Math 1151 Test 1 February, 15, 2001.

Professor Peter A. Rejto

Name (Print):	Student ID number:
Section number:	Name of TA:
Signature:	
~ -0	

6 pages. Show all your work. No work no credit. No books/notes. Calculators: Scientific calculator are allowed. However, graphing calculators are not allowed. More specifically, calculators that display two or more lines are not allowed. Name (Print):

 $\mathbf{2}$

Student ID number:_____

(25 pts.)
(a) (13 pts.) Convert 30° to radians.

(b) (12 pts.) Convert $\frac{\pi}{12}$ radians into degreees.

Student ID number:_____

2. (25 pts.) The minute hand of a clock is 6 inches long. How far does the tip of the minute hand move in 15 minutes?

Student ID number:_____

- 3. (25 pts.) (a) (10 pts.) Find the exact value of: $2\sin\frac{\pi}{3} - 3\tan\frac{\pi}{6}$
 - (b) (15 pts.) Given that

$$\tan \alpha = \frac{5}{12}$$
 and that $\pi < \alpha \frac{3\pi}{2}$.

Find $\sin \alpha$.

Student ID number:_____

4.

5. (25 pts.) Let f be a given function and let p be a given number. Define that p is a period of f.

6. (25 pts.) The current I, in amperes, flowing through an alternating current circuit at time t is:

$$I(t) = 120\sin(30\pi t - \frac{\pi}{3}), \ t \ge 0.$$

Find the period.

Student ID number:_____

7. (25 pts.) Recall the second conclusion of the first Theorem in Section 6.1 of the text which gives the formula:

 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$

Prove this formula.