q-Narayana and q-Kreweras numbers for Weyl groups

Victor Reiner (Univ. of Minnesota)
Eric Sommers (U. Mass- Amherst)

The mathematics of Michelle Wachs January 8, 2015

The 4 basic food groups in my grad school math diet

In alphabetical order:

The 4 basic food groups in my grad school math diet

In alphabetical order:

- Björner

The 4 basic food groups in my grad school math diet

In alphabetical order:

- Björner
- Garsia

The 4 basic food groups in my grad school math diet

In alphabetical order:

- Björner
- Garsia
- Stanley

The 4 basic food groups in my grad school math diet

In alphabetical order:

- Björner
- Garsia
- Stanley
- Wachs

On work by M. Wachs published by others?

From "Spectra of symmetrized shuffling operators" with F. Saliola and V. Welker:

7. Acknowledgements

The first author thanks Michelle Wachs for several enlightening e-mail conversations in 2002 regarding the random-to-top, random-to-random shuffling operators, and for her permission to include the results of some of these conversations here.

On work by M. Wachs published by others?

From "Spectra of symmetrized shuffling operators" with F. Saliola and V. Welker:

7. Acknowledgements

The first author thanks Michelle Wachs for several enlightening e-mail conversations in 2002 regarding the random-to-top, random-to-random shuffling operators, and for her permission to include the results of some of these conversations here.

No, let's talk instead about why her recent work is on the right q-Narayana numbers!

Some directions of Catalan generalization

arbitrary q, t
$\stackrel{\uparrow}{\text { arbitrary } q \text {, }}$
but
$t=q^{-1}$
\uparrow
Type A
$\mathrm{q}=1$
Classical
types
A, B, C, D

Where we're headed

arbitrary q, t
$\stackrel{\uparrow}{\text { arbitrary } q \text {, }}$ Our but -------> goal $t=q^{-1}$ today

Type A
Classical $\mathrm{q}=1$ $\underset{\text { B, C, D }}{\text { types }} \rightarrow$ groups
groups with

B, C, D

Outline

(1) The numbers

- The numbers in type A
- Narayana numbers as h-vector
- The definitions in all types

Outline

(1) The numbers

- The numbers in type A
- Narayana numbers as h-vector
- The definitions in all types
(2) The q-numbers
- q-Catalans
- q-Kreweras, q-Narayana
- Nilpotent orbits

Outline

(1) The numbers

- The numbers in type A
- Narayana numbers as h-vector
- The definitions in all types
(2) The q-numbers
- q-Catalans
- q-Kreweras, q-Narayana
- Nilpotent orbits
(3) Properties
- Principal-in-Levi orbits
- Evaluations
- The q-analogue of h-vector to f-vector

Outline

(1) The numbers

- The numbers in type A
- Narayana numbers as h-vector
- The definitions in all types
(2) The q-numbers
- q-Catalans
- q-Kreweras, q-Narayana
- Nilpotent orbits
(3) Properties
- Principal-in-Levi orbits
- Evaluations
- The q-analogue of h-vector to f-vector

4. Where do they come from?

- Springer fibers
- A recursion of Shoji

Bell, Stirling, and unnamed numbers

Definition

Set partitions of $\{1,2, \ldots, n\}$ are counted

- in total by Bell numbers $B(n)$,
- via number of blocks by Stirling numbers $S(n, k)$,
- via block size partition λ by unnamed numbers (?).

They have recurrences and generating functions, but lack product formulas.

The numbers
The q-numbers
Properties
Where do they come from ?

The numbers in type A
Narayana numbers as h -vector
The definitions in all types

Bell, Stirling, and unnamed numbers

The numbers

The q-numbers
Properties
Where do they come from?

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

The spoilsports

Catalan, Narayana, and Kreweras numbers

Definition

The noncrossing or nonnesting set partitions are counted

- in total by Catalan numbers $\operatorname{Cat}(n)$,
- via number of blocks by Narayana $N(n, k)$ numbers,
- via block size partition λ by Kreweras numbers $\operatorname{Krew}(\lambda)$.

Catalan, Narayana, and Kreweras numbers

Definition

The noncrossing or nonnesting set partitions are counted

- in total by Catalan numbers Cat(n),
- via number of blocks by Narayana $N(n, k)$ numbers,
- via block size partition λ by Kreweras numbers $\operatorname{Krew}(\lambda)$.

They're better, IMHO.

The numbers

The q-numbers
Properties
Where do they come from ?

The numbers in type A
Narayana numbers as h -vector
The definitions in all types

Cat, Nar, Krew counting noncrossings

The numbers

The q-numbers
Properties
Where do they come from ?

The numbers in type A
Narayana numbers as h -vector
The definitions in all types

Cat, Nar, Krew counting nonnestings

The numbers
The q-numbers
Properties
Where do they come from ?

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Definition

$$
\begin{aligned}
\operatorname{Cat}(n) & :=\frac{1}{n+1}\binom{2 n}{n} \\
N(n, k) & :=\frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1} \\
\operatorname{Krew}(\lambda) & :=\frac{1}{n+1}\binom{n+1}{\mu_{1}, \ldots, \mu_{n}} \text { if } \lambda=1^{\mu_{1}} 2^{\mu_{2}} 3^{\mu_{3}} \cdots \text { partitions } n .
\end{aligned}
$$

The numbers
The q-numbers
Properties
Where do they come from ?

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Definition

$$
\begin{aligned}
\operatorname{Cat}(n) & :=\frac{1}{n+1}\binom{2 n}{n} \\
N(n, k) & :=\frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1} \\
\operatorname{Krew}(\lambda) & :=\frac{1}{n+1}\binom{n+1}{\mu_{1}, \ldots, \mu_{n}} \text { if } \lambda=1^{\mu_{1}} 2^{\mu_{2}} 3^{\mu_{3}} \ldots \text { partitions } n .
\end{aligned}
$$

Convention : $\binom{N}{\mu_{1}, \ldots, \mu_{n}}:=\frac{N!}{\mu_{1}!\cdots \mu_{n}!\left(N-\sum_{i} \mu_{i}\right)!}$ if $\sum_{i} \mu_{i} \leq N$.

The numbers
The q-numbers
Properties
Where do they come from ?

Kreweras sum to Narayana, which sum to Catalan

As one would expect, one can check these from the formulas:

Proposition

$$
\begin{aligned}
\operatorname{Cat}(n) & =\sum_{k=1}^{n} N(n, k) \\
N(n, k) & =\sum_{\substack{\text { partitions } \\
\lambda \text { of } n: \\
\ell(\lambda)=k}} \operatorname{Krew}(\lambda)
\end{aligned}
$$

where $\ell(\lambda)=\sum_{i} \mu_{i}$ is the length or number of parts of λ.

Narayana numbers as h-vector of the associahedron

Definition

The d-dimensional associahedron is a simple polytope with $(n+3)$-gon triangulations as vertices, diagonal flips as edges.

The f-vector encodes its number of (vertices,edges,2-faces,3-faces):

The numbers
The q-numbers
Properties
Where do they come from ?

Narayana numbers as h-vector of the associahedron

Definition

The d-dimensional associahedron is a simple polytope with $(n+3)$-gon triangulations as vertices, diagonal flips as edges.

The f-vector encodes its number of (vertices,edges,2-faces,3-faces): $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)=(14,21,9,1)$

The numbers
The q-numbers
Properties
Where do they come from ?

Narayana numbers as h-vector of the associahedron

Definition

The d-dimensional associahedron is a simple polytope with $(n+3)$-gon triangulations as vertices, diagonal flips as edges.

The f-vector encodes its number of (vertices,edges,2-faces,3-faces): $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)=(14,21,9,1)$

$$
\left(h_{0}, h_{1}, h_{2}, h_{3}\right)=(1,6,6,1)
$$

The h-vector to f-vector transformation

Definition

For P a d-dimensional simple polytope with f_{i} faces of dimension i, one can define the h-vector $\left(h_{0}, \ldots, h_{d}\right)$ via

$$
\begin{aligned}
\sum_{i=0}^{d} f_{i} t^{i} & =\sum_{i=0}^{d} h_{i}(1+t)^{i} \\
\sum_{i=0}^{d} f_{i}(t-1)^{i} & =\sum_{i=0}^{d} h_{i} t^{i}
\end{aligned}
$$

The numbers
The q-numbers
Properties
Where do they come from ?

Narayana numbers as h-vector of the associahedron

Theorem (C. Lee 1989)

The Narayana numbers give the h-vector of the associahedron.

Example

The 3-dimensional associahedra has

$$
\begin{aligned}
\left(f_{0}, f_{1}, f_{2}, f_{3}\right) & =(14,21,9,1) \\
\left(h_{0}, h_{1}, h_{2}, h_{3}\right) & =(1,6,6,1) \\
14+21 t+9 t^{2}+1 t^{3} & =1+6(1+t)+6(1+t)^{2}+1(1+t)^{3} .
\end{aligned}
$$

Quick review of W-noncrossing, nonnesting

Let $W \subset G L_{\ell}(\mathbb{R})$ be an irreducible finite reflection group.
Definition (Bessis, Brady-Watt, early 2000's)
The W-noncrossing partitions are

$$
N C(W):=[e, c]_{\mathrm{abs}}
$$

Definition (Postnikov, mid-1990s)
The W-nonnesting partitions are

$$
N N(W):=\operatorname{Antichains}\left(\Phi^{+}\right)
$$

W-Catalan counts W-noncrossing, nonnesting

Theorem

$$
|N C(W)|=|N N(W)|=\operatorname{Cat}(W):=\prod_{i=1}^{\ell} \frac{e_{i}+h+1}{e_{i}+1}
$$

where $\left(e_{1}, \ldots, e_{\ell}\right)$ are the exponents of the reflection hyperplane arrangement for W, and $h=\max \left\{e_{i}+1\right\}$ is the Coxeter number, the order of any Coxeter element $c=s_{1} \cdots s_{\ell}$ if the Coxeter system (W, S) has $S=\left\{s_{1}, \ldots, s_{\ell}\right\}$.

Cat(W) in type A

Example

Type A_{n-1} has $W=S_{n}$ acting on $\left\{x \in \mathbb{R}^{n}: \sum_{i} x_{i}=0\right\}$.
One can choose $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ where $s_{i}=(i, i+1)$.
The exponents are $(1,2, \ldots, n-1)$.
A choice of Coxeter element is $c=s_{1} \cdots s_{n-1}=(1,2, \ldots, n)$, an n-cycle, having order $h=n=\max \{2,3, \ldots, n\}$.

$$
\begin{aligned}
\operatorname{Cat}\left(A_{n-1}\right) & =\prod_{i=1}^{\ell} \frac{h+e_{i}+1}{e_{i}+1} \\
& =\frac{(n+2) \cdot(n+3) \cdots(n+n)}{2 \cdot 3 \cdots n}=\frac{1}{n+1}\binom{2 n}{n} .
\end{aligned}
$$

W-Narayana, Kreweras

To elements of $N C(W)$ or $N N(W)$ one associates a hyperplane intersection subspace X, or parabolic subgroup W_{X}, having

- a rank (= codimension of X),
- a W-orbit $[X]$, or W-conjugacy class for W_{X}.

W-Narayana, Kreweras

To elements of $N C(W)$ or $N N(W)$ one associates a hyperplane intersection subspace X, or parabolic subgroup W_{X}, having

- a rank (= codimension of X),
- a W-orbit $[X]$, or W-conjugacy class for W_{X}.

Definition

The W-Narayana numbers $N(W, k)$ count the elements of $N C(W)$ or $N N(W)$ having a X of a fixed rank k.

They give the h-vector of the W-cluster complex or W-associahedron of Fomin-Zelevinsky 2003.

W-Narayana, Kreweras

To elements of $N C(W)$ or $N N(W)$ one associates a hyperplane intersection subspace X, or parabolic subgroup W_{X}, having

- a rank (= codimension of X),
- a W-orbit $[X]$, or W-conjugacy class for W_{X}.

Definition

The W-Narayana numbers $N(W, k)$ count the elements of $N C(W)$ or $N N(W)$ having a X of a fixed rank k.

They give the h-vector of the W-cluster complex or W-associahedron of Fomin-Zelevinsky 2003.

Definition

The W-Kreweras numbers $\operatorname{Krew}(W,[X])$ count the elements of either $N C(W)$ or $N N(W)$ with a fixed W-orbit $[X]$.

Orlik-Solomon exponents give a product formula

Theorem (Broer, Douglass, Sommers, late 1990s)

$\operatorname{Krew}(W,[X])$ has a product formula:

$$
\operatorname{Krew}(W,[X])=\frac{1}{\left[N_{W}\left(W_{X}\right): W_{X}\right]} \prod_{i=1}^{\ell}\left(h+1-e_{i}^{X}\right)
$$

where ($e_{1}^{X}, \ldots, e_{\ell}^{X}$) are the Orlik-Solomon exponents of the reflection arrangement of W restricted to X.

Fuss and rational generalization

Definition

Say m is very good for Φ if m is odd in types B, C, D, and if $\operatorname{gcd}(m, h)=1$ in all other types, in which case define

$$
\begin{aligned}
\operatorname{Cat}(W, m) & :=\prod_{i=1}^{\ell} \frac{e_{i}+m}{e_{i}+1} \\
\operatorname{Krew}(W,[X], m) & :=\frac{1}{\left[N_{W}\left(W_{X}\right): W_{X}\right]} \prod_{i=1}^{\ell}\left(m-e_{i}^{X}\right)
\end{aligned}
$$

Fuss and rational generalization

Definition

Say m is very good for Φ if m is odd in types B, C, D, and if $\operatorname{gcd}(m, h)=1$ in all other types, in which case define

$$
\begin{aligned}
\operatorname{Cat}(W, m) & :=\prod_{i=1}^{\ell} \frac{e_{i}+m}{e_{i}+1} \\
\operatorname{Krew}(W,[X], m) & :=\frac{1}{\left[N_{W}\left(W_{X}\right): W_{X}\right]} \prod_{i=1}^{\ell}\left(m-e_{i}^{X}\right)
\end{aligned}
$$

This captures the

- rational Catalan case $\operatorname{gcd}(m, n)=1$ in type A_{n-1},
- W-Fuss-Catalan case $m=s h+1$ in any type,
- and in particular, the usual W-Catalan case is $m=h \neq 1$

No problem q-ifying the W-Catalan

Definition

$$
\operatorname{Cat}(W, q):=\prod_{i=1}^{\ell} \frac{\left[h+e_{i}+1\right]_{q}}{\left[e_{i}+1\right]_{q}}
$$

where $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$.

No problem q-ifying the W-Catalan

Definition

$$
\operatorname{Cat}(W, q):=\prod_{i=1}^{\ell} \frac{\left[h+e_{i}+1\right]_{q}}{\left[e_{i}+1\right]_{q}}
$$

where $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$.
It's not silly, e.g., it satisfies a cyclic sieving phenomenon.

Theorem (Bessis-R. 2007)

For ζ a primitive $h^{\text {th }}$ root of unity,

$$
\operatorname{Cat}\left(W, q=\zeta^{d}\right)
$$

counts elements of $N C(W)=[e, c]_{\text {abs }}$ fixed conjugating by c^{d}.

Properties Where do they come from ?

And same for q-ifying $\operatorname{Cat}(W, m)$

Theorem

When m is very good, $\operatorname{Cat}(W, m ; q):=\prod_{i=1}^{\ell} \frac{\left[e_{i}+m\right]_{g}}{\left[e_{i}+1\right]_{q}}$ lies in $\mathbb{N}[q]$.

The numbers

And same for q-ifying $\operatorname{Cat}(W, m)$

Theorem

When m is very good, $\operatorname{Cat}(W, m ; q):=\prod_{i=1}^{\ell} \frac{\left[e_{i}+m\right]_{q}}{\left[e_{i}+1\right]_{q}}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$
\chi(w):=\frac{\operatorname{det}\left(1-q^{m} w\right)}{\operatorname{det}(1-q w)}
$$

is a genuine graded W-character:

And same for q-ifying $\operatorname{Cat}(W, m)$

Theorem

When m is very good, $\operatorname{Cat}(W, m ; q):=\prod_{i=1}^{\ell} \frac{\left[e_{i}+m\right]_{q}}{\left[e_{i}+1\right]_{q}}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$
\chi(w):=\frac{\operatorname{det}\left(1-q^{m} w\right)}{\operatorname{det}(1-q w)}
$$

is a genuine graded W-character: the m-Parking space $S /(\theta)$, where $S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]$ and $\theta=\left(\theta_{1}, \ldots, \theta_{\ell}\right)$ is an hsop of degree m whose span carries the reflection rep'n V.

And same for q-ifying $\operatorname{Cat}(W, m)$

Theorem

When m is very good, $\operatorname{Cat}(W, m ; q):=\prod_{i=1}^{\ell} \frac{\left[e_{i}+m\right]_{q}}{\left[e_{i}+1\right]_{q}}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$
\chi(w):=\frac{\operatorname{det}\left(1-q^{m} w\right)}{\operatorname{det}(1-q w)}
$$

is a genuine graded W-character: the m-Parking space $S /(\theta)$, where $S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]$ and $\theta=\left(\theta_{1}, \ldots, \theta_{\ell}\right)$ is an hsop of degree m whose span carries the reflection rep'n V. $\operatorname{Cat}(W, m ; q)$ is its W-fixed space $(S /(\theta))^{W}$ Hilbert series.

$A_{n-1} q$-Narayanas in Wachs' IMA talk 11/12/2014

$$
N\left(A_{n-1}, j, q\right):=\frac{q^{j(j+1)}}{[n]_{q}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n \\
j+1
\end{array}\right]_{q}
$$

q-Narayana polynomials

The Narayana numbers have a closed form formula

$$
N_{n}(t)=\sum_{j=0}^{n-1} \frac{1}{n}\binom{n}{j}\binom{n}{j+1} t^{j}
$$

Recall that the Narayana numbers refine the Catalan numbers

$$
N_{n}(1)=C_{n} .
$$

The Fürlinger-Hofbauer q-Narayana polynomials are defined by

$$
N_{n}(q, t):=\sum_{j=0}^{n-1} q^{j(j+1)} \frac{1}{[n]_{q}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n \\
j+1
\end{array}\right]_{q} t^{j}
$$

... and type B q-Narayanas came later in her talk ...

$$
N\left(B_{n}, j, q\right):=\left(q^{2}\right)^{2}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q^{2}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q^{2}}
$$

Super q-Narayana polynomials (Krattenthaler and MW)

For $n \geq s$, define the super q-Narayana polynomials

$$
N_{n}^{(s)}(q, t):=\left[\begin{array}{c}
2 s \\
s
\end{array}\right]_{q} \sum_{j=0}^{n-s} q^{j(j+1)}\left[\begin{array}{l}
n \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n \\
j+s
\end{array}\right]_{q} t^{j}
$$

Note $N_{n}^{(1)}(q, t)=(1+q) N_{n}(q, t)$.
$N_{n}^{(0)}(1, t)$ is the type B Narayana polynomial.
Gessel proved $N_{n}^{(s)}(1, t) \in \mathbb{N}[t]$ by deriving a γ-positivity formula.

Several questions arise

Question

- Are there q-Kreweras polynomials of types A, B, C, D ? All types? Do they sum to $\operatorname{Cat}(W, q)$?
- In types A, B do they sum to the above q-Narayanas?

Several questions arise

Question

- Are there q-Kreweras polynomials of types A, B, C, D ? All types? Do they sum to $\operatorname{Cat}(W, q)$?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?

Several questions arise

Question

- Are there q-Kreweras polynomials of types A, B, C, D ? All types? Do they sum to $\operatorname{Cat}(W, q)$?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h - to f-vector map?

The numbers
The q-numbers
Properties
Where do they come from ?

Several questions arise

Question

- Are there q-Kreweras polynomials of types A, B, C, D ? All types? Do they sum to $\operatorname{Cat}(W, q)$?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h - to f-vector map?

Answer

Sommers' work answers yes to 1st question for Weyl groups, if we associate a q-Kreweras number to each nilpotent orbit.

The numbers
The q-numbers
Properties
Where do they come from?

Several questions arise

Question

- Are there q-Kreweras polynomials of types A, B, C, D ? All types? Do they sum to $\operatorname{Cat}(W, q)$?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h - to f-vector map?

Answer
Sommers' work answers yes to 1st question for Weyl groups, if we associate a q-Kreweras number to each nilpotent orbit.

Actually, yes to all above, but we don't understand it uniformly!

What parametrizes a q-Kreweras number?

We won't just get a q-Kreweras number for each W-orbit $[X]$ of intersection subspace. Instead we will get

$$
\operatorname{Krew}(e, m, q)
$$

for each ...

- Weyl group W, with a root system Φ, and
- a nilpotent orbit e in its Lie algebra \mathfrak{g}, and
- a positive integer m which is very good for Φ.

Type A nilpotent orbits

In type $A_{n-1}, G=S L_{n}(\mathbb{C})$ conjugates $\mathfrak{g}=s l_{n}(\mathbb{C})=\mathbb{C}^{n \times n}$, and nilpotent orbits are represented by Jordan canonical forms, parametrized by partitions λ of n.

Example

In $s s_{8}(\mathbb{C})$, the partition $\lambda=32^{2} 1$ corresponds to the $S L_{8}(\mathbb{C})$-orbit of

Type A q-Kreweras formula

In type A_{n-1}, very good for m means $\operatorname{gcd}(m, n)=1$.

Theorem

For partitions $\lambda=1^{\mu_{1}} 2^{\mu_{2}} 3^{\mu_{3}} \ldots$ of n with $\operatorname{gcd}(m, n)=1$,

$$
\operatorname{Krew}\left(e_{\lambda}, m ; q\right)=q^{m(n-\ell(\lambda))-c(\lambda)} \frac{1}{[m]_{q}}\left[\begin{array}{c}
m \\
\mu_{1}, \ldots, \mu_{n}
\end{array}\right]_{q}
$$

where

$$
\begin{aligned}
& c(\lambda):=\sum_{j} \lambda_{j}^{\prime} \lambda_{j+1}^{\prime}, \text { with } \lambda^{\prime} \text { the transpose partition to } \lambda \\
& {\left[\begin{array}{c}
m \\
\mu
\end{array}\right]_{q}:=\frac{[m]!_{q}}{\left[\mu_{1}\right]!_{q} \cdots\left[\mu_{\ell}\right]!_{q}\left[m-\sum_{i} \mu_{i}\right]!_{q}} }
\end{aligned}
$$

Types B/C/D

Φ	\mathfrak{g}	Condition on $\lambda=1^{\mu_{1}} 2^{\mu_{2}} 3^{\mu_{2}} \ldots$ parametrizing nilpotent orbits
B_{n}	$s o_{2 n+1}$	$\|\lambda\|=2 n+1$, and μ_{j} even for j even
C_{n}	$s p_{2 n}$	$\|\lambda\|=2 n$, and μ_{j} even for j odd
D_{n}	$s o_{2 n}$	$\|\lambda\|=2 n$, and μ_{j} even for j even

A slight lie in type D_{n} : these are $\mathrm{O}_{2 n}$ orbits on $\mathrm{SO}_{2 n}$, not $\mathrm{SO}_{2 n}$-orbits, leading to an extra factor of 2 in some formulas.

Type B, C q-Kreweras formulas- the gestalt picture

Introduce notations

$$
\begin{aligned}
\hat{N} & :=\lfloor N / 2\rfloor \\
\hat{\mu} & :=\left(\left\lfloor\mu_{1} / 2\right\rfloor,\left\lfloor\mu_{2} / 2\right\rfloor, \ldots\right) \text { if } \mu=\left(\mu_{1}, \mu_{2}, \ldots\right) .
\end{aligned}
$$

Theorem

For $\lambda=1^{\mu_{1}} 2^{\mu_{2}} 3^{\mu_{3}} \ldots$ a type B_{n} or type C_{n} partition, and modd,

$$
\operatorname{Krew}\left(e_{\lambda}, m ; q\right)=q^{\exp (\lambda, m)+\epsilon}\left[\begin{array}{c}
\hat{m}-\hat{L}(\lambda) \\
\hat{\mu}
\end{array}\right]_{q^{2}} \cdot \prod_{i=1}^{\hat{L}(\lambda)}\left(q^{m-2 i+1}-1\right)
$$

What was that power $q^{\exp (\lambda, m)+\epsilon}$ in front?

$$
\epsilon:= \begin{cases}\frac{1}{4} & \text { in type } B_{n}, \\ 0 & \text { in type } C_{n} \text { for } \ell(\lambda) \text { even }, \\ \frac{1}{4}-\frac{\ell(\lambda)}{2} & \text { in type } C_{n} \text { for } \ell(\lambda) \text { odd. }\end{cases}
$$

and

$$
\exp (\lambda, m):=m(n-\hat{\ell}(\lambda))-\frac{c(\lambda)}{2}+\tau(\lambda)-\frac{L(\lambda)}{4}
$$

with

$$
\begin{aligned}
& L(\lambda):=\mid\left\{i: \mu_{i} \text { odd }\right\} \mid \\
& \tau(\lambda):=\frac{1}{2} \sum_{\substack{j \neq|\lambda| \bmod 2 \\
\mu_{j} \text { even }}} \mu_{j}
\end{aligned}
$$

Type D q-Kreweras formulas

Here μ_{1} plays a special role. Define $\mu_{\geq 2}:=\left(\mu_{2}, \mu_{3}, \ldots\right)$.

Theorem

For m odd and λ a type D_{n} partition, $\operatorname{Krew}\left(e_{\lambda}, m ; q\right)$ is $q^{\exp (\lambda, m)}$ times these:

$$
\begin{cases}q^{m-\frac{\ell(\lambda)}{2}+1}\left[\begin{array}{c}
\hat{m}-(\hat{L}(\lambda)-1) \\
\hat{\mu}
\end{array}\right]_{q^{2}} \cdot \prod_{i=1}^{\hat{L}(\lambda)-1}\left(q^{m-2 i+1}-1\right) & \text { if } \mu_{1} \text { odd, } \\
q^{\frac{\ell(\lambda)}{2}-\mu_{1}(\lambda)}\left[\begin{array}{c}
\hat{m}-\hat{L}(\lambda) \\
\hat{\mu} \geq 2
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
\hat{m}+1-\hat{L}(\lambda)-|\hat{\mu} \geq 2| \\
\hat{\mu}_{1}
\end{array}\right]_{q^{2}} \cdot \prod_{i=1}^{\hat{L}(\lambda)}\left(q^{m-2 i+1}-1\right) & \text { if } \mu_{1} \text { even, some } \mu_{j} \text { odd, } \\
q^{\frac{\ell(\lambda)}{2}-\tau(\lambda)}\left[\begin{array}{l}
\hat{m} \\
\hat{\mu}
\end{array}\right]_{q^{2}}+q^{\frac{\ell(\lambda)}{2}-\mu_{1}}\left[\begin{array}{c}
\hat{m} \\
\hat{\mu} \geq 2
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
\hat{m}+1-|\hat{\mu} \geq 2| \\
\hat{\mu}_{1}
\end{array}\right]_{q^{2}} & \text { if } \mu_{j} \text { all even. }\end{cases}
$$

Type D q-Kreweras formulas

Here μ_{1} plays a special role. Define $\mu_{\geq 2}:=\left(\mu_{2}, \mu_{3}, \ldots\right)$.

Theorem

For m odd and λ a type D_{n} partition, $\operatorname{Krew}\left(e_{\lambda}, m ; q\right)$ is $q^{\exp (\lambda, m)}$ times these:

$$
\begin{aligned}
& \left(q^{m-\frac{\ell(\lambda)}{2}+1}\left[\begin{array}{c}
\hat{m}-(\hat{L}(\lambda)-1) \\
\hat{\mu}
\end{array}\right]_{q^{2}} \cdot \prod_{i=1}^{\hat{L}(\lambda)-1}\left(q^{m-2 i+1}-1\right) \quad \text { if } \mu_{1} \text { odd },\right. \\
& \left\{q^{\frac{\ell(\lambda)}{2}-\mu_{1}(\lambda)}\left[\begin{array}{c}
\hat{m}-\hat{L}(\lambda) \\
\hat{\mu} \geq 2
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
\hat{m}+1-\hat{L}(\lambda)-|\hat{\mu} \geq 2| \\
\hat{\mu}_{1}
\end{array}\right]_{q^{2}} \cdot \prod_{i=1}^{\hat{L}(\lambda)}\left(q^{m-2 i+1}-1\right) \quad \text { if } \mu_{1} \text { even, some } \mu_{j}\right. \text { odd, } \\
& q^{\frac{\ell(\lambda)}{2}-\tau(\lambda)}\left[\begin{array}{l}
\hat{m} \\
\hat{\mu}
\end{array}\right]_{q^{2}}+q^{\frac{\ell(\lambda)}{2}-\mu_{1}}\left[\begin{array}{c}
\hat{m} \\
\hat{\mu} \geq 2
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
\hat{m}+1-|\hat{\mu} \geq 2| \\
\hat{\mu}_{1}
\end{array}\right]_{q^{2}} \quad \text { if } \mu_{j} \text { all even. }
\end{aligned}
$$

(Thanks, Ted Cruz!)

Defining the q-Narayana numbers in general

Later we define a mysterious statistic $\kappa(e)$ on nilpotent orbits e.

Example

Φ	$\kappa\left(\boldsymbol{e}_{\lambda}\right)$
A_{n-1}	$\ell(\lambda)$
B_{n} / C_{n}	$\hat{\ell}(\lambda)$
D_{n}	$\left\{\begin{array}{ll\|}\hat{\ell}(\lambda) & \text { if } \mu_{1} \text { is even, } \\ \hat{\ell}(\lambda)-1 & \text { if } \mu_{1} \text { is odd. }\end{array}\right.$

Definition

Given m very good for Φ and $0 \leq k \leq \ell$, define

$$
\operatorname{Nar}(\Phi, m, k ; q):=\sum_{e: \kappa(e)=k} \operatorname{Krew}(e, m ; q)
$$

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types $A, B / C$ are ...

Φ	$\operatorname{Nar}(\Phi, m, k ; q)$
A_{n-1}	$q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_{q}}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}m-1 \\ k\end{array}\right]_{q}$
B_{n} / C_{n}	$\left(q^{2}\right)^{(n-k)(\hat{m}-k)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m} \\ k\end{array}\right]_{q^{2}}$

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types $A, B / C$ are ...

Φ	$\operatorname{Nar}(\Phi, m, k ; q)$
A_{n-1}	$q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_{q}}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}m-1 \\ k\end{array}\right]_{q}$
B_{n} / C_{n}	$\left(q^{2}\right)^{(n-k)(\hat{m}-k)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m} \\ k\end{array}\right]_{q^{2}}$

Its not hard to see that they lie in $\mathbb{N}[q]$.
At $m=h+1$ they give the q-Narayanas used by Wachs.

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types $A, B / C$ are ...

Φ	$\operatorname{Nar}(\Phi, m, k ; q)$
A_{n-1}	$q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_{q}}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}m-1 \\ k\end{array}\right]_{q}$
B_{n} / C_{n}	$\left(q^{2}\right)^{(n-k)(\hat{m}-k)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m} \\ k\end{array}\right]_{q^{2}}$

Its not hard to see that they lie in $\mathbb{N}[q]$.
At $m=h+1$ they give the q-Narayanas used by Wachs.

Question

Even at $q=1$, do they relate to work of Friedman-Stanley?

But who are the type $D q$-Narayana's?

The type $D q$-Narayana numbers are q-analogues of these:

$$
\left[\operatorname{Nar}\left(D_{n}, m, k ; q\right)\right]_{q=1}=\binom{\hat{m}}{k}\binom{n}{k}+\binom{\hat{m}+1}{k}\binom{n-2}{k-2}
$$

We only know simple formulas (not sums) for $\operatorname{Nar}\left(D_{n}, m, k ; q\right)$ when $k=0,1, n-1, n$.

But who are the type $D q$-Narayana's?

The type $D q$-Narayana numbers are q-analogues of these:

$$
\left[\operatorname{Nar}\left(D_{n}, m, k ; q\right)\right]_{q=1}=\binom{\hat{m}}{k}\binom{n}{k}+\binom{\hat{m}+1}{k}\binom{n-2}{k-2}
$$

We only know simple formulas (not sums) for $\operatorname{Nar}\left(D_{n}, m, k ; q\right)$ when $k=0,1, n-1, n$. The formulas are consistent with this:

Conjecture

If m is very good for Φ, then $\operatorname{Nar}(\Phi, m, k ; q)$ lies in $\mathbb{N}[q]$.

Problem

Find simple formulas for all $\operatorname{Nar}\left(D_{n}, m, k ; q\right)$ making this clear.

Regular-in-a-Levi nilpotent orbits

Various divisibility and evaluation properties of the q-Kreweras numbers relate to a special subclass of nilpotent orbits.

Definition

For a W-orbit $[X]$ of intersection subspaces X, let e_{X} be the G-orbit in \mathfrak{g} of the principal nilpotent in the Levi subalgebra $\mathfrak{g x}$

$$
\begin{array}{cll}
W \text {-conjugacy classes of } \\
\text { parabolic subgroups } \\
\downarrow & & \\
W \text {-orbits of } & \hookrightarrow & \text { nilpotent } \\
\text { intersection subspaces } & & G \text {-orbits in } \mathfrak{g}
\end{array}
$$

$[X] \quad \mapsto e_{X}$

All nilpotent orbits in type A are principal-in-Levi

Type A_{5}
$\mathfrak{g}=S l_{6}$
$W=S_{6}$

$$
e_{\lambda} \leftrightarrow S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots
$$

Type B / C principal-in-Levi means at most one μ_{i} odd

Type C_{3}

$$
\begin{aligned}
& \mathfrak{g}=s p_{6} \\
& W=B_{3}
\end{aligned}
$$

Their corresponding paraboblic subgroups $W_{X} \leq B_{3}$

Evaluating q-Kreweras, q-Narayanas at $q=1$

Theorem

Let m be very good for Φ. For e_{X} principal-in-a-Levi, $\operatorname{Krew}(\Phi, e, m ; q)$ lies in $\mathbb{N}[q]$,

Evaluating q-Kreweras, q-Narayanas at $q=1$

Theorem

Let m be very good for Φ.
For e_{X} principal-in-a-Levi, $\operatorname{Krew}(\Phi, e, m ; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients,

Evaluating q-Kreweras, q-Narayanas at $q=1$

Theorem

Let m be very good for Φ.
For e_{X} principal-in-a-Levi, $\operatorname{Krew}(\Phi, e, m ; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients, and

$$
\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=1}=\operatorname{Krew}(W,[X], m)
$$

Evaluating q-Kreweras, q-Narayanas at $q=1$

Theorem

Let m be very good for Φ.
For e_{X} principal-in-a-Levi, $\operatorname{Krew}(\Phi, e, m ; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients, and

$$
\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=1}=\operatorname{Krew}(W,[X], m)
$$

Also $\kappa\left(e_{X}\right)=\operatorname{dim}(X)$ when e_{X} is principal-in-Levi, implying this:

Corollary

$$
\begin{aligned}
{[\operatorname{Nar}(\Phi, m, k ; q)]_{q=1} } & =\sum_{[X]: \operatorname{dim}(X)=k} \operatorname{Krew}(W,[X], m) \\
& =\operatorname{Nar}(W, m, k)
\end{aligned}
$$

What about the not principal-in-Levi's at $q=1$?

Theorem

Let m be very good for Φ.
For e not principal-in-a-Levi,

- $\operatorname{Krew}(\Phi, e, m ; q)$ vanishes at $q=1$, and
- is furthermore divisible by $q^{m-1}-1$.

What about the not principal-in-Levi's at $q=1$?

Theorem

Let m be very good for Φ.
For e not principal-in-a-Levi,

- $\operatorname{Krew}(\Phi, e, m ; q)$ vanishes at $q=1$, and
- is furthermore divisible by $q^{m-1}-1$.

Question

What do $(m-1)^{\text {st }}$ root-of-unity evaluations, besides $q=1$, mean for $\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)$ when e_{X} is principal-in-Levi?

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values $m=s h+1$.
Definition (Armstrong 2006)
The W-generalization of s-divisible noncrossing partitions is

$$
N C^{(s)}(W):=\left\{s \text {-multichains } w_{1} \leq \cdots \leq w_{s} \text { in } N C(W)\right\}
$$

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values $m=s h+1$.
Definition (Armstrong 2006)
The W-generalization of s-divisible noncrossing partitions is

$$
N C^{(s)}(W):=\left\{s \text {-multichains } w_{1} \leq \cdots \leq w_{s} \text { in } N C(W)\right\}
$$

A cyclic group $\langle c\rangle \cong \mathbb{Z} /(m-1) \mathbb{Z}$ naturally acts on $N C^{(s)}(W)$.

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values $m=s h+1$.
Definition (Armstrong 2006)
The W-generalization of s-divisible noncrossing partitions is

$$
N C^{(s)}(W):=\left\{s \text {-multichains } w_{1} \leq \cdots \leq w_{s} \text { in } N C(W)\right\}
$$

A cyclic group $\langle c\rangle \cong \mathbb{Z} /(m-1) \mathbb{Z}$ naturally acts on $N C^{(s)}(W)$.

Conjecture

Let $m=s h+1$ and $\zeta:=e^{\frac{2 \pi i}{m-1}}$. When e_{X} is in principal-in-Levi,

$$
\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=\zeta^{d}}
$$

counts elements of $N C^{(s)}(W)$ with $V^{w_{1}}$ in $[X]$, fixed by c^{d}.

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D : for e_{X} principal-in-Levi, $\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=\zeta^{d}}$ counts the elements of $N C^{(s)}(W)$ having $V^{w_{1}}$ in $[X]$ that are fixed by c^{d}.

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D : for e_{X} principal-in-Levi, $\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=\zeta^{d}}$ counts the elements of $N C^{(s)}(W)$ having $V^{w_{1}}$ in $[X]$ that are fixed by c^{d}.

Proof.

Bad: compare the $q=\zeta^{d}$ evaluation to known counts.

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D : for e_{X} principal-in-Levi, $\left[\operatorname{Krew}\left(\Phi, e_{X}, m ; q\right)\right]_{q=\zeta^{d}}$ counts the elements of $N C^{(s)}(W)$ having $V^{w_{1}}$ in $[X]$ that are fixed by c^{d}.

Proof.

Bad: compare the $q=\zeta^{d}$ evaluation to known counts. (Thanks, Jang-Soo Kim!)

In type A, it was (pretty much) known; types B, C, D are new.
In type D, the case structure is very intricate, a testament to the "correctness" of the formulas for the q-Kreweras!

What's the q-analogue of the f-vector?

Finite cluster complexes do have a q-analogue of the f-vector.

What's the q-analogue of the f-vector?

Finite cluster complexes do have a q-analogue of the f-vector. Recall when m is very good for Φ, graded W-rep'n $S /(\theta)$ has

$$
\begin{aligned}
\operatorname{Cat}(W, m) & =\operatorname{dim}_{\mathbb{C}}(S /(\theta))^{W}
\end{aligned}=\left\langle\wedge^{0} V, S /(\theta)\right\rangle,
$$

What's the q-analogue of the f-vector?

Finite cluster complexes do have a q-analogue of the f-vector.
Recall when m is very good for Φ, graded W-rep'n $S /(\theta)$ has

$$
\begin{aligned}
\operatorname{Cat}(W, m) & =\operatorname{dim}_{\mathbb{C}}(S /(\theta))^{W}
\end{aligned}=\left\langle\wedge^{0} V, S /(\theta)\right\rangle,
$$

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type Φ has $f_{k}=f_{k}(W, h+1)$ where

$$
f_{k}(W, m)=\left\langle\Lambda^{k} V, S /(\theta)\right\rangle=\text { multiplicity of } \Lambda^{k} V \text { in } S /(\theta) .
$$

What's the q-analogue of the f-vector?

Finite cluster complexes do have a q-analogue of the f-vector.
Recall when m is very good for Φ, graded W-rep'n $S /(\theta)$ has

$$
\begin{aligned}
\operatorname{Cat}(W, m) & =\operatorname{dim}_{\mathbb{C}}(S /(\theta))^{W}
\end{aligned}=\left\langle\wedge^{0} V, S /(\theta)\right\rangle,
$$

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type Φ has $f_{k}=f_{k}(W, h+1)$ where

$$
f_{k}(W, m)=\left\langle\wedge^{k} V, S /(\theta)\right\rangle=\text { multiplicity of } \wedge^{k} V \text { in } S /(\theta)
$$

Definition

$$
f_{k}(W, m ; q):=\sum_{i}\left\langle\wedge^{k} V, S /(\theta)_{i}\right\rangle q^{i}
$$

The q-analogue of f-vectors in classical types

In types $A, B / C, D$, Gyoja, Nishiyama, Shimura 1999 give $f_{k}(W, m ; q)$ for m very good, not just $m=h+1$.

Φ	$f_{k}(W, m ; q)$
A_{n-1}	$q^{\binom{k+1}{2}} \frac{1}{[m]_{q}}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}m+n-k-1 \\ n\end{array}\right]_{q}$
B_{n} / C_{n}	$q^{k^{2}}\left[\begin{array}{c}\hat{m} \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m}+n-k \\ \hat{m}\end{array}\right]_{q^{2}}$
D_{n}	$q^{k^{2}}\left[\begin{array}{c}\hat{m} \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m}+n-k \\ \hat{m}\end{array}\right]_{q^{2}}+q^{n-2 k+k^{2}}\left[\begin{array}{c}\hat{m}+1 \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}\hat{m}+n-k-1 \\ \hat{m}-1\end{array}\right]_{q^{2}}$

A q-analogue of h-to- f-vector

Thus the usual cluster complex h-to- f-vector identity would be

$$
\sum_{k} f_{k}(W, h+1) t^{k}=\sum_{k} \operatorname{Nar}(W, h+1, k)(1+t)^{k}
$$

Theorem

$$
\begin{aligned}
\sum_{k} f_{k}\left(A_{n-1}, m ; q\right) t^{k} & =\sum_{k} \operatorname{Nar}\left(A_{n-1}, m, k ; q\right)(-t q ; q)_{k} \\
\sum_{k} f_{k}\left(B_{n} / C_{n}, m ; q\right) t^{k} & =\sum_{k} \operatorname{Nar}\left(B_{n} / C_{n}, m, k ; q\right)\left(-t q ; q^{2}\right)_{k}
\end{aligned}
$$

where $(x ; q)_{k}=(1-x)(1-q x) \cdots\left(1-q^{k-1} x\right)$, so that $\left(-t q ; q^{r}\right)_{k}$ is a q-analogue of $(1+t)^{k}$.

A q-analogue of h-to- f-vector

The previous type $A, B / C$ identities are both special cases of a ${ }_{2} \phi_{1}$-transformation of Jackson:
${ }_{2} \phi_{1}\left[\begin{array}{cc|c}q^{-N} & b & q, z \\ - & c & q, z\end{array}\right]=\frac{(c / b ; q)_{N}}{(c ; q)_{N}}{ }_{3} \phi_{2}\left[\left.\begin{array}{ccc}q^{-N} & b & b z q^{-N} / c \mid \\ - & b q^{1-N} / c & 0\end{array} \right\rvert\,, q\right]$

A q-analogue of h-to- f-vector

The previous type $A, B / C$ identities are both special cases of a ${ }_{2} \phi_{1}$-transformation of Jackson:
${ }_{2} \phi_{1}\left[\begin{array}{cc|c}q^{-N} & b & q, z \\ - & c & q, z\end{array}\right]=\frac{(c / b ; q)_{N}}{(c ; q)_{N}}{ }_{3} \phi_{2}\left[\left.\begin{array}{ccc}q^{-N} & b & b z q^{-N} / c \mid \\ - & b q^{1-N} / c & 0\end{array} \right\rvert\,, q\right]$
(Thanks, Dennis Stanton!)

A q-analogue of h-to- f-vector

However, they are also both instances of the following.

Theorem

When m is very good for Φ,

$$
\sum_{k=0}^{\ell} f_{k}(\Phi, m, k ; q) t^{k}=\sum_{k=0}^{\ell} \text { Something }_{k}(q, t)
$$

for a fairly explicit product Something $(W, m, k ; q, t)$,

A q-analogue of h-to- f-vector

However, they are also both instances of the following.

Theorem

When m is very good for Φ,

$$
\sum_{k=0}^{\ell} f_{k}(\Phi, m, k ; q) t^{k}=\sum_{k=0}^{\ell} \text { Something }_{k}(q, t)
$$

for a fairly explicit product Something ($W, m, k ; q, t)$, equal to ...

- $\operatorname{Nar}(\Phi, m, k)(1+t)^{k}$ when evaluated at $q=1$ for any Φ,

A q-analogue of h-to- f-vector

However, they are also both instances of the following.

Theorem

When m is very good for Φ,

$$
\sum_{k=0}^{\ell} f_{k}(\Phi, m, k ; q) t^{k}=\sum_{k=0}^{\ell} \operatorname{Something}_{k}(q, t)
$$

for a fairly explicit product Something $(W, m, k ; q, t)$, equal to ...

- $\operatorname{Nar}(\Phi, m, k)(1+t)^{k}$ when evaluated at $q=1$ for any Φ,
- $\operatorname{Nar}\left(A_{n-1}, m, k ; q\right)(-t q ; q)_{k}$ for $\Phi=A_{n-1}$,
- $\operatorname{Nar}\left(B_{n} / C_{n}, m, k ; q\right)\left(-t q ; q^{2}\right)_{k}$ for $\Phi=B_{n} / C_{n}$.

Remember Springer fibers?

Consider the nilcone

$$
\mathcal{O}:=\{\text { all nilpotent elements } e \text { in } \mathfrak{g}\}
$$

which is a singular variety inside \mathfrak{g}.
T. Springer's desingularized it using the flag manifold

$$
G / B \cong \mathcal{B}=\{\text { all Borel subalgebras } \mathfrak{b} \text { in } \mathfrak{g}\}
$$

by creating this space

$$
\tilde{\mathcal{O}}:=\{(e, \mathfrak{b}) \in \mathcal{O} \times G / B:[e, \mathfrak{b}] \subset \mathfrak{b}\} .
$$

with its two coordinate projection maps:

The boring fiber shows it's smooth

The projection π_{2} has as typical fiber an affine space

$$
\pi_{2}^{-1}\left(\mathfrak{b}_{+}\right)=\bigoplus_{\alpha \in \Phi_{+}} \mathfrak{g}_{\alpha} \cong \mathbb{C}^{\left|\Phi_{+}\right|}
$$

Corollary
The total space $\tilde{\mathcal{O}}$ is smooth.

Proof.

The base $\mathcal{B}=G / B$ is smooth, the fiber is affine.

The Springer fiber is interesting

The Springer fibers are the fibers of the other projection π_{1} :

$$
\mathcal{B}_{e}:=\pi_{1}^{-1}(e)=\{\mathfrak{b} \in G / B:[e, \mathfrak{b}] \subset \mathfrak{b}]
$$

Their cohomology $H^{*}\left(\mathcal{B}_{e}\right)$ has an interesting graded W-action.

Example

In type A, the ring $H^{*}\left(\mathcal{B}_{e_{\mu}}\right)$, sometimes called R_{μ}, has its graded S_{n}-Frobenius characteristic given by the modified Hall-Littewood symmetric function $q^{n(\mu)} H_{\mu}\left(\mathbf{x} ; q^{-1}\right)$.

Shoji's recursion

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^{*}\left(\mathcal{B}_{e}\right)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_{q}-version G^{F} of G,

Shoji's recursion

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^{*}\left(\mathcal{B}_{e}\right)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_{q}-version G^{F} of G,
- for each e, a sum over a finite group

$$
A(e):=Z_{G}(e) / Z_{G}^{0}(e)
$$

called the component group of $Z_{G}(e)$,

Shoji's recursion

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^{*}\left(\mathcal{B}_{e}\right)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_{q}-version G^{F} of G,
- for each e, a sum over a finite group

$$
A(e):=Z_{G}(e) / Z_{G}^{0}(e)
$$

called the component group of $Z_{G}(e)$, which acts on \mathcal{B}_{e}, and commutes with W acting on $H^{*}\left(\mathcal{B}_{e}\right)$.

Shoji's recursion

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^{*}\left(\mathcal{B}_{e}\right)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_{q}-version G^{F} of G,
- for each e, a sum over a finite group

$$
A(e):=Z_{G}(e) / Z_{G}^{0}(e)
$$

called the component group of $Z_{G}(e)$, which acts on \mathcal{B}_{e}, and commutes with W acting on $H^{*}\left(\mathcal{B}_{e}\right)$. This lets one refine the graded W-representations

$$
H^{*}\left(\mathcal{B}_{e}\right)=\bigoplus H^{*}\left(\mathcal{B}_{e}\right)^{\phi}
$$

into $A(e)$-isotypic components for $A(e)$-irreducibles ϕ.

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of W-irreducibles χ :

$$
\begin{equation*}
H^{*}(\mathcal{B}) \otimes \chi=\sum_{e} \sum_{\phi} \alpha(e, \phi, \chi, q) H^{*}\left(\mathcal{B}_{e}\right)^{\phi} \tag{1}
\end{equation*}
$$

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of W-irreducibles χ :

$$
\begin{equation*}
H^{*}(\mathcal{B}) \otimes \chi=\sum_{e} \sum_{\phi} \alpha(e, \phi, \chi, q) H^{*}\left(\mathcal{B}_{e}\right)^{\phi} . \tag{1}
\end{equation*}
$$

One can restate the graded character formula for m very good,

$$
\chi_{S /(\theta)}(w ; q)=\operatorname{det}\left(1-q^{m} w\right) / \operatorname{det}(1-q w)
$$

as saying $\quad S /(\theta)=\sum_{k=0}^{\ell}\left(-q^{m}\right)^{k} S \otimes \wedge^{k} V$.

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of W-irreducibles χ :

$$
\begin{equation*}
\boldsymbol{H}^{*}(\mathcal{B}) \otimes \chi=\sum_{e} \sum_{\phi} \alpha(\boldsymbol{e}, \phi, \chi, q) \boldsymbol{H}^{*}\left(\mathcal{B}_{e}\right)^{\phi} . \tag{1}
\end{equation*}
$$

One can restate the graded character formula for m very good,

$$
\chi_{S /(\theta)}(w ; q)=\operatorname{det}\left(1-q^{m} w\right) / \operatorname{det}(1-q w)
$$

as saying $\quad S /(\theta)=\sum_{k=0}^{\ell}\left(-q^{m}\right)^{k} S \otimes \wedge^{k} V$.
Then using $H^{*}(\mathcal{B}) \cong S /\left(S_{+}^{W}\right)$, and (1) at $\chi=\wedge^{k} V$, summed over $k=0,1, \ldots, \ell$, Sommers proved a key result...

How to define q-Kreweras using Sommers's result

Theorem (Sommers 2011)

$$
S /(\theta)=\sum_{e} \sum_{\phi} f(e, \phi, m ; q) H^{*}\left(\mathcal{B}_{e}\right)^{\phi} .
$$

This was the starting point for everything, such as ...
Definition

$$
\operatorname{Krew}(\Phi, e, m ; q):=f\left(e, \mathbf{1}_{A(e)}, m ; q\right)
$$

How to define q-Kreweras using Sommers's result

Theorem (Sommers 2011)

$$
S /(\theta)=\sum_{e} \sum_{\phi} f(e, \phi, m ; q) H^{*}\left(\mathcal{B}_{e}\right)^{\phi} .
$$

This was the starting point for everything, such as ...
Definition

$$
\operatorname{Krew}(\Phi, e, m ; q):=f\left(e, \mathbf{1}_{A(e)}, m ; q\right)
$$

For example, it immediately implies

$$
\operatorname{Cat}(W, m ; q)=\sum_{e} \operatorname{Krew}(\Phi, e, m ; q)
$$

since the W-rep 1_{W} appears only in $\left.H^{0}(\mathcal{B}, e)=H^{0}(\mathcal{B}, e)^{1}\right)^{1}(e)$.

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$
\operatorname{Nar}(\Phi, m, k ; q):=\sum_{e: \kappa(e)=k} \operatorname{Krew}(\Phi, e, m ; q)
$$

Definition
$\kappa(e):=\left\langle V, H^{*}\left(\mathcal{B}_{e}\right)\right\rangle$, the multiplicity of V in $H^{*}\left(\mathcal{B}_{e}\right)$.

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$
\operatorname{Nar}(\Phi, m, k ; q):=\sum_{e: \kappa(e)=k} \operatorname{Krew}(\Phi, e, m ; q)
$$

Definition

$\kappa(e):=\left\langle V, H^{*}\left(\mathcal{B}_{e}\right)\right\rangle$, the multiplicity of V in $H^{*}\left(\mathcal{B}_{e}\right)$.
This definition works extremely well, as

- $\kappa(e)=\operatorname{dim}(X)$ when $e=e_{X}$ is principal-in-a-Levi,

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$
\operatorname{Nar}(\Phi, m, k ; q):=\sum_{e: \kappa(e)=k} \operatorname{Krew}(\Phi, e, m ; q)
$$

Definition

$\kappa(e):=\left\langle V, H^{*}\left(\mathcal{B}_{e}\right)\right\rangle$, the multiplicity of V in $H^{*}\left(\mathcal{B}_{e}\right)$.
This definition works extremely well, as

- $\kappa(\boldsymbol{e})=\operatorname{dim}(X)$ when $\boldsymbol{e}=\boldsymbol{e}_{X}$ is principal-in-a-Levi,
- for almost all nilpotent orbits e, knowing within $H^{*}\left(\mathcal{B}_{e}\right)$ where V occurs (degrees, $A(e)$-isotypic components) determines via a simple product formula where all other $\wedge^{k} V$ occur, by another result of Sommers 2011.

Other properties of the $f(e, \phi, m ; q)$

- They lie in $\mathbb{Z}[q]$.

Other properties of the $f(e, \phi, m ; q)$

- They lie in $\mathbb{Z}[q]$.
- At $q=1$, they vanish unless $e=e_{X}$ is principal-in-Levi, in which case for every ϕ they have value $\operatorname{Krew}(W,[X], m)$.

Other properties of the $f(e, \phi, m ; q)$

- They lie in $\mathbb{Z}[q]$.
- At $q=1$, they vanish unless $e=e_{X}$ is principal-in-Levi, in which case for every ϕ they have value $\operatorname{Krew}(W,[X], m)$.
- They can be computed via cardinalities of nilpotent orbits over \mathbb{F}_{q}, together with (available!) info about the W-representations $H^{*}(\mathcal{B}, e)$.

Thanks

Thanks for listening,

Thanks

Thanks for listening,

and thank you, Michelle, for having taught us so much!

