Appendix C.
Properties of Real Symmetric Matrices

A matrix A is symmetric if A = AT - the transpose of A. This means that a = [a;;] is
n X n matric with a;; = aj; for all 4,7 = 1,2,...,n. We treat vector in R" as column vectors:
r=(21,29,...,2:)7, y = (y1,¥2,...,yn), etc., with dot or scalar product

Ty =(2,y) :=x1y1 + ToYs + -+ + TpYp = Zxkyk
k=1

Then

n

(Az,y) = Z QijT5Yi = (z, ATy).
ij=1
In particular,
(1) (Az,y) = (v, Ay) forall z,y e R" if A= AT
It is easy to verify that the gradient
(2) V(Az,z) =24z if A= AT

Definition C.1. If Av = \v, where 0 # v € R", then v is an eigenvector of A, and A is the
corresponding eigenvalue.

The equality Av = Av is equivalent to (A — AI)v = 0, where I is the unit matrix. This implies
that all the eigenvalues of A are roots of the characteristic equation

(3) pa()) = det(A — AI) = 0.

Theorem C.2. For every real symmetric nxn matrix A, there is an orthonormal basis vy, va, . . .,
v, in R™ of eigenvectors of A: Av, = My, for k =1,2,...,n, with A\, € RL.

Proof. Step 1. The function (Az, x) is continuous on the compact set {|z| = 1} C R". Therefore,
1t attains

A= min(Ax,x) = (Avy,v1) at some point v, € R", |u;| = 1.
x|=1

Then the function

fi(z) = (Az,z) — A\ |z)?
attains its minimum value fi(vy) = 0 on {|z| = 1}. Since f; is homogeneous of degree 2, we have
fi > 0in R™ and fi(z) attains its local minimum at # = v;. At this point, we must have, using

(2):
Vfi(z) =2Ax — 2 Mz = 0.

This means Av; = A\vy.
Step 2. Next, consider the subspace
Vi={zeR": zluv, ie (z,v)=0}

If z € V3, then

(Az,v1) = (z, Avy) = (2, \v1) = M (x,v1) =0,
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i.e. Az € V. Therefore, A(V}) C Vi, and we can consider A as a linear transformation of the
(n — 1)-dimensional space V; into itself. Since (Az,y) = (x, Ay), the matrix of A in any basis of
V7 is symmetric. This is similar to the equalities

(4) ai; = (Aej, e;) = (ej, Ae;) = agi
in the original basis
(5) e :=(1,0,...,0,0)", ey:=(0,1,...,0,00", ..., e,:=(0,0,...,0,1)" in R"
Therefore, the argument in Step 1 shows that
A= min (Az,z) = (Avg,vy), where Avy= Aoug, |va| =1, vy L vy.

|z|=1, zLvy

Step 3. Continuing this procedure, we get the set of eigenvalues Ay < Ay < ... < A, and the
orthonormal system of eigenvectors vy, v, ..., Uy:
1 if j=k
6 Av, = Mup, forall &, and  (v;,v;) = 05 := "
(6) k= AkUk (vi, v;) = 0y {0 it k.

Lemma C.3. If (v;,v;) = d;; for all i,j =1,2,...,n, then the matriz

(7) S = [v1, vg, --+ ,v,] with columns vy, vg, -+, v,
is orthogonal, i.e. S™' = ST. In the new coordinates yi,vs, . . ., yn with respect to the
orthonormal basis vy, vy, -+ , vy, which satisfies (6), we have
(8) (Az, x) Z ;T = Z Ay
i,j=1 k=1

Proof. The matric C' = [¢;;] := STS has entries

i row of ST) - (5 column of 9)

(
= (it

Cij

column of ) - (5 column of )
= (vi,v;) = dy5.

This means that C' := ST.S = I — the unit matrix, and S~ = S7.

In order to verify the equality (8), let B = [b;;] be the matrix of the transformation A in the
basis vy, vg, « -+ ,v,. Then similarly to (4), we have

bij = (vj, Avi) = (vj, \ivi) = i (v5,v;) = Nidig,
hence

(Al', .Z') By y Z bZ]yZy] Z )‘kylz
k=1

7,0=1
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Remark C.4. If vy, vg, -+ ,v, is a basis in R", i.e. linearly independent eigenvectors of n X n
matrix A = [a;;], which is not necessarily symmetric, then Av, = Ay for k = 1,2,...,n,
without the orthogonality condition (v;,v;) = d;;. In this case, the matrices A and S in (7) still
satisfy

AS - [AUl, AUQ, e 7Avn] - [)\lvb /\2?}27 e 7)\nvn]

A o --- 0 0
S TR K IV N (79
0 o --- 0 M\,

where A := diag[A1, A1, ..., A,]. This implies
9) A=SASTH

i.e. A is similar to the diagonal matrix A. Note that the characteristic polynomials (3) for
similar matrices coincide: if A = SBS~!, then

pa(\) = det(A — ) = det(SBS™ — S A[-S7Y) = det(S - (B — \)- S
= detS-det(B — ) -det(S™1) = det(B — X) = pg(\).

In our case B = A, from (9) it follows

(10) paN) =pa) = [TOw =) = i = DA = A) -+ (A = A).

k=1

Definition C.5. The trace of a square matrix A = [a;;] is the sum of its diagonal elements:

tr A = trfa;;] := Z i
i=1

Lemma C.6. If A is a m X n matriz, and B is a n X m matriz, then the m x m matriz AB
and the n x n matriz BA have same trace: tr (AB) = tr (BA).

Proof. It C' = [¢;;] = AB, then

n

Cij = (z’th row of A) - (jth column of B) = Z @it brj s

k=1
and
tr (AB) =trC = Zcii = Zazkb;ﬁ
i=1 ik
Since the last expression is symmetric with respect to A and B, we get tr (AB) = tr (BA). O

Lemma C.7. If n x n matriz A has n linearly independent eigenvectors vy, vg, -+ , Uy, i.€.
Avg, = Moy for k=1,2,...,n, then

(11) det A=JJM=MAa- Ay trA=D Ne=A+Xd+-+ A
k=1 k=1
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Proof. The first equality in (11) follows from (10) with A = 0. One can also get the second
equality in (11) by comparing the coefficients of A in both sides of (10).
Alternatively, one can apply Lemma C.6 to (9) as follows:

trA=tr(S-AST) =tr (AST" - §) =trA =) A

O

Theorem C.8. Let A be a real symmetric n X n matriz with eigenvalues Ay, X, ..., \,, i.€
according to (10),

pa(A) == det(A — \I) = JJ(\ —
k=1

Then f(x) := (Ax,x) satisfies Vf(0) = 0. In addition,

(1) if there are Ny of different sign: A\, < 0 < Ag,, then f(x) has neither mazximum nor
minimum at x = 0;

(ii) of M\ <O for all k, then f(x) has a local maximum at x = 0;

(iii) if A > 0 for all k, then f(z) has a local minimum at x = 0.

Proof. By (2), we have V f(z) = 2Ax, so that V f(0) = 0. The properties (i)—(iii) follow directly
from the representation of f(z) := (Ax,z) in (8). O

Corollary C.9. In the case n = 2, the conditions (i)—(iii) in the previous theorem are simplified
as follows:

(i) of det A <0, then f(z) := (Az,x) has neither mazimum nor minimum at x = 0;

(ii) of det A > 0 and tr A <0, then f(z) has a local mazimum at x = 0;

(iii) if det A > 0 and tr A > 0, then f(z) has a local minimum at x = 0.

Proof. In the case n = 2, the equalities (11) have the form det A = A\;As and tr A = \; + \y. We
have det A < 0 if and only if A; and Ay have opposite signs, and det A > 0 if and only if A\; and
Ao have same sign. Hence the properties (i)—(iii) in this corollary follow from the corresponding
properties in Theorem C.8. 0



