
Appendix C.
Properties of Real Symmetric Matrices

A matrix A is symmetric if A = AT – the transpose of A. This means that a = [aij] is
n × n matric with aij = aji for all i, j = 1, 2, . . . , n. We treat vector in Rn as column vectors:
x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , etc., with dot or scalar product

x · y = (x, y) := x1y1 + x2y2 + · · ·+ xnyn =
n∑

k=1

xkyk.

Then

(Ax, y) =
n∑

i,j=1

aijxjyi = (x,AT y).

In particular,

(1) (Ax, y) = (x,Ay) for all x, y ∈ Rn if A = AT .

It is easy to verify that the gradient

(2) ∇(Ax, x) ≡ 2Ax if A = AT .

Definition C.1. If Av = λv, where 0 6= v ∈ Rn, then v is an eigenvector of A, and λ is the
corresponding eigenvalue.

The equality Av = λv is equivalent to (A−λI)v = 0, where I is the unit matrix. This implies
that all the eigenvalues of A are roots of the characteristic equation

(3) pA(λ) := det(A− λI) = 0.

Theorem C.2. For every real symmetric n×n matrix A, there is an orthonormal basis v1, v2, . . . ,
vn in Rn of eigenvectors of A: Avk = λkvk for k = 1, 2, . . . , n, with λk ∈ R1.

Proof. Step 1. The function (Ax, x) is continuous on the compact set {|x| = 1} ⊂ Rn. Therefore,
it attains

λ1 := min
|x|=1

(Ax, x) = (Av1, v1) at some point v1 ∈ Rn, |v1| = 1.

Then the function

f1(x) := (Ax, x)− λ1 |x|2
attains its minimum value f1(v1) = 0 on {|x| = 1}. Since f1 is homogeneous of degree 2, we have
f1 ≥ 0 in Rn, and f1(x) attains its local minimum at x = v1. At this point, we must have, using
(2):

∇f1(x) = 2Ax− 2λ1x = 0.

This means Av1 = λ1v1.

Step 2. Next, consider the subspace

V1 := {x ∈ Rn : x ⊥ v1, i.e. (x, v1) = 0}.
If x ∈ V1, then

(Ax, v1) = (x,Av1) = (x, λ1v1) = λ1(x, v1) = 0,
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i.e. Ax ∈ V1. Therefore, A(V1) ⊂ V1, and we can consider A as a linear transformation of the
(n− 1)-dimensional space V1 into itself. Since (Ax, y) ≡ (x, Ay), the matrix of A in any basis of
V1 is symmetric. This is similar to the equalities

(4) aij = (Aej, ei) = (ej, Aei) = aji

in the original basis

(5) e1 := (1, 0, . . . , 0, 0)T , e2 := (0, 1, . . . , 0, 0)T , . . . , en := (0, 0, . . . , 0, 1)T in Rn.

Therefore, the argument in Step 1 shows that

λ2 := min
|x|=1, x⊥v1

(Ax, x) = (Av2, v2), where Av2 = λ2v2, |v2| = 1, v2 ⊥ v1.

Step 3. Continuing this procedure, we get the set of eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and the
orthonormal system of eigenvectors v1, v2, . . . , vn:

(6) Avk = λkvk for all k, and (vi, vj) = δij :=

{
1 if j = k,

0 if j 6= k.
.

¤

Lemma C.3. If (vi, vj) = δij for all i, j = 1, 2, . . . , n, then the matrix

(7) S := [v1, v2, · · · , vn] with columns v1, v2, · · · , vn

is orthogonal, i.e. S−1 = ST . In the new coordinates y1, y2, . . . , yn with respect to the
orthonormal basis v1, v2, · · · , vn, which satisfies (6), we have

(8) (Ax, x) =
n∑

i,j=1

aijxixj =
n∑

k=1

λky
2
k.

Proof. The matric C = [cij] := ST S has entries

cij = (ith row of ST ) · (jth column of S)

= (ith column of S) · (jth column of S)

= (vi, vj) = δij.

This means that C := ST S = I – the unit matrix, and S−1 = ST .

In order to verify the equality (8), let B = [bij] be the matrix of the transformation A in the
basis v1, v2, · · · , vn. Then similarly to (4), we have

bij = (vj, Avi) = (vj, λivi) = λi (vj, vi) = λiδij,

hence

(Ax, x) = (By, y) =
n∑

i,j=1

bijyiyj =
n∑

k=1

λky
2
k.

¤
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Remark C.4. If v1, v2, · · · , vn is a basis in Rn, i.e. linearly independent eigenvectors of n× n
matrix A = [aij], which is not necessarily symmetric, then Avk = λkvk for k = 1, 2, . . . , n,
without the orthogonality condition (vi, vj) = δij. In this case, the matrices A and S in (7) still
satisfy

AS = [Av1, Av2, · · · , Avn] = [λ1v1, λ2v2, · · · , λnvn]

= [v1, v2, · · · , vn] ·




λ1 0 · · · 0 0
0 λ2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 λn


 = SΛ,

where Λ := diag [λ1, λ1, . . . , λn]. This implies

(9) A = SΛS−1,

i.e. A is similar to the diagonal matrix Λ. Note that the characteristic polynomials (3) for
similar matrices coincide: if A = SBS−1, then

pA(λ) := det(A− λI) = det(SBS−1 − S · λI · S−1) = det(S · (B − λI) · S−1)

= det S · det(B − λI) · det(S−1) = det(B − λI) = pB(λ).

In our case B = Λ, from (9) it follows

(10) pA(λ) = pΛ(λ) =
n∏

k=1

(λk − λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Definition C.5. The trace of a square matrix A = [aij] is the sum of its diagonal elements:

tr A = tr [aij] :=
n∑

i=1

aii.

Lemma C.6. If A is a m × n matrix, and B is a n ×m matrix, then the m ×m matrix AB
and the n× n matrix BA have same trace: tr (AB) = tr (BA).

Proof. If C = [cij] = AB, then

cij = (ith row of A) · (jth column of B) =
n∑

k=1

aikbkj,

and

tr (AB) = tr C =
m∑

i=1

cii =
∑

i,k

aikbki.

Since the last expression is symmetric with respect to A and B, we get tr (AB) = tr (BA). ¤

Lemma C.7. If n × n matrix A has n linearly independent eigenvectors v1, v2, · · · , vn, i.e.
Avk = λkvk for k = 1, 2, . . . , n, then

(11) det A =
n∏

k=1

λk = λ1λ2 · · ·λn, tr A =
n∑

k=1

λk = λ1 + λ2 + · · ·+ λn.
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Proof. The first equality in (11) follows from (10) with λ = 0. One can also get the second
equality in (11) by comparing the coefficients of λ in both sides of (10).

Alternatively, one can apply Lemma C.6 to (9) as follows:

tr A = tr (S · ΛS−1) = tr (ΛS−1 · S) = tr Λ =
n∑

k=1

λk.

¤
Theorem C.8. Let A be a real symmetric n × n matrix with eigenvalues λ1, λ2, . . . , λn, i.e
according to (10),

pA(λ) := det(A− λI) =
n∏

k=1

(λk − λ).

Then f(x) := (Ax, x) satisfies ∇f(0) = 0. In addition,

(i) if there are λk of different sign: λk1 < 0 < λk2, then f(x) has neither maximum nor
minimum at x = 0;

(ii) if λk < 0 for all k, then f(x) has a local maximum at x = 0;
(iii) if λk > 0 for all k, then f(x) has a local minimum at x = 0.

Proof. By (2), we have ∇f(x) = 2Ax, so that ∇f(0) = 0. The properties (i)–(iii) follow directly
from the representation of f(x) := (Ax, x) in (8). ¤
Corollary C.9. In the case n = 2, the conditions (i)–(iii) in the previous theorem are simplified
as follows:

(i) if det A < 0, then f(x) := (Ax, x) has neither maximum nor minimum at x = 0;
(ii) if det A > 0 and tr A < 0, then f(x) has a local maximum at x = 0;
(iii) if det A > 0 and tr A > 0, then f(x) has a local minimum at x = 0.

Proof. In the case n = 2, the equalities (11) have the form det A = λ1λ2 and tr A = λ1 + λ2. We
have det A < 0 if and only if λ1 and λ2 have opposite signs, and det A > 0 if and only if λ1 and
λ2 have same sign. Hence the properties (i)–(iii) in this corollary follow from the corresponding
properties in Theorem C.8. ¤
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