Math 4606 Test 3 April, 18, 2001.

Professor Peter A. Rejto

Name (Print):	Student ID number:
Section number:	Name of TA:
Signature:	

Additional Information:

The sequence $\{a_n\}$ is Cauchy if to every $\epsilon > 0$ there is number N such that for every number n and m:

n > N and m > N implies $|a_n - a_m| \le \epsilon$.

Student ID number:_____

(1) (25 pts.) Let the function f mapping R^1 into R^1 be differentiable at the point $x \in R^1$ and let f'(x) denote its derivative. Prove that

Name (Print): _____

$$\lim_{|h| \to 0} \frac{|f(x+h) - f(x) - f'(x)h|}{|h|} = 0.$$

2

Name (Print): _____ Student ID number:____

(2) (25 pts.) Let the function $f \mod R^2$ into R^1 . Define that f'(x) is a derivative of the function f at the point $x \in R^2$.

Name (Print):Student ID number:(3) (25 pts.)State and sketch the proof of the Mean Value theorem.

Name (Print): _____ Student ID number:____

(4) (25 pts.) Suppose the function f mapping R^2 into R^1 has continuous partial derivatives and at the point $x = (x_1, x_2) \in R^2$ define

$$Df(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right).$$

Prove that Df(x) is a derivative of the function f at the point $x \in \mathbb{R}^2$.