Math 4606 Test 1 March, 19, 2001.

Professor Peter A. Rejto

Name (Print):	Student ID number:
Section number:	Name of TA:
Signature:	

Additional Information:

The sequence $\{a_n\}$ is Cauchy if to every $\epsilon > 0$ there is number N such that for every number n and m:

n > N and m > N implies $|a_n - a_m| \le \epsilon$.

Student ID number:_____

Name (Print): _____

1. (20 pts.) (Bolzano – Weierstrass Theorem in R^1) Let the sequence $\{a_n\} \in R^1$ be bounded in the sense that

 $\sup_{n<\infty} |a_n| < \infty.$ Prove that $\{a_n\} \in R^1$ has a convergent subsequence.

 $\mathbf{2}$

Name (Print): _____

Student ID number:_____

2. (20 pts.) Let the function f mapping \mathbb{R}^2 into \mathbb{R}^1 be defined by,

$$f(x, y) = xy.$$

Prove that f is continuous at each point (x, y) of \mathbb{R}^2 .

Name (Print):

Student ID number:_____

3. (20 pts.) Let f be the function of the previous Problem and for a given R let the closed disk D(0, R) be defined by,

$$D(0,R) = \{(x,y) : x^2 + y^2 \le R^2\}.$$

Prove that for each R the function f is uniformly continuous on the closed disk D(0, R).

Name (Print):

Student ID number:_____

4. (20 pts.) Let the function f map the set S into \mathbb{R}^n . Suppose that the set S is sequentially compact and that f is continuous. Prove that f is uniformly continuous on S.

Name (Print): _____

Student ID number:_____

5. (20 pts.) Let the function f map the set S into R^1 . Suppose that the set S is sequentially compact and that f is continuous. Prove that f is bounded on S.