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On work by M. Wachs published by others?

From “Spectra of symmetrized shuffling operators”
with F. Saliola and V. Welker:

No, let’s talk instead about why her recent work is on the right
q-Narayana numbers!
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Bell, Stirling, and unnamed numbers

Definition
Set partitions of {1,2, . . . ,n} are counted

in total by Bell numbers B(n),
via number of blocks by Stirling numbers S(n, k),
via block size partition λ by unnamed numbers (?).

They have recurrences and generating functions,
but lack product formulas.
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Bell, Stirling, and unnamed numbers

B(4) = 15

S(4, 1) = 1 λ = (4) : 1 1 2 3 4

S(4, 2) = 7 λ = (22) : 3 1 2 3 4 1 2 3 4 1 2 3 4

λ = (31) : 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

S(4, 3) = 6 λ = (212) : 6 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

S(4, 1) = 1 λ = (14) : 1 1 2 3 4

V. Reiner and E. Sommers q-Narayana, q-Kreweras for Weyl groups



The numbers
The q-numbers

Properties
Where do they come from ?

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

The spoilsports ...
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Catalan, Narayana, and Kreweras numbers

Definition
The noncrossing or nonnesting set partitions are counted

in total by Catalan numbers Cat(n),
via number of blocks by Narayana N(n, k) numbers,
via block size partition λ by Kreweras numbers Krew(λ).

They’re better, IMHO.
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Definition

Cat(n) :=
1

n + 1

(
2n
n

)

N(n, k) :=
1
k

(
n − 1
k − 1

)(
n

k − 1

)

Krew(λ) :=
1

n + 1

(
n + 1

µ1, . . . , µn

)
if λ = 1µ12µ23µ3 · · · partitions n.

Convention :

(
N

µ1, . . . , µn

)
:=

N!

µ1! · · ·µn!(N −∑i µi)!
if
∑

i

µi≤N.
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Kreweras sum to Narayana, which sum to Catalan

As one would expect, one can check these from the formulas:

Proposition

Cat(n) =
n∑

k=1

N(n, k),

N(n, k) =
∑

partitions
λ of n:
`(λ)=k

Krew(λ)

where `(λ) =
∑

i µi is the length or number of parts of λ.
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Definition
The d-dimensional associahedron is a simple polytope with
(n + 3)-gon triangulations as vertices, diagonal flips as edges.

The f -vector encodes its number of
(vertices,edges,2-faces,3-faces):

(f0, f1, f2, f3) = (14,21,9,1)
(h0,h1,h2,h3) = (1,6,6,1)
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

The h-vector to f -vector transformation

Definition
For P a d-dimensional simple polytope with fi faces of
dimension i , one can define the h-vector (h0, . . . ,hd ) via

d∑

i=0

fi t i =
d∑

i=0

hi(1 + t)i

d∑

i=0

fi(t − 1)i =
d∑

i=0

hi t i
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Theorem (C. Lee 1989)
The Narayana numbers give the h-vector of the associahedron.

Example
The 3-dimensional associahedra has

(f0, f1, f2, f3) = (14,21,9,1)

(h0,h1,h2,h3) = (1,6,6,1)

14 + 21t + 9t2 + 1t3 = 1 + 6(1 + t) + 6(1 + t)2 + 1(1 + t)3.

V. Reiner and E. Sommers q-Narayana, q-Kreweras for Weyl groups



The numbers
The q-numbers

Properties
Where do they come from ?

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Quick review of W -noncrossing, nonnesting

Let W ⊂ GL`(R) be an irreducible finite reflection group.

Definition (Bessis, Brady-Watt, early 2000’s)
The W -noncrossing partitions are

NC(W ) := [e, c]abs

Definition (Postnikov, mid-1990s)
The W -nonnesting partitions are

NN(W ) := Antichains(Φ+)
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The numbers in type A
Narayana numbers as h-vector
The definitions in all types

W -Catalan counts W -noncrossing, nonnesting

Theorem

|NC(W )| = |NN(W )| = Cat(W ) :=
∏̀

i=1

ei + h + 1
ei + 1

where (e1, . . . ,e`) are the exponents of the reflection
hyperplane arrangement for W, and h = max{ei + 1} is the
Coxeter number, the order of any Coxeter element c = s1 · · · s`
if the Coxeter system (W ,S) has S = {s1, . . . , s`}.

V. Reiner and E. Sommers q-Narayana, q-Kreweras for Weyl groups



The numbers
The q-numbers

Properties
Where do they come from ?

The numbers in type A
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Cat(W ) in type A

Example

Type An−1 has W = Sn acting on {x ∈ Rn :
∑

i xi = 0}.
One can choose S = {s1, . . . , sn−1} where si = (i , i + 1).

The exponents are (1,2, . . . ,n − 1).

A choice of Coxeter element is c = s1 · · · sn−1 = (1,2, . . . ,n),
an n-cycle, having order h = n = max{2,3, . . . ,n}.

Cat(An−1) =
∏̀

i=1

h + ei + 1
ei + 1

=
(n + 2) · (n + 3) · · · (n + n)

2 · 3 · · · n =
1

n + 1

(
2n
n

)
.
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W -Narayana, Kreweras

To elements of NC(W ) or NN(W ) one associates a hyperplane
intersection subspace X , or parabolic subgroup WX , having

a rank (= codimension of X ),
a W -orbit [X ], or W -conjugacy class for WX .

Definition
The W -Narayana numbers N(W , k) count the elements of
NC(W ) or NN(W ) having a X of a fixed rank k .

They give the h-vector of the W -cluster complex or
W -associahedron of Fomin-Zelevinsky 2003.

Definition
The W -Kreweras numbers Krew(W , [X ]) count the elements of
either NC(W ) or NN(W ) with a fixed W -orbit [X ].
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The definitions in all types

Orlik-Solomon exponents give a product formula

Theorem (Broer, Douglass, Sommers, late 1990s)

Krew(W , [X ]) has a product formula:

Krew(W , [X ]) =
1

[NW (WX ) : WX ]

∏̀

i=1

(h + 1− eX
i )

where (eX
1 , . . . ,e

X
` ) are the Orlik-Solomon exponents of the

reflection arrangement of W restricted to X.
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The numbers in type A
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The definitions in all types

Fuss and rational generalization

Definition
Say m is very good for Φ if m is odd in types B,C,D, and if
gcd(m,h) = 1 in all other types, in which case define

Cat(W ,m) :=
∏̀

i=1

ei + m
ei + 1

Krew(W , [X ],m) :=
1

[NW (WX ) : WX ]

∏̀

i=1

(m − eX
i )

This captures the
rational Catalan case gcd(m,n) = 1 in type An−1,
W-Fuss-Catalan case m = sh + 1 in any type,
and in particular, the usual W-Catalan case is m = h + 1
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q-Catalans
q-Kreweras, q-Narayana
Nilpotent orbits

No problem q-ifying the W -Catalan

Definition

Cat(W ,q) :=
∏̀

i=1

[h + ei + 1]q
[ei + 1]q

where [n]q := 1 + q + q2 + · · ·+ qn−1.

It’s not silly, e.g., it satisfies a cyclic sieving phenomenon.

Theorem (Bessis-R. 2007)

For ζ a primitive hth root of unity,

Cat(W ,q = ζd )

counts elements of NC(W ) = [e, c]abs fixed conjugating by cd .
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q-Catalans
q-Kreweras, q-Narayana
Nilpotent orbits

And same for q-ifying Cat(W ,m)

Theorem

When m is very good, Cat(W ,m; q) :=
∏`

i=1
[ei +m]q
[ei +1]q

lies in N[q].

Very sketchy proof.
m is very good if and only if this formula

χ(w) :=
det(1− qmw)

det(1− qw)

is a genuine graded W -character: the m-Parking space S/(θ),
where S = C[x1, . . . , x`] and θ = (θ1, . . . , θ`) is an hsop of
degree m whose span carries the reflection rep’n V .
Cat(W ,m; q) is its W -fixed space (S/(θ))W Hilbert series.
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where S = C[x1, . . . , x`] and θ = (θ1, . . . , θ`) is an hsop of
degree m whose span carries the reflection rep’n V .

Cat(W ,m; q) is its W -fixed space (S/(θ))W Hilbert series.
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An−1 q-Narayanas in Wachs’ IMA talk 11/12/2014 ...

N(An−1, j ,q) :=
qj(j+1)

[n]q

[
n
j

]

q

[
n

j + 1

]

q

q-Narayana polynomials

The Narayana numbers have a closed form formula

Nn(t) =
n−1∑

j=0

1

n

(
n

j

)(
n

j + 1

)
t j .

Recall that the Narayana numbers refine the Catalan numbers

Nn(1) = Cn.

The Fürlinger-Hofbauer q-Narayana polynomials are defined by

Nn(q, t) :=
n−1∑

j=0

qj(j+1) 1

[n]q

[
n
j

]

q

[
n

j + 1

]

q

t j .

Fürlinger and Hofbauer (1985) (or MacMahon) showed that

Nn(q, 1) = Cn(q) :=
1

[n + 1]q

[
2n
n

]

q

.
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... and type B q-Narayanas came later in her talk ...

N(Bn, j ,q) := (q2)j2
[
n
j

]

q2

[
n
j

]

q2

Super q-Narayana polynomials (Krattenthaler and MW)

For n ≥ s, define the super q-Narayana polynomials

N(s)
n (q, t) :=

[
2s
s

]

q

n−s∑

j=0

qj(j+1)

[
n
s

]−1

q

[
n
j

]

q

[
n

j + s

]

q

t j .

Note N
(1)
n (q, t) = (1 + q)Nn(q, t).

N
(0)
n (1, t) is the type B Narayana polynomial.

Gessel proved N
(s)
n (1, t) ∈ N[t] by deriving a γ-positivity formula.
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Several questions arise

Question
Are there q-Kreweras polynomials of types A,B,C,D?
All types? Do they sum to Cat(W ,q)?
In types A,B do they sum to the above q-Narayanas?

Do they exhibit a cyclic sieving phenomenon?
Do they give some q-analogue of the h- to f -vector map?

Answer
Sommers’ work answers yes to 1st question for Weyl groups,
if we associate a q-Kreweras number to each nilpotent orbit.

Actually, yes to all above, but we don’t understand it uniformly!
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What parametrizes a q-Kreweras number?

We won’t just get a q-Kreweras number for each W -orbit [X ] of
intersection subspace. Instead we will get

Krew(e,m,q)

for each ...
Weyl group W , with a root system Φ, and
a nilpotent orbit e in its Lie algebra g, and
a positive integer m which is very good for Φ.
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Type A nilpotent orbits

In type An−1, G = SLn(C) conjugates g = sln(C) = Cn×n, and
nilpotent orbits are represented by Jordan canonical forms,
parametrized by partitions λ of n.

Example

In sl8(C), the partition λ = 3221 corresponds to the SL8(C)-orbit of



0 1 0
0 1

0
0 1

0
0 1

0
0
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Type A q-Kreweras formula

In type An−1, very good for m means gcd(m,n) = 1.

Theorem
For partitions λ = 1µ12µ23µ3 · · · of n with gcd(m,n) = 1,

Krew(eλ,m; q) = qm(n−`(λ))−c(λ) 1
[m]q

[
m

µ1, . . . , µn

]

q
.

where

c(λ) :=
∑

j

λ′jλ
′
j+1, with λ′ the transpose partition to λ

[
m
µ

]

q
:=

[m]!q

[µ1]!q · · · [µ`]!q[m −∑i µi ]!q
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Types B/C/D

Φ g Condition on λ = 1µ12µ23µ2 . . .
parametrizing nilpotent orbits

Bn so2n+1 |λ| = 2n + 1, and µj even for j even

Cn sp2n |λ| = 2n, and µj even for j odd

Dn so2n |λ| = 2n, and µj even for j even

A slight lie in type Dn : these are O2n orbits on so2n , not SO2n-orbits, leading to an extra factor of 2 in some formulas.
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Type B, C q-Kreweras formulas– the gestalt picture

Introduce notations

N̂ := bN/2c,
µ̂ := (bµ1/2c, bµ2/2c, . . .) if µ = (µ1, µ2, . . .).

Theorem
For λ = 1µ12µ23µ3 . . . a type Bn or type Cn partition, and m odd,

Krew(eλ,m; q) = qexp(λ,m)+ε

[
m̂ − L̂(λ)

µ̂

]

q2

·
L̂(λ)∏

i=1

(qm−2i+1 − 1)
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What was that power qexp(λ,m)+ε in front?

ε :=





1
4 in type Bn,

0 in type Cn for `(λ) even,
1
4 −

`(λ)
2 in type Cn for `(λ) odd.

and

exp(λ,m) := m(n − ˆ̀(λ))− c(λ)

2
+ τ(λ)− L(λ)

4

with
L(λ) := |{i : µi odd}|

τ(λ) :=
1
2

∑

j 6≡|λ| mod 2
µj even

µj
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Type D q-Kreweras formulas

Here µ1 plays a special role. Define µ≥2 := (µ2, µ3, . . .).

Theorem
For m odd and λ a type Dn partition,
Krew(eλ,m; q) is qexp(λ,m) times these:


qm− `(λ)
2 +1

[
m̂ − (L̂(λ)− 1)

µ̂

]
q2
·

L̂(λ)−1∏
i=1

(qm−2i+1 − 1) if µ1 odd,

q
`(λ)

2 −µ1(λ)

[
m̂ − L̂(λ)

µ̂≥2

]
q2

[
m̂ + 1− L̂(λ)− |µ̂≥2|

µ̂1

]
q2
·

L̂(λ)∏
i=1

(qm−2i+1 − 1) if µ1 even, some µj odd,

q
`(λ)

2 −τ(λ)

[
m̂
µ̂

]
q2

+ q
`(λ)

2 −µ1

[
m̂
µ̂≥2

]
q2

[
m̂ + 1− |µ̂≥2|

µ̂1

]
q2

if µj all even.

(Thanks, Ted Cruz!)
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Defining the q-Narayana numbers in general

Later we define a mysterious statistic κ(e) on nilpotent orbits e.

Example

Φ κ(eλ)

An−1 `(λ)

Bn/Cn ˆ̀(λ)

Dn

{
ˆ̀(λ) if µ1 is even,
ˆ̀(λ)− 1 if µ1 is odd.

Definition
Given m very good for Φ and 0 ≤ k ≤ `, define

Nar(Φ,m, k ; q) :=
∑

e:κ(e)=k

Krew(e,m; q).
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Type A,B,C q-Narayanas

Theorem

The q-Narayana numbers in types A,B/C are ...
Φ Nar(Φ,m, k ; q)

An−1 q(n−1−k)(m−1−k) 1
[k + 1]q

[
n − 1

k

]

q

[
m − 1

k

]

q

Bn/Cn (q2)(n−k)(m̂−k)

[
n
k

]

q2

[
m̂
k

]

q2

Its not hard to see that they lie in N[q].

At m = h + 1 they give the q-Narayanas used by Wachs.

Question
Even at q = 1, do they relate to work of Friedman-Stanley?
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But who are the type D q-Narayana’s?

The type D q-Narayana numbers are q-analogues of these:

[Nar(Dn,m, k ; q)]q=1 =

(
m̂
k

)(
n
k

)
+

(
m̂ + 1

k

)(
n − 2
k − 2

)

We only know simple formulas (not sums) for Nar(Dn,m, k ; q)
when k = 0,1,n − 1,n.

The formulas are consistent with this:

Conjecture

If m is very good for Φ, then Nar(Φ,m, k ; q) lies in N[q].

Problem
Find simple formulas for all Nar(Dn,m, k ; q) making this clear.
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Regular-in-a-Levi nilpotent orbits

Various divisibility and evaluation properties of the q-Kreweras
numbers relate to a special subclass of nilpotent orbits.

Definition
For a W -orbit [X ] of intersection subspaces X , let eX be the
G-orbit in g of the principal nilpotent in the Levi subalgebra gX

W -conjugacy classes of
parabolic subgroups

l
W -orbits of ↪→ nilpotent

intersection subspaces G-orbits in g

[X ] 7→ eX
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All nilpotent orbits in type A are principal-in-Levi

Type A5
g = sl6
W = S6

6

51

42

411 33

321

222 3111

2211

21111

111111

eλ ↔ Sλ1 × Sλ2 × · · ·
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Type B/C principal-in-Levi means at most one µi odd

Type C3
g = sp6
W = B3

6

42

411 33

222

2211

21111

111111

V. Reiner and E. Sommers q-Narayana, q-Kreweras for Weyl groups



The numbers
The q-numbers

Properties
Where do they come from ?

Principal-in-Levi orbits
Evaluations
The q-analogue of h-vector to f -vector

Their corresponding paraboblic subgroups WX ≤ B3

6 = B3

42

411 = S1 × B2 33 = S3

222 = S2 × B1

2211 = S2 × S1

21111 = S1 × S1 × B1

111111 = S1 × S1 × S1
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Evaluating q-Kreweras, q-Narayanas at q = 1

Theorem
Let m be very good for Φ.
For eX principal-in-a-Levi, Krew(Φ,e,m; q) lies in N[q],

has symmetric coefficients, and

[Krew(Φ,eX ,m; q)]q=1 = Krew(W , [X ],m)

Also κ(eX ) = dim(X ) when eX is principal-in-Levi, implying this:

Corollary

[Nar(Φ,m, k ; q)]q=1 =
∑

[X ]:dim(X)=k

Krew(W , [X ],m)

= Nar(W ,m, k).
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What about the not principal-in-Levi’s at q = 1?

Theorem
Let m be very good for Φ.
For e not principal-in-a-Levi,

Krew(Φ,e,m; q) vanishes at q = 1, and
is furthermore divisible by qm−1 − 1.

Question

What do (m − 1)st root-of-unity evaluations, besides q = 1,
mean for Krew(Φ,eX ,m; q) when eX is principal-in-Levi?
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A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.

Definition (Armstrong 2006)

The W -generalization of s-divisible noncrossing partitions is

NC(s)(W ) := {s-multichainsw1 ≤ · · · ≤ ws in NC(W )} .

A cyclic group 〈c〉 ∼= Z/(m − 1)Z naturally acts on NC(s)(W ).

Conjecture

Let m = sh + 1 and ζ := e
2πi

m−1 . When eX is in principal-in-Levi,

[Krew(Φ,eX ,m; q)]q=ζd

counts elements of NC(s)(W ) with V w1 in [X ], fixed by cd .
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At least in all the classical types

Theorem
The CSP conjecture holds in classical types A,B,C,D:
for eX principal-in-Levi, [Krew(Φ,eX ,m; q)]q=ζd counts the
elements of NC(s)(W ) having V w1 in [X ] that are fixed by cd .

Proof.

Bad: compare the q = ζd evaluation to known counts.
(Thanks, Jang-Soo Kim!)

In type A, it was (pretty much) known; types B,C,D are new.

In type D, the case structure is very intricate, a testament to the
“correctness” of the formulas for the q-Kreweras!
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What’s the q-analogue of the f -vector?

Finite cluster complexes do have a q-analogue of the f -vector.

Recall when m is very good for Φ, graded W -rep’n S/(θ) has

Cat(W ,m) = dimC (S/(θ))W = 〈∧0V ,S/(θ)〉
Cat(W ,m,q) = Hilb

(
(S/(θ))W ,q

)
=
∑

i〈∧0V ,S/(θ)i〉qi .

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type Φ has fk = fk (W ,h + 1) where

fk (W ,m) = 〈∧kV ,S/(θ)〉 = multiplicity of ∧k V in S/(θ).

Definition

fk (W ,m; q) :=
∑

i

〈∧kV ,S/(θ)i〉qi
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The q-analogue of f -vectors in classical types

In types A,B/C,D, Gyoja, Nishiyama, Shimura 1999 give
fk (W ,m; q) for m very good, not just m = h + 1.

Φ fk (W ,m; q)

An−1 q(k+1
2 ) 1

[m]q

[
n − 1

k

]
q

[
m + n − k − 1

n

]
q

Bn/Cn qk2
[
m̂
k

]
q2

[
m̂ + n − k

m̂

]
q2

Dn qk2
[
m̂
k

]
q2

[
m̂ + n − k

m̂

]
q2

+ qn−2k+k2
[
m̂ + 1

k

]
q2

[
m̂ + n − k − 1

m̂ − 1

]
q2
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A q-analogue of h-to-f -vector

Thus the usual cluster complex h-to-f -vector identity would be
∑

k

fk (W ,h + 1)tk =
∑

k

Nar(W ,h + 1, k) (1 + t)k

Theorem

∑

k

fk (An−1,m; q)tk =
∑

k

Nar(An−1,m, k ; q) (−tq; q)k ,

∑

k

fk (Bn/Cn,m; q)tk =
∑

k

Nar(Bn/Cn,m, k ; q)(−tq; q2)k .

where (x ; q)k = (1− x)(1− qx) · · · (1− qk−1x),
so that (−tq; qr )k is a q-analogue of (1 + t)k .
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A q-analogue of h-to-f -vector

The previous type A,B/C identities are both
special cases of a 2φ1-transformation of Jackson:

2φ1

[
q−N b
− c

∣∣∣∣q, z
]

=
(c/b; q)N

(c; q)N
3φ2

[
q−N b bzq−N/c
− bq1−N/c 0

∣∣∣∣q,q
]

(Thanks, Dennis Stanton!)
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A q-analogue of h-to-f -vector

However, they are also both instances of the following.

Theorem
When m is very good for Φ,

∑̀

k=0

fk (Φ,m, k ; q)tk =
∑̀

k=0

Somethingk (q, t)

for a fairly explicit product Something(W ,m, k ; q, t),

equal to ...
Nar(Φ,m, k)(1 + t)k when evaluated at q = 1 for any Φ,
Nar(An−1,m, k ; q)(−tq; q)k for Φ = An−1,
Nar(Bn/Cn,m, k ; q)(−tq; q2)k for Φ = Bn/Cn.
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Remember Springer fibers?

Consider the nilcone

O := {all nilpotent elements e in g}
which is a singular variety inside g.

T. Springer’s desingularized it using the flag manifold

G/B ∼= B = {all Borel subalgebras b in g}
by creating this space

Õ := {(e, b) ∈ O ×G/B : [e, b] ⊂ b}.
with its two coordinate projection maps:

Õπ1
ww

π2

''O B
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The boring fiber shows it’s smooth

Õπ1
ww

π2

''O B
The projection π2 has as typical fiber an affine space

π−1
2 (b+) =

⊕

α∈Φ+

gα ∼= C|Φ+|

Corollary

The total space Õ is smooth.

Proof.
The base B = G/B is smooth, the fiber is affine.
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The Springer fiber is interesting

The Springer fibers are the fibers of the other projection π1:

Be := π−1
1 (e) = {b ∈ G/B : [e, b] ⊂ b]

Their cohomology H∗(Be) has an interesting graded W -action.

Example

In type A, the ring H∗(Beµ), sometimes called Rµ, has its
graded Sn-Frobenius characteristic given by the modified
Hall-Littewood symmetric function qn(µ)Hµ(x; q−1).
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Shoji’s recursion

Shoji 1982 gave an identity that recursively determines the
graded W -characters H∗(Be). Its coefficients involve

cardinalities of nilpotent orbits e for an Fq-version GF of G,

for each e, a sum over a finite group

A(e) := ZG(e)/Z 0
G(e)

called the component group of ZG(e),
which acts on Be, and commutes with W acting on H∗(Be).

This lets one refine the graded W -representations

H∗(Be) =
⊕

φ

H∗(Be)φ

into A(e)-isotypic components for A(e)-irreducibles φ.
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Sommers’s reformulation: the rough idea

Sommers recast Shoji’s recursion in terms of W -irreducibles χ:

H∗(B)⊗ χ =
∑

e

∑

φ

α(e, φ, χ, q)H∗(Be)φ. (1)

One can restate the graded character formula for m very good,
χS/(θ)(w ; q) = det(1− qmw)/det(1− qw),

as saying S/(θ) =
∑̀

k=0

(−qm)kS ⊗ ∧kV .

Then using H∗(B) ∼= S/(SW
+ ), and (1) at χ = ∧kV , summed

over k = 0,1, . . . , `, Sommers proved a key result...
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How to define q-Kreweras using Sommers’s result

Theorem (Sommers 2011)

S/(θ) =
∑

e

∑

φ

f (e, φ,m; q)H∗(Be)φ.

This was the starting point for everything, such as ...

Definition

Krew(Φ,e,m; q) := f (e,1A(e),m; q)

For example, it immediately implies

Cat(W ,m; q) =
∑

e

Krew(Φ,e,m; q)

since the W -rep 1W appears only in H0(B,e) = H0(B,e)1A(e) .
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How to define the q-Narayana statistic κ(e)

Recall there was a mysterious statistic κ(e) used in defining

Nar(Φ,m, k ; q) :=
∑

e:κ(e)=k

Krew(Φ,e,m; q)

Definition
κ(e) := 〈V ,H∗(Be)〉, the multiplicity of V in H∗(Be).

This definition works extremely well, as
κ(e) = dim(X ) when e = eX is principal-in-a-Levi,
for almost all nilpotent orbits e, knowing within H∗(Be)
where V occurs (degrees, A(e)-isotypic components)
determines via a simple product formula where all other
∧kV occur, by another result of Sommers 2011.
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Krew(Φ,e,m; q)

Definition
κ(e) := 〈V ,H∗(Be)〉, the multiplicity of V in H∗(Be).

This definition works extremely well, as
κ(e) = dim(X ) when e = eX is principal-in-a-Levi,

for almost all nilpotent orbits e, knowing within H∗(Be)
where V occurs (degrees, A(e)-isotypic components)
determines via a simple product formula where all other
∧kV occur, by another result of Sommers 2011.
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Other properties of the f (e, φ,m;q)

They lie in Z[q].

At q = 1, they vanish unless e = eX is principal-in-Levi, in
which case for every φ they have value Krew(W , [X ],m).
They can be computed via cardinalities of nilpotent orbits
over Fq, together with (available!) info about the
W -representations H∗(B,e).
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Thanks

Thanks for listening,

and thank you, Michelle, for
having taught us so much!
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