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I. Review of Koszul algebras

Definition(Priddy 1970).

A a finitely generated, associative, standard

graded k-algebra,

A = k〈x1, . . . , xn〉/J

for some homogeneous (two-sided) ideal J.

A is Koszul if k = A/A+ has a

linear A-free resolution

· · · → A(−2)β2 → A(−1)β1 → A→ k → 0

that is, all maps have only k-linear entries in

the xi’s.

NB: In this case, this is a minimal free resolu-

tion, and

βi = dimk TorAi (k, k) = dimk ExtAi (k, k).
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Two consequences.

Firstly, define theHilbert and Poincaré series

Hilb(A, t) :=
∑

i≥0

dimk Ait
i

Poin(A, t) :=
∑

i≥0

βit
i.

Then Euler characteristic in each degree of the

exact sequence

· · · → A(−2)β2 → A(−1)β1 → A→ k → 0

yields

Poin(A,−t)Hilb(A, t)= 1.

In particular,

1

Hilb(A,−t)
= Poin(A, t) ∈ N[[t]].
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Secondly, assuming W.L.O.G. that

A = k〈x1, . . . , xn〉/J

has no redundant generators xi,

A Koszul⇒ J quadratically generated

as a minimal resolution starts

· · · → Aβ2 → A(−1)n → A → k → 0
yi 7→ xi

and minimal generators of J in degree d lead

to elements in the kernel of A(−1)n → A with

degree d.
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Converse (quadratic ⇒ Koszul) is false,

but true for monomial ideals (Fröberg 1975)

• in the purely non-commutative setting

J = 〈xixj, . . .〉

• or in the commutative setting

J = 〈xixj − xjxi : i < j〉+ 〈xixj, . . .〉

• or in the anticommutative setting

J = 〈xixj + xjxi, x
2
i : i < j〉+ 〈xixj, . . .〉

So by deformation argument, one can prove

Koszul-ness via Gröbner bases by exhibiting a

quadratic initial ideal init≺(J).
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Duality

When A is Koszul,

Poin(A, t) = Hilb(A!, t)

where A! is another Koszul algebra called the

Koszul dual A!. Thus

Hilb(A!,−t)Hilb(A, t) = 1.

In fact, the linear minimal free resolution can

be constructed explicitly by a natural differen-

tial on A⊗k A!.

And it really is a duality: (A!)! = A.

(Recipe for A! ?

Think of x1, . . . , xn as a basis for a k-space V .

Thus A = T ·(V )/〈J2〉 with J2 ⊂ V ⊗ V .

Let A! := T ·(V ∗)/〈J⊥2 〉 for J⊥2 ⊂ V ∗ ⊗ V ∗.)
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The motivating example

A = k[x1, . . . , xn]

= a (commutative) polynomial algebra

= k〈x1, . . . , xn〉/〈xixj − xjxi : i < j〉

Hilb(A, t) =
1

(1− t)n

A! = k〈y1, . . . , yn〉/〈yiyj + yjyi, y
2
i : i < j〉

=
∧

(y1, . . . , yn)

= an exterior algebra

Hilb(A!, t) = (1 + t)n

Note that

Hilb(A!,−t)Hilb(A, t) = (1− t)n 1

(1− t)n
= 1

The linear minimal resolution for k is the usual

Koszul complex for (x1, . . . , xn):

· · · → A⊗A!
2 → A⊗A! → A → k → 0

1⊗ (y1 ∧ y2) 7→ x1y2 − x2y1
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II. Combinatorial examples/questions

• Is a certain class of combinatorial rings Koszul?

• If so, what can be said about their Hilbert

series?
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Example 1. Affine semigroup rings

Let Λ be a finitely generated subsemigroup of

Nd,

A := k[Λ] its semigroup algebra

= k[tα : α ∈ A] ⊂ k[t1, . . . , td]
∼= k[xα : α ∈ A]/IA

A is graded if and only if

all α in A lie on a hyperplane in Nd.
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Computing TorA(k, k) via bar resolution of k

yields

PROPOSITION (Peeva-R.-Sturmfels):

A = k[Λ] is Koszul ⇐⇒

Λ is a Cohen-Macaulay poset (over k) when

ordered by divisibility.

That is, α divides β implies

H̃i(∆(α, β); k) = 0 for i < deg(β)− deg(α)− 2.

α

β
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Some known Koszul families of k[Λ], (via quadratic

initial ideals, yielding homotopy type of inter-

vals in the poset Λ):

• Veronese subalgebras:

A = k[tα : deg(α) = r]

• Segre subalgebras:

A = k[sitj]i=1,...,d
j=1,...,e

• Hibi ring of a poset P :

A = k[t0tI]I∈J(P)

= k [t0, t0t1, t0t2, t0t1t2, t0t1t3,

t0t1t2t3, t0t1t2t4, t0t1t2t3t4]

1 2

3 4

P= J(P) = 
1 2

1213

123

1234

124
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OPEN PROBLEM:

Given vectors v1, . . . , vn,

spanning a vector space V ,

the associated matroid basis ring is

k[ΛB] := k[tB]{vi:i∈B} a basis for V

Q: Is k[ΛB] Koszul?

Q: Does it have a quadratic initial ideal?

THEOREM(N. White 1977) k[ΛB] is normal.

(Generalized recently to discrete polymatroids

by Herzog and Hibi.)
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More Koszul algebras from matroids ...

Given v1, . . . , vn spanning V as before,

define the Orlik-Solomon algebra

A :=
∧

(x1, . . . , xn)/I

where I is spannned by

r∑

s=1

(−1)sxi1 ∧ · · · ∧ x̂is ∧ · · · ∧ xir

for all circuits (= minimal dependent subsets)

{vi1, . . . , vir}.
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OPEN PROBLEM(Yuzvinsky) :

Q: When is the Orlik-Solomon algebra A Koszul?

If and only if it has a quadratic initial ideal?

(Equivalently, if and only if the matroid is

supersolvable)?

NB: When V = Cd, Orlik and Solomon 1980

showed that the hyperplane arrangement,

A = {v⊥1 , . . . , v⊥n }

has A as the cohomology ring H ·(Cd−A; k) of

the complement Cd −A.

THEOREM (see Yuzvinsky 2001) :

A is Koszul ⇐⇒ Cd −A is a rational K(π,1).
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Partial commutation/annihilation monoids

P a collection of unordered pairs {i, j},
S a collection of singletons {i},
from [n] := {1,2, . . . , n}.

THEOREM:(Froeberg 1970, Kobayashi 1990)

A := k〈x1, . . . , xn〉/ 〈xixj−xjxi, x
2
k : {i, j} ∈ P, k ∈ S〉

is Koszul.

Consequently,

Hilb(A, t) =
1

Hilb(A!,−t)

=
1

∑
C⊂[n](−1)|C|tC

where C runs over subsets chosen with repeti-
tion from [n] in which every pair of elements
of C is in P , and repeats are allowed only on
the elements of S.

Generalizes a main result of Cartier and Foata’s
theory of partial commutation monoids (1969)
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Algebras from walks in directed graphs

D a directed graph on [n], that is,

a collection of ordered pairs (i, j)
(with i = j allowed).

AD := k〈x1, . . . , xn〉/ 〈xixj : (i, j) 6∈ D〉

is Koszul

(Froeberg 1970, Kobayashi 1990, Bruns-Herzog-
Vetter 1992)

Its Koszul dual A!
D := AD̄

for the complementary digraph D̄.

AD has Hilbert function

h(AD, n) := |{ walks of length n in D}|

so that Hilb(AD, t) can be computed via the

transfer-matrix method.

Studied by

Carlitz-Scoville-Vaughan 1976,

Goulden-Jackson 1988, Brenti 1989,

Bruns-Herzog-Vetter 1992
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Stanley-Reisner rings

∆ a simplicial complex on [n]

has Stanley-Reisner ring

k[∆] := k[x1, . . . , xn]/I∆.

where I∆ := (xF : F 6∈∆).

Since these are quotients by monomial ideals,

k[∆] is Koszul ⇐⇒

I∆ is quadratic ⇐⇒

∆ is a flag (clique, stable/independent set)

complex.

∆ is a flag complex if it is

determined by its 1-skeleton

G(∆) in the following way:

F is a face of ∆ ⇐⇒

each pair in F is an edge in G(∆).
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Example: The order complex ∆(P ) of a poset

P is always flag.

Flag

1

2 3

1

2 3

4 4

Not flag

= P  for  P = 
1

2

3

4( )
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Recall the f-vector

fi(∆) counts i-dimensional faces of ∆.

f(∆, t) =
∑

i≥−1

fi(∆)ti+1

Hilb(k[∆], t) = f

(
∆,

t

1− t

)

=
h(∆, t)

(1− t)dim∆+1

h(∆, t) = h0 + h1t + · · ·+ hdt
d

where d = dim∆ + 1 and (h0, . . . , hd) is called

the h-vector.

1

2 3

4

has

f(∆, t) = 1 + 4t + 3t2 + t3

h(∆, t) = 1 + t− 2t2 − t3
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Three open conjectures on real-roots for f-

polynomials (or equivalently, h-polynomials) of

flag complexes:

Gasharov-Stanley: ∆ the flag (clique) complex

for a graph G whose complement is claw-free

has f(∆, t) with only real roots.

Neggers-Stanley: ∆ the order complex of a

finite distributive lattice J(P ) has f(∆, t) with

only real roots.

Charney-Davis: ∆ a flag simplicial complex tri-

angulating a homology (d − 1)-sphere with d

even has

(−1)
d
2h(∆,−1) ≥ 0.
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Gasharov-Stanley is known to hold for order

complexes (by a result of Gasharov 1994).

One must avoid the claw

1

2

3

4

because its complement has flag complex

1

2 3

4

whose f-polynomial has complex roots.
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Neggers-Stanley is known only in very special

cases.

It motivated Brenti’s study of Hilbert functions

for algebras of walks in digraphs

(take D = J(P )).

The distributive lattice J(P ) is shellable, hence

k[∆] is Koszul and Cohen-Macaulay.

In fact, I∆ is an initial ideal for the toric ideal

of the Hibi ring for P .

Recent work ( Welker-R.),

motivated by relation to Charney-Davis

proves unimodality of h(∆(P ), t)

(weaker than real-rooted-ness) when P is graded.
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Charney-Davis:

∆ triangulating a flag homology sphere says

k[∆] is Koszul and Gorenstein.

Hence h(∆, t) is symmetric: hi = hd−i.

But how is (−1)
d
2h(∆,−1) ≥ 0 related to real

roots? It’s weaker ...

PROPOSITION:

Suppose h(t) =
∑d

i=0 hit
i with d even

• lies in N[t],

• is symmetric, and

• has only real roots.

Then (−1)
d
2h(∆,−1) ≥ 0.

(Uses the fact that for h(t) symmetric,

roots come in pairs r, 1
r .)
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Charney-Davis is

• trivial for 1-spheres,

• proven for homology 3-spheres by Okun-

Davis 2000 (but with a lot of work!),

• known under certain geometric hypothe-

ses (local convexity) by Leung-R. 2002 via

Hirzebruch signature formula.

• would follow for order complexes by a con-

jecture of Stanley 1994 on nonnegativity

of cd-index for Gorenstein∗ posets, proven

for barycentric subdivisions of convex poly-

topes.
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III. Koszulness and Polya frequency sequences.

Real-rooted-ness of f(∆, t) or h(∆, t), has an

equivalent formulation for power series in t that

need not be polynomial or even rational...

Say H(t) :=
∑

n≥0 antn ∈ R[[t]] generates a

Polya frequency (PF) sequence (a0, a1, a2, . . .)

if the (infinite) Toeplitz matrix




a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
... ... ... ... . . .




has all minor determinants non-negative.

A deep result of Aissen-Schoenberg-Whitney

(1952) says that when H(t) ∈ N[t], this is

equivalent to all real roots.
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The right questions?

• Among Koszul algebras, when is the

Hilbert function a PF sequence?

Say A is PF when this occurs.

• In particularly, which (commutative) Cohen-

Macaulay Koszul algebras A are PF, so that

h(A, t) has only real roots?

• Even more particularly, which (commuta-

tive) Gorenstein Koszul algebras A satisfy

the weaker condition that

(−1)
d
2h(A,−1) ≥ 0?
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Some more instances...

• P. Ho Hai proves that certain quantized

symmetric and exterior algebras are

• Koszul 1997

• PF 1999

via representation-theory.

• Brenti 1989 investigated the question of

which digraphs D have their algebra of walks

PF (without referring to Koszul algebras).

• Heilmann-Lieb 1972 proved the f-polynomial

of the (flag) simplicial complex of partial

matchings of a graph has only real roots.
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Several auspicious features.

• The question respects Koszul duality:

A is PF⇐⇒ A! is PF.

because H(t) generates a PF sequence if

and only if 1
H(−t)

generates a PF sequence.

• All three notions Koszul, PF, Cohen-Macaulay

respect several other constructions well:

• Veronese subalgebras,

• tensor products of algebras

• Segre products of algebras,

• quotients by a linear non-zero-divisor.
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A fact well-known to TorA(k, k) experts (but

apparently overlooked by the rest of us)∗

PROPOSITION: When A Koszul, if Hilb(A, t)

is rational (e.g. if A is commutative) then it

has at least one real zero.

(In fact, one only needs 1
Hilb(A,−t)

∈ N[[t]].)

This is particularly handy when A is Gorenstein

since it often gives two real zeroes!

For example, Charney-Davis for homology 3-

spheres (Okun-Davis) already suffices to imply

their h-polynomials have only real-roots.

∗With thanks to I. Peeva and V. Gasharov for pointing
this out.
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CHALLENGE: Simplify the Okun-Davis proof

by showing more generally (and hopefully more

simply!) that a Gorenstein Koszul algebra A

with

h(A, t) = 1 + h1t + h2t2 + h1t3 + t4

has

h(A,−1) = h2 − 2h1 + 2 ≥ 0.
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IDEA (from conversation with M. Kapranov):

Non-negativity of Toeplitz matrix minors should

be modelled by homology concentration of cer-

tain chain complexes

(i.e. the minor should be the Euler character-

istic of the complex).

True for consecutive superdiagonal minors

using the graded components of the bar com-

plex computing TorA(k, k).

e.g. det



a1 a2 a3
1 a1 a2
0 1 a1




is modelled by

A1 ⊗A1 ⊗A1 → A1 ⊗A2 → A3 → 0
A2 ⊗A1

QUESTION: Complexes modelling other Toeplitz

minors? What beyond Koszul gives homology

concentration?
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Koszul algebras,

in “Advances in commutative ring theory”

(Fez, Morocco),

Lecture Notes in Pure and Applied Math

205, Marcel Dekker, 1999.

• V. R. and V. Welker,

“On the Charney-Davis and Neggers-Stanley

conjectures”,

manuscript in preparation.

• S. Yuzvinsky,

“Orlik-Solomon algebras in

algebra and topology”,

Russian Math. Surveys

56 (2001), 293–364.

33


