Math 4606(Advanced Calculus) Lecture 010 Spring 2001. Last Updated: 05/03/01

Instructor: Professor Peter A. Rejto. Lecture: **11:15 a.m** – **12:10 a.m., MWF** Mech.Eng 102 e-mail:rejto@math.umn.edu Office: Vincent Hall 430 Office Hours: MWF 14:30 pm-15:20 pm or by appointment. Phone: 625.4598 website: www.math.umn.edu/~rejto

Textbook: Buck, Advanced Calculus, McGraw Hill, Third Edition.

Homework: Homework will be assigned in class and collected a week after the assignment.

Tests: We will have a test on Friday February, 16, on Friday March 16, and on Friday, April 13.

Makeup Test: As per Senate and Math. Department policies, written documentation etc, required. For those who qualify, there will be a uniform makeup test. Time: Tuesday, April 24, 10:10 am – 11:00 am. Place: EE/Csci 2260. On Monday, April 23, please sign up for the makeup test with Professor Rejto by giving him your name and student number on a sheet of paper.

Incompletes: As per senate and Math. Department policies, written documentation etc, required. Note that arrangements have to be made before the Final!

Record keeping: If there is a discrepancy between your records and ours, please let us know it immediately, but not later than two weeks. In any case we shall not adjust our records after two weeks.

Drop Date: If you drop this course before the end of the second week, no mention of this course will appear on your transcripts.

Grading:

 $\begin{array}{ll} Homework/Project & 30\% \\ Tests \ 1-2-3 & 30\% \\ Final Examination & 40\% \end{array}$

COMPREHENSIVE FINAL EXAMINATION, THURSDAY MAY 10, 4:00 pm – 6:00 pm, Mech. Eng. 102

Math 4606(Advanced Calculus) Spring 2001

APPROXIMATE SCHEDULE AND SUGGESTED HOMEWORK	
Week	Chapter
1	1
2	1
3	2
4	2
5	3
6	3
7	4
8	5
9	6
10	6
11	7
12	7
13	7
14	Review

15 Review

List of Homework as of update on p. 1

Sec1.3;7 Sec1.2; 6, 7 Prove Theorem 7 in Chapter 1 Sec1.2;10,11,13,22,23 Sec1.3;4,5,6,17 Additional Problem 1. Challange Problem 1. Additional Problem 2. Prove Theore 1, Chapter 2. Sec 2.2, 1, 3, 5, 7, 9. Additional Problems 3 and 4. Sec 2.2, 12, 13. Sec 3.2, 1,3,9. Sec 3.2, 10. Additional Problem 8. Additional Problem 9. Additional Problem 10.

Formulation of the Additional Problems.

Additional Problem 1. Let a_1 , a_2 and a_3 be three non xero vectors in \mathbb{R}^2 . Prove that they are linearly dependent.

Additional Problem 2. Let L be a given positive number and define the sequence of intervals I_n : $I_0 = [-L, L]$ and $I_1 = [-\frac{L}{2}, 0]$ or $I_2 = [0, \frac{L}{2}]$. In general,

if
$$I_n = [a_n, b_n]$$
 then $I_{n+1} = [a_n, \frac{a_n + b_n}{2}]$ or $[\frac{a_n + b_n}{2}, b_n]$.

Next for a given interval I, let |I| denote the length of I. Prove that, for each n,

$$|I_n| \le \frac{1}{2^n} (2L).$$

Additional Problem 3. As usual let $C(\mathbb{R}^n, \mathbb{R}^m)$ denote the class of continuous functions mapping \mathbb{R}^n into \mathbb{R}^m . Give three linearly independent functions in $C(\mathbb{R}^n, \mathbb{R}^m)$. Additional Problem 4. Show that the functions, $1, x, x^2$ are continuous.

Additional Problem 5. Let the function f mapping R^2 into R^1 be defined by $f(x) = x^2$ and for a given R let the closed disk D(0, R) be defined by,

$$D(0,R) = \{(x,y) : x^2 + y^2 \le R^2\}.$$

Prove that for each R the function f is uniformly continuous on the closed disk D(0, R).

Additional Problem 6. Extend the function g of Problem 2.2.9 by defining it to bw 1 at each point where the original functio g is not defined. Prove that this extended function, g_e , is not continuos.

Additional Problem 7. Let g_e be any extension of the function g of Problem 2.2.9. Prove that this extended function, g_e , is not continuos.

Additional Problem 8. Show that Problems 2.2.12 and 2.2.13 imply Theorem 2.13.

Additional Problem 9. Let p be a polynomial of degree 3 and let p'(0) = 0 and p''(0) > 0. Prove that p(x) has a local minimum tx = 0. In other words, prove that there is an interval, $(-\delta, \delta)$ such that

$$\min_{x \in (-\delta,\delta)} p(x) = p(0).$$

Additional Problem 10. Prove Taylor's Theorem, that is to say prove Theorem 3.15 of the text. Note that there is typo in the text.

Challange Problem 1. For a given function f, mapping $D(f) \in \mathbb{R}^1$ into \mathbb{R}^1 , define its upper coordinate set U_f by

$$U_f = \{(x, y) : x \in D(f), y \ge f(x)\}.$$

Prove that f'' > 0 implies that the set U_f is convex.