## ALTERNATIVE SOLUTION

Author: Michael Sullivan
Text: Precalculus, sixth edition
Section: 5.6-Phase Shift; Sinusoidal Curve Fitting Pg.: 369
Question: 5.6\#35a

Show that the length $L$ of the ladder as a function of the angle $\theta$ is
$\mathrm{L}(\theta)=3 \sec \theta+4 \csc \theta$


First, split $\mathrm{L}(\theta)$ into $\mathrm{L}_{1}(\theta)$ and $\mathrm{L}_{2}(\theta)$

$\operatorname{Sin} \theta=4 \mathrm{ft} / \mathrm{L}_{2}(\theta)$

Therefore, $\mathrm{L}_{2}(\theta)=4 \mathrm{ft} / \operatorname{Sin} \theta$
Then, you can automatically say that $x=\theta$


This is because if two parallel lines are cut by a transversal, the corresponding angles are equal, alternate interior angles are equal, and alternate exterior angles are equal. ${ }^{1}$

[^0]

Now you can determine that
$\operatorname{Cos} \theta=3 \mathrm{ft} / \mathrm{L}_{1}(\theta)$
Therefore, $\mathrm{L}_{1}(\theta)=3 \mathrm{ft} / \operatorname{Cos} \theta$
$\mathrm{L}(\theta)=\mathrm{L}_{1}(\theta)+\mathrm{L}_{2}(\theta)=(3 \mathrm{ft} / \operatorname{Cos} \theta)+(4 \mathrm{ft} / \operatorname{Sin} \theta)=3 \sec \theta+4 \csc \theta$


[^0]:    ${ }^{1}$ Michael Serra, Discovering Geometry: An Inductive Approach, copyright 1997 Michael Serra, pg. 179

