Solutions by Aniko and Tamas Wiandt

(1) (25 pts.) Let the function f mapping R^{1} into R^{1} be differentiable at the point $x \in R^{1}$ and let $f^{\prime}(x)$ denote its derivative. Prove that

$$
\lim _{|h| \rightarrow 0} \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|}=0 .
$$

Solution. If f is differentiable at x and the derivative is denoted by $f^{\prime}(x)$, then

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

This implies that

$$
\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right)=0
$$

and then

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-f^{\prime}(x) h}{h}=0
$$

which implies

$$
\lim _{|h| \rightarrow 0} \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|}=0
$$

and the proof is complete.
(2) (25 pts.) Let the function f map R^{2} into R^{1}. Define that $f^{\prime}(x)$ is a derivative of the function f at the point $x \in R^{2}$.

Solution. Use the formula from the previous problem: $x \in R^{2}, h \in R^{2}$, $f^{\prime}(x) \in R^{2}$ and then $f^{\prime}(x)$ is the derivative at x if

$$
\lim _{|h| \rightarrow 0} \frac{\left|f(x+h)-f(x)-f^{\prime}(x) \cdot h\right|}{|h|}=0 .
$$

(3) (25 pts.) State and sketch the proof of the Mean Value theorem.

Solution. MVT: If f is continuous on an interval $[a, b]$ and $f^{\prime}(x)$ exists for $a<x<b$, then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Proof: Consider the function $g(x)=f(x)+\frac{f(b)-f(a)}{a-b} x$. This is clearly continuous on $[a, b]$, differentiable on (a, b),

$$
g(a)=g(b)=\frac{f(b) a-b f(a)}{a-b}
$$

so by Rolle's Theorem there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$.

$$
g^{\prime}(c)=f^{\prime}(c)+\frac{f(b)-f(a)}{a-b}
$$

and the statement follows.
(4) (25 pts.) Suppose the function f mapping R^{2} into R^{1} has continuous partial derivatives and at the point $x=\left(x_{1}, x_{2}\right) \in R^{2}$ define

$$
D f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}\right) .
$$

Prove that $D f(x)$ is a derivative of the funtion f at the point $x \in R^{2}$.
Solution. By Problem (2) the definition of the derivative $f^{\prime}(x)$ is

$$
\lim _{|h| \rightarrow 0} \frac{\left|f(x+h)-f(x)-f^{\prime}(x) \cdot h\right|}{|h|}=0 .
$$

We have to prove that this statement is true for the above defined $D f(x)$.
Let $h=\left(h_{1}, h_{2}\right)$, then

$$
\begin{gathered}
f(x+h)-f(x)=f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}, x_{2}\right)= \\
=f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}+h_{1}, x_{2}\right)+f\left(x_{1}+h_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right) .
\end{gathered}
$$

By the MVT

$$
f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}+h_{1}, x_{2}\right)=\frac{\partial f\left(x_{1}+h_{1}, x_{2}^{*}\right)}{\partial x_{2}} h_{2}
$$

for some $x_{2}^{*} \in\left(x_{2}, x_{2}+h_{2}\right)$ and

$$
f\left(x_{1}+h_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right)=\frac{\partial f\left(x_{1}^{*}, x_{2}\right)}{\partial x_{1}} h_{1}
$$

for some $x_{1}^{*} \in\left(x_{1}, x_{1}+h_{1}\right)$.

This implies that

$$
\begin{gathered}
f(x+h)-f(x)-D f(x) \cdot h= \\
\frac{\partial f\left(x_{1}+h_{1}, x_{2}^{*}\right)}{\partial x_{2}} h_{2}+\frac{\partial f\left(x_{1}^{*}, x_{2}\right)}{\partial x_{1}} h_{1}-\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}\right) \cdot\left(h_{1}, h_{2}\right)= \\
=\left(\frac{\partial f\left(x_{1}+h_{1}, x_{2}^{*}\right)}{\partial x_{2}}-\frac{\partial f(x)}{\partial x_{2}}\right) h_{2}+\left(\frac{\partial f\left(x_{1}^{*}, x_{2}\right)}{\partial x_{1}}-\frac{\partial f(x)}{\partial x_{1}}\right) h_{1} .
\end{gathered}
$$

Now clearly $0 \leq\left|h_{1}\right| /|h| \leq 1$ and $0 \leq\left|h_{2}\right| /|h| \leq 1$ and then by the triangle inequality we obtain that

$$
\begin{gathered}
0 \leq \frac{|f(x+h)-f(x)-D f(x) \cdot h|}{|h|} \leq \\
\leq\left|\frac{\partial f\left(x_{1}+h_{1}, x_{2}^{*}\right)}{\partial x_{2}}-\frac{\partial f(x)}{\partial x_{2}}\right|+\left|\frac{\partial f\left(x_{1}^{*}, x_{2}\right)}{\partial x_{1}}-\frac{\partial f(x)}{\partial x_{1}}\right| .
\end{gathered}
$$

The partial derivatives are continuous at $x=\left(x_{1}, x_{2}\right)$, so by the squeeze theorem we obtain that

$$
\lim _{|h| \rightarrow 0} \frac{|f(x+h)-f(x)-D f(x) \cdot h|}{|h|}=0
$$

and we established that $f^{\prime}(x)=D f(x)$ and the proof is complete.

