1(0) \\ O \mid A_2 \end{bmatrix}$$
 = Trace (A_1) + Trace (A_2))

2. Tensor product
Given G-representations
$$G \xrightarrow{\rho} GL(V)$$

 $G \xrightarrow{\rho} GL(V')$
one can also define
 $G \xrightarrow{\rho \otimes \rho'} GL(V \otimes V')$
where $\rho \otimes \rho'(g) (v \otimes v') \coloneqq \rho(g)(v) \otimes \rho'(g)(v')$

Not hard to check the matrix for
$$(p \otimes p')(g)$$

is the tensor/Kronecker product
of matrices $p(g) \otimes p'(g)$, after
picking (C-bases Vis--, Vn for V
v', ,--, Vn for V
and [Vi&V]i=b-, n for $V \otimes V'$
j=b-, m

Re call tensor / Kronecker product of
matrices
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$
 and B
is $A \otimes B := \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$
with $Trace(A \otimes B) = a_{11} \operatorname{Trace}(B) + a_{22} \operatorname{Trace}(B) + \dots$
 $= \operatorname{Trace}(A) \cdot \operatorname{Trace}(B)$.
Hence $X_{pop'}(g) = \operatorname{Trace}(p \otimes p')(g^{\gamma})$
 $= \operatorname{Trace}(p(g) \otimes p'(g^{\gamma}))$
 $= \operatorname{Trace}(p(g)) \cdot \operatorname{Trace}(p'(g^{\gamma}))$
 $= \operatorname{Trace}(p(g)) \cdot \operatorname{Trace}(p'(g^{\gamma}))$
 $= X_p(g) \cdot X_p(g)$

3. dth tensor power
Given a G-representation G L, GL(V)
we saw
$$T^{d}(V) := V^{\otimes d} = V \otimes \dots \otimes V$$

d factors
also has one where G acts diagonally:
 $G \xrightarrow{T^{d}(p)} GL(V^{\otimes d})$ with
 $T^{d}(p)(g)(v_{1} \otimes v_{2} \otimes \dots \otimes v_{d})$
 $:= p(g)(v_{1}) \otimes \dots \otimes p(g)(v_{d})$

(an check similarly that

$$\chi_{(g)} = \chi_{(g)} \cdot \chi_{p(g)} \cdots \chi_{p(g)}$$

 $= \chi_{(g)}^{d}$

5. Symmetric algebra
Picking a C-basis
$$x_{i_3} - x_i$$
 to V_3
one con view the (commutative) polynomial ring
 $C[x_{i_3} - x_n] = \bigoplus C[x]_d$
 $d=0$ homogeneous degree d
polynomials
as the symmetric algebra
 $Sym(V) = \bigoplus Sym^d(V)$
 $d=0$ def symmetric paver
 $\left[:= T(V) \int_{spans} v_i \otimes \dots \otimes V_d \\ formally & -V_{\sigma(i)} \otimes \dots \otimes V_{\sigma(d)} \right]$
 $V d and \sigma \in G_d$
 $in this quotient $V_1 \cdot V_2 \cdot \dots \cdot V_n$$

Given a G-representation $G \xrightarrow{\rho} GL(V)$, one can define one on $\mathbb{C}[\times] \cong Sym(V)$ and each (C(x)] = Sym(V)

via diagonal action as usual:

$$Sym(p)(g)(V_1 \cdot V_2 \cdot ... \cdot V_d)$$

$$:= p(g)(V_1) \cdot p(g)(V_2) \cdot ... \cdot p(g)(V_d)$$

On Sym(V) can we compute the graded character/trace

 $\chi_{\text{Sym}(p)}(g; g) := \sum_{d=0}^{\infty} q^d \cdot \chi_{\text{Sym}(p)}(g)$

A: Yes, and it's interesting.
PROPOSITION: 1
Exercise
$$\chi_{L}(g; g) = det(I_{V} - g; p(g))$$

COROLLARY (Molien 1897)
Given a finite group representation
 $G \xrightarrow{P} GL(V)$ (with $V=C^{n}$)
for any other G-representation 24, one has
 $\sum_{d=0}^{\infty} \langle \chi_{gym}(p) \rangle, \chi_{up} \xrightarrow{P}_{G} \cdot g^{d} = \frac{1}{1G_{1}} \sum_{g \in G} \frac{\chi_{u}(g)}{det(I_{V} - g; p(g))}$

In particular, taking
$$\Psi = 1_G = trivial rep gives$$

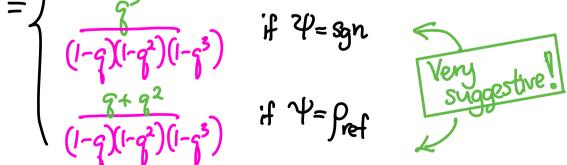
CDROLLARY
Hilb(Sym(V)^{G1}, q) :=
$$\sum_{d=0}^{\infty} q^{d} \cdot dm_{c} Sym(V)^{G1}$$

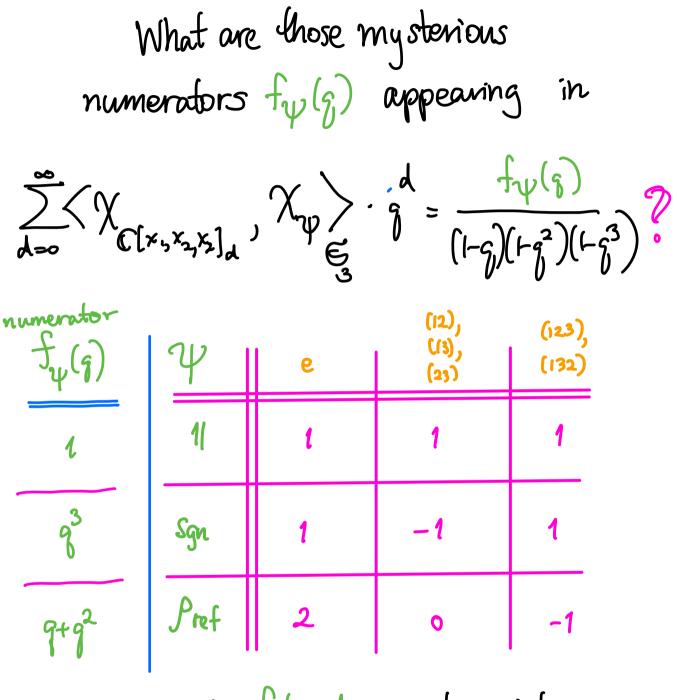
Hilbert series for
Hilbert series for
 $M_{e} G$ -fixed
 $Sym(V)^{G} = \frac{1}{|G|} \sum_{g \in G} \frac{1}{det(T_{v} - q; p(q))}$

 $\begin{array}{c} \mathsf{EXAMPLE} \\ \mathsf{Let} \quad \mathsf{G} = \mathfrak{S}_{3} \quad \overset{\mathsf{Pperm}}{\longrightarrow} \quad \mathsf{GL}_{3}(\mathbb{C}) = \mathsf{GL}(\mathbb{V}) \end{array}$ where $V = C^3$ has C-basis χ_4, χ_2, χ_3 Then $Sym(V) \cong \mathbb{C}[x_1, x_2, x_3]$ with Ez permuting the variables, ⁵⁰ Sym(V)^G = C[x,,x₁, x₃]^{G₃} = Symmetric polynomials in χ_1, χ_2, χ_3 degrees: 1 2 2 $= \mathbb{C}\left[e_{1}, e_{2}, e_{3}\right]$ אודאילא אואי איי FUNDAMENTAL THEOREM OF SYMMETRIC FUNCTIONS elementary symmetric polynomials C[x] = C[e1, e3, -, en]

Q: What does Molien's Theorem actually tell us here ?

Recall Gz has irreducible		e	(12), ((3), (23)	(123), (132)	
character table	1(1	1	1	
	Sgn	1	-1	1	
	Pref	2	0	-1	
and hence Molien gives us $ \int_{d=0}^{\infty} \langle \chi_{g,d}(v)_{3}, \psi_{g} \rangle \cdot q^{d} = \left(\begin{array}{c} \frac{1}{3!} \left[\left(\frac{1}{(1-q)^{3}} + \frac{3(1)}{(1-q^{2})(1-q)} + \frac{2(1)}{(1-q^{3})} \right] \\ \frac{1}{3!} \left[\left(\frac{1}{(1-q)^{3}} + \frac{3(-1)}{(1-q^{2})(1-q)} + \frac{2(1)}{(1-q^{3})} \right] \\ \frac{1}{3!} \left[\left(\frac{1}{(1-q)^{3}} + \frac{3(0)}{(1-q^{2})(1-q)} + \frac{2(1)}{(1-q^{3})} \right] \\ \frac{1}{3!} \left[\left(\frac{2}{(1-q)^{3}} + \frac{3(0)}{(1-q^{2})(1-q)} + \frac{2(1)}{(1-q^{3})} \right] \\ \frac{1}{3!} \left[\left(\frac{2}{(1-q)^{3}} + \frac{3(0)}{(1-q^{2})(1-q)} + \frac{2(1)}{(1-q^{3})} \right] \\ \frac{1}{3!} \psi_{2} \int_{ref} \frac{1}{ref} \left(\frac{1}{ref} \right) + \frac{1}{ref} \int_{ref} \frac{1}{ref} \left(\frac{1}{ref} \right) \left(\frac{1}{ref} \right) \right] $					
$ \int \frac{(1-q)(1-q^2)(1-q^3)}{(1-q^3)} \text{if } \eta $	P= 1 ,	as erp	ected		





A: They are the fake-degree polynomials that come from the reflection action of G3 and the Shephand-Todd/Chevalley Thm.

THEOREM
Siven a finite reflection group
Generalley 1955
acting on
$$Syn(V) \cong C[x_{a},...,x_{n}] = C[\times]$$

basis for V
(a) the G-invariant subalgebra $C[\times]^{G}$ is

again a polynomial algebra
$$C(x)^{-} = C(f_{1}, ..., t_{n})$$

for some homogeneous $f_{1}, f_{2}, ..., f_{n}$
of some degrees $d_{1}, d_{2}, ..., d_{n}$
so that $Hilb(C(x)^{G}, q) = (I-q^{d_{1}})(I-q^{d_{2}})...(I-q^{d_{n}})$

(b) and as 6-representations, $\mathbb{C}[\times]/(f_1, f_2, \dots, f_n) \cong \int \operatorname{Preg}$ regular representation of G Called the coinvariant

COROLLARY: In the above setting of a reflection Gacting on V, for any G-representation Y

$$\sum_{d=0}^{\infty} (\chi_{CL_{2}})_{d}^{3} \chi_{\psi}^{2} g^{d} = Hilb(CL_{2}]_{,j}^{G}) \cdot \sum_{d=0}^{\infty} (\chi_{CL_{2}})_{d}^{2} \chi_{\psi}^{2} g^{d} = \frac{1}{(l-q^{d})(l+q^{d})\cdots(l+q^{d})} \cdot \frac{1}{(l-q^{d})(l+q^{d})\cdots(l+q^{d})} \cdot \frac{1}{(l-q^{d})(l+q^{d})\cdots(l+q^{d})} \cdot \frac{1}{(l-q^{d})(l+q^{d})\cdots(l+q^{d})}$$

$$= \frac{f_{\psi}(q)}{(l-q^{d})(l+q^{d})\cdots(l+q^{d})}$$

EXAMPLE For $G=G_3 \hookrightarrow GL_3(\mathbb{C})$ what does the convariant algebra look like? $Sym(V) = \mathbb{C}[X_1, X_2, X_3]$ $Sym(V)^{G} = C[x_{1}, x_{2}, x_{3}] = C[e_{1}, e_{2}, e_{3}]$ X1+X2+13 X1 72 7×23 So the coinvariant algebra is X use X1+X, +X3=D V to substitute X3=-X1-X2 $\cong \mathbb{C}[x_{1}, x_{2}]/(x_{1}x_{2} - x_{1}^{2} - x_{1}x_{2} - x_{2}^{2} - x_{1}x_{2}) - x_{1}^{2}x_{2} - x_{1}x_{2}^{2})$ $= \mathbb{C}[x_{1}, x_{2}]/(x_{1}^{2} + x_{1}x_{2} + x_{2}^{2}, x_{1}^{2}x_{2} + x_{1}x_{2}^{2})$ $= \operatorname{span}_{C} \left\{ 1, \chi_{1}, \chi_{2}, \chi_{1}^{2}, \chi_{2}^{2}, \chi_{1}^{2} \right\}$ 11 $\int \operatorname{Pref} \operatorname{Pref} \operatorname{Pref} \operatorname{Sgn}$ $f_{1|}(q)=1$ $f_{p_{ref}}(q)=q^{1}+q^{2}$ $f_{sgn}(q)=q^{3}$ $f_{1|}(q)=q^{2}$ $f_{sgn}(q)=q^{3}$ Gz-rep:

REMARK:
A recent paper of Sagan & Swanson
(arXiv: 2205.14078)
conjectures the Hilbert series for the
convariant algebra when
$$G_h$$
 acts on
 $A := C[x: -, x_n](Q_{3, -}, Q_n) \cong Sym(V) \otimes \mathcal{N}(V)$
 $Commuting anticommuting
 $Vanishes O_i = -0; O_i$
 $O_i = -0$$