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Abstract

We study patterns that arise in the wake of an externally triggered, spatially propagating

instability in the complex Ginzburg-Landau equation. We model the trigger by a spatial inho-

mogeneity moving with constant speed. In the comoving frame, the trivial state is unstable to

the left of the trigger and stable to the right. At the trigger location, spatio-temporally periodic

wavetrains nucleate. Our results show existence of coherent, “heteroclinic” profiles when the

speed of the trigger is slightly below the speed of a free front in the unstable medium. Our re-

sults also give expansions for the wavenumber of wavetrains selected by these coherent fronts. A

numerical comparison yields very good agreement with observations, even for moderate trigger

speeds. Technically, our results provide a heteroclinic bifurcation study involving an equilibrium

with an algebraically double pair of complex eigenvalues. We use geometric desingularization

and invariant foliations to describe the unfolding. Leading order terms are determined by a

condition of oscillations in a projectivized flow, which can be found by intersecting absolute

spectra with the imaginary axis.

1 Introduction and main results

The complex Ginzburg-Landau equation (CGL),

At = (1 + iα)∆A+A− (1 + iγ)A|A|2, (1.1)

is a prototypical model for the spontaneous emergence of self-organized, regular spatio-temporal

patterns in spatially extended systems. It can be derived and justified in a universal fashion as an

approximation near the onset of an oscillatory instability in dissipative systems; see for instance

[2, 27] and references therein. As is typical for pattern-forming systems, CGL supports a variety

of coherent and complex patterns. Even in parameter regimes α ∼ γ, when the equation is close

to a gradient-like flow, there exist continua of stable periodic patterns, A ∼ ei(ω(k)t−k·x), and

coherent defects, most prominently Nozaki-Bekki holes in one space dimension and spiral waves

in two space-dimension, both having vanishing amplitude A = 0 at x = 0. Starting with random

initial data typically leads to spatial patches of coherent patterns with boundaries that slowly

evolve. On the other hand, starting with spatially localized initial conditions, one observes a

spatial invasion process that leaves distinct wavetrains in its wake, whose wavenumber does not

depend on the initial condition but only on system parameters; see [4, 9, 38]. While such a regular

pattern selection mechanism might be desirable, either from an engineering or a natural selection

1



perspective, it is typically difficult to achieve since it requires the preparation of a perfect unstable

state and hence uniform suppression of fluctuations almost everywhere.

Spatially triggered instabilities. Rather than quenching the system instantaneously into an

unstable state at all locations x, one often observes (or engineers) a progressively triggered insta-

bility, where a trivial state is unstable only in the wake of a progressing front. In the case of CGL

in one space dimension, such a process can be modeled via an inhomogeneous linear driving term,

At = (1 + iα)Axx + χA− (1 + iγ)A|A|2, (1.2)

where χ = χ(x − ct), c > 0, and, setting ξ = x − ct, χ(ξ) → χ± for x → ±∞, with χ− > 0 > χ+.

In fact, such spatially triggered instabilities arise in a variety of engineering applications and can

be viewed as caricature models of patterned growth processes. In the following, we mention a few

examples that have been studied in the literature.

Spontaneous nanostructures emerge on surfaces in ion beam milling due to a secondary sputtering

instability [5, 6]. The patterning process is usually irregular due to defect nucleation and intrinsic

surface instabilities. When the surface is exposed to an ion beam through a moving mask, regular,

defect-free nano-scale patterns can be created [18]. Controlling the speed and angle of the beam,

a rich variety of regular, defect free, nano-scale structures can be obtained. Similar models and

effects arise in abrasive water jet cutting [17], and in phase separation processes [16, 24]. In a similar

vein, recurrent precipitation patterns arise in the wake of a diffusion front to form banded ring-

like patterns, as originally observed by Liesegang [25]. Models often include a simple bimolecular

reaction whose product feeds as a diffusive source term into a model for the precipitation kinetics;

see for instance [10, 22]. Lastly, we mention patterns produced through growth and chemotaxis in

bacterial colonies; see for instance [26]. In a first approximation, one can envision patterns formed

by chemotactic motion in the wake of a spatially spreading growth process [1], with phenomena

reminiscent of patterns in the wake of trigger fronts in 2d Cahn-Hilliard equations [16].

In the present work, we focus on the complex Ginzburg-Landau equation. We believe that many of

the features of our analysis can be immediately transfered to more general pattern-forming systems,

such as the examples listed above. The advantage of the Ginzburg-Landau equation is that, due

to the gauge symmetry, periodic patterns are explicit and invasion as well as triggered fronts can

be found as heteroclinic orbits in a 4-dimensional traveling-wave equation, thus avoiding the (well-

understood) complications of infinite-dimensional, ill-posed systems for modulated traveling waves

[19, 20, 23, 32, 33]. On the other hand, the complex Ginzburg-Landau equation is of interest since

it approximately describes many pattern-forming systems near onset.

Phenomenology. Going back to the Ginzburg-Landau eqation with a moving triggered instabil-

ity (1.2), we now describe the basic scenario that we will analyze quantitatively in this article. In

the following work we fix

χ(ξ) =

{
χ− = +1, for ξ ≤ 0

χ+ = −1, for ξ > 0
(1.3)
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and consider (1.2) with fixed α, γ, while varying the speed c of the trigger χ as our primary

bifurcation parameter. Our results can be eaily adapted to different values of χ±. Smooth triggers

χ with derivative χ′ sufficiently localized would also be immediately amenable to the following

analysis.

Phenomenologically, one observes roughly two different regimes. For large speeds c, one observes

patterns in the wake of a front that propagates with a speed clin < c. The patterns created in the

wake of that front are roughly independent of the speed c. When the trigger speed is decreased

below clin, patterns nucleate roughly at the location of transition from stability to instability. The

wavenumber of patterns in the wake now depends smoothly on the speed c. At the transition,

c ∼ clin, the wavenumber in the wake depends continuously on c, constant for c > clin, and, to

leading order, linear for c . clin. This scenario is illustrated in space-time plots of direct numerical

simulations in Figure 1.1 and Figure 1.2. There, the trigger moves into the medium from the left,

sending out a periodic wave-train in it’s wake. The right-hand figure shows the same system in a

moving frame of speed c. The trigger is placed near the right boundary of the domain and sends

out waves to the left. Since A ≡ 0 is unstable for ξ < 0, without any local perturbations, the

system oscillates homogeneously. As time evolves, a periodic wave train emitted from the trigger

invades these homogeneous oscillations along a sink [33, 39].
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Figure 1.1: Simulations of trigger fronts in both stationary (left) and moving (right) frames; α = −0.1, γ =
−0.4, c = 1.8 < clin = 2

√
1 + α2 ≈ 2.01.
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Figure 1.2: The figure on the right gives the selected wavenumber for a range of trigger speeds; α =
−0.1, γ = −0.2. The figure on the left shows the space-time plot in the case c = 2.3 > clin, when the
constant wavenumber klin is selected. The dotted red line denotes the path of the trigger x = ct.
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Free fronts. Our results are based on perturbing from the freely invading front, which is the

front that one would observe when χ ≡ χ−. In that case, the medium is translation invariant and

unstable, and the instability spreads in space with a typical characteristic speed, clin. This invasion

process has received much attention in the literature and we refer to the review article by van

Saarloos [38] for an exposition of basic theory and applications. In the termiology used there, free

fronts in the complex Ginzburg-Landau equation are pulled fronts, with speed clin determined by

the linearization at the trivial state A ≡ 0: compactly supported initial conditions initially grow

exponentially, pointwise, in coordinate frames moving with speed |c| < clin, and decay exponentially,

pointwise, for speeds |c| > clin. At the critical speed clin, one observes algebraic decay, superimposed

on oscillations with a frequency ωlin. Both speed clin and frequency ωlin can be computed from the

linear dispersion relation, obtained from inserting the ansatz A ∼ eλt+νx into (1.1). In our case

this relation takes the form d(λ, ν) = (1 + iα)ν2 + 1− λ, by solving1

d(iω − cν, ν) = 0,
d

dν
d(iω − cν, ν) = 0

where d
dν is evaluated as a total derivative. One finds

clin = 2
√

1 + α2, ωlin = α, νlin = − 1− iα√
1 + α2

. (1.4)

One derives a linear prediction for the nonlinear pattern in the wake of the front from this linear

information as follows. Nonlinear spatio-temporally periodic patterns are, in the simplest form,

solutions of the form

A(t, x) = eiΩnl(k)tAp(x; k), Ap(x; k) =
√

1− k2e−ikx, where Ωnl(k) = −αk2 − γ(1− k2).

In the comoving frame of speed c, the frequency of these patterns is determined by the nonlinear

dispersion relation in the comoving frame,

Ω(k; c) = −αk2 − γ(1− k2)− ck. (1.5)

One can solve Ω(k, clin) = ωlin for k =: klin, using that |k| < 1, and thereby derive a linear prediction

for a nonlinear selected wavenumber,

klin =

 −
√

1 + γ2 −
√

1 + α2

γ − α
, for γ 6= α

− α√
1 + α2

, for γ = α.
(1.6)

We note that the group velocity of wave trains in the wake of the invasion front points away from

the front interface,

cg :=
dΩ(k; clin)

dk

∣∣∣
k=klin

= −2
√

1 + γ2 < 0. (1.7)

In other words, the invasion front acts as a wave source in its comoving frame; see [33].

In order to state our main assumption, we first give a precise characterization of invasion fronts in

1In general, one also needs to verify a pinching condition, which however in our case is automatically satisfied.
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the form needed later.

Definition 1.1 (Generic free fronts). A free front is a solution to CGL, (1.2) with χ ≡ 1, of the

form A(t, x) = eiωlintAf(x− clint), that satisfies

Af(ξ)→ 0 for ξ →∞, |Af(ξ)−Ap(ξ; klin)| → 0 for ξ → −∞.

We say a free front is generic if there exist A∞,B∞ ∈ C with A∞ 6= 0 such that

Af(ξ) =
(
A∞ξeνlinξ + B∞eνlinξ

)(
1 + Oξ(1)

)
, for ξ →∞.

Trigger fronts and main result. Our goal is to find solutions to (1.2) that describe the triggered

invasion process when the speed of the trigger is less than, but close to, the speed of the invasion

front. In a completely analogous fashion to free fronts, we define trigger fronts as spatial connections

between A = 0 at ξ = +∞ and a periodic wave train at ξ = −∞.

Definition 1.2 (Trigger fronts). A trigger front with frequency ωtf is a solution to CGL, (1.2),

with trigger speed c, of the form A(t, x) = eiωtf tAtf(x− ct), that satisfies

Atf(ξ)→ 0 for ξ →∞, |Atf(ξ)−Ap(ξ; ktf)| → 0 for ξ → −∞,

where ktf is such that ωtf = Ω(ktf ; c) and the group velocity

cg(ktf) :=
dΩ(k; c)

dk

∣∣∣
k=ktf

< 0.

In other words, trigger fronts are time-periodic with frequency ωtf and emit wave trains with

wavenumber ktf . Furthermore, for a fixed δ > 0 sufficiently small, we define the front interface

distance as

ξ∗ := inf

{
ξ; sup
ξ′>ξ
|A(ξ′)| < δ

}
.

We are now ready to state our main result.

Theorem 1. Fix α, γ ∈ R and assume that there exists a generic free front. Then there exist

trigger fronts for c < clin, |c − clin| sufficiently small. The frequency of the trigger front possesses

the expansion

ωtf(c) = ωabs(c) +
2|∆Zi|

π(1 + α2)3/4
(clin − c)3/2 +O((clin − c)2). (1.8)

Here,

ωabs(c) = −α+
αc2

2(1 + α2)
,

and ∆Zi is defined in (3.22), below. Furthermore, for α 6= γ the selected wavenumber has the

expansion

ktf = klin − g1(α, γ)(clin − c)−
2|∆Zi|

π(1 + γ2)1/2(1 + α2)3/4
(clin − c)3/2 +O((clin − c)2)
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where g1(α, γ) = 1
2(γ−α)

(
1+2αγ−α2√
(1+α2)(1+γ2)

+ 1

)
. The distance between the trigger and the front inter-

face is given by

ξ∗ = π(1 + α2)3/4(clin − c)−1/2 + (1 + α2)1/2 ∆Zr +O((clin − c)1/2),

where ∆Zr is defined in (3.22) as well.

In the following, we elaborate on assumptions and conclusions in this result.

Interpreting the expansion. The frequency ωabs is determined by the intersection of the ab-

solute spectrum [30] of the linearization at the origin in a frame moving with speed c and the

imaginary axis. Roughly speaking, the absolute spectrum denotes curves in the complex plane

that emanate from double roots of the dispersion relation such that finitely truncated boundary-

value-problems possess dense clusters of eigenvalues at these curves as the size of the domain goes

to infinity [30]. The absolute spectrum is a natural first-order prediction for frequencies of trigger

fronts as we shall explain in Section 2. Intersection points with the imaginary axis arise when

the edge of the absolute spectrum crosses the imaginary axis. This happens precisely when c is

decreased below clin, so that quite generally there will be a unique intersection point, smoothly

depending on c; see Figure 1.3.

Σabs

c < clin
iωlin

iωabs

iR

Σabs

iR

Figure 1.3: Left: Plot of the absolute spectrum Σabs in the complex plane. The blue dots denote double
roots. The curve moves into the right half plane for c < clin, intersecting iR at iωabs. Right: As the domain
size L increases to +∞ the spectrum of the linear operator accumulates on Σabs.

The term ∆Zi that describes corrections to the leading-order prediction can be interpreted as

a distance in projective space between tangent spaces of stable manifold and unstable manifold.

Roughly speaking, decay at ξ = +∞ creates an effective boundary condition of Robin type at ξ = 0,

while the leading edge of the invasion front approximately satisfies a different Robin boundary

condition. The distance between those two boundary conditions, measured in an appropriate

coordinate system, is denoted by ∆Zi. Using a simple shooting algorithm, one can evaluate ∆Zi

quite accurately; see our numerical studies in Section 4.

The assumption on existence, non-uniqueness, and more fronts. We will see in our proof

that the expansion of invasion fronts at ξ →∞ holds for any invasion front with |A∞|+ |B∞| > 0,

so that genericity refers to the (open) condition A∞ 6= 0, only. Existence can be cast as the problem

of existence of a heteroclinic connection between an unstable equilibrium and a sink. Genericity

refers to unstable and stable manifolds being in general position.
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We are not aware of results guaranteeing the existence of generic invasion fronts, or any evidence

pointing towards non-existence. We show in Proposition 3.3 that generic invasion fronts exist for

|α− γ| sufficiently small.

In a different interpretation, vanishing of A∞ characterizes fronts at the boundary between pushed

and pulled invasion in parameter space. In the case of cubic CGL, considered here, such a transition

has not been observed. On the other hand, the transition is usually accompanied by an increase

in the (nonlinear) invasion speed, so that one expects trigger fronts to exist for speeds larger than

clin beyond this transition; see the discussion in Section 5.

The fronts we find are not unique. In fact, our proof gives the existence of a countable family of

invasion fronts, indexed by j = 1, 2, . . ., with frequencies

ωtf(c; j) = ωabs(c) +
2|∆Zi|

πj(1 + α2)3/4
(clin − c)3/2 +O((clin − c)5/2). (1.9)

Roughly speaking, the distance between front interface (measured by, say, the location of |A| =

δ > 0, fixed) and the trigger location ξ = 0 increases linearly with the index j. We expect these

fronts to be unstable with Morse index increasing linearly in j.

Stability and secondary instabilities. We did not attempt to prove stability but we suspect

that the fronts we find are stable in a suitable sense. In fact, stability of the free front is known

for α = γ = 0 [12] and one can show that fronts with α ∼ γ are at least linearly stable. It would

be interesting to conclude stability of the trigger fronts that we find from spectral stability of the

free front. On the other hand, free fronts can be unstable. In particular, the wave train selected by

the invasion (or trigger) front is in fact unstable for many values of α and γ. Most dramatically,

for αγ < −1, all wave trains are unstable. The instability may propagate slower than the primary

invasion front, leading to a wedge in space-time plots where the (unstable) selected wave train can

be observed. For large α, γ, the secondary instability invades at a fixed distance behind the primary

front; see [38, §2.11.5], [36] and Figure 1.4 for an illustration.
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Figure 1.4: Invasion of spatio-temporal chaos after formation of periodic pattern in wake of a trigger;
parameters in the Benjamin Feir instability range: α = −1.2, c = 0.95 · clin = 1.90 ·

√
1 + α2 and γ = 2 (left),

and γ = 8 (right).
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Spatial dynamics. We prove our main result by rewriting the existence problem for a trigger

front as a non-autonomous ODE for Atf(ξ),

Aξξ = − 1

(1 + iα)

[
(χ(ξ)− iω)A+ cAξ − (1 + γi)A|A|2

]
. (1.10)

Here, c is the (externally prescribed) bifurcation parameter and ω is a matching parameter that will

be used to achieve appropriate intersections of stable and unstable manifolds. In fact, one can most

easily understand this ODE by separately considering dynamics with χ ≡ χ+ and χ = χ−, thus

obtaining two separate 4-dimensional phase portraits. For χ = χ+, we will find the equilibrium

A = Aξ = 0 with a two-dimensional stable manifold. For χ = χ−, we find that A = Aξ = 0 is

stable with an open basin of attraction. On the other hand, we also have a periodic orbit Ap,

depending on c and ω, with a two-dimensional unstable manifold. Existence of a free front implies

that there exists a heteroclinic orbit between Ap and the origin. The strategy of the proof is to find

intersections between the unstable manifold of Ap in the χ−-phase-space and the stable manifold

of the origin in the χ+-phase space. We will find these intersections bifurcating from the origin

upon decreasing c below clin and adjusting ω appropriately. A key technical ingredient to our result

is a geometric blowup of the origin which both factors the S1-action on (A,Aξ) ∈ C2 induced by

the gauge symmetry, and desingularizes the vector field by effectively separating eigenspaces near

an algebraically double complex eigenvalue. Intersections can then be found almost explicitly on a

singular sphere, and lifted using Fenichel’s invariant foliation methods [13, 14, 15].

Outline. The remainder of this paper is organized as follows. Section 2 gives heuristics and

a conceptual outline of the proof of Theorem 1, describing the role of the absolute spectrum in

finding the desired heteroclinic intersection. Section 3 contains the proof of our main theorem.

Section 4 gives comparisons between our expansions, direct simulations, and direct computations

of heteroclinic orbits. Finally, Section 5 gives a discussion of our results and directions for future

research.

Acknowledgments. A. Scheel was partially supported by the National Science Foundation

through grant NSF-DMS-0806614. This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship under grant NSF-GFRP-00006595. Any opinion,

findings, and conclusions or recommendations expressed in this material are those of the authors(s)

and do not necessarily reflect the views of the National Science Foundation.

2 Heuristics — formal asymptotics and the role of the absolute

spectrum.

We present several concepts that help understand the result. We first explain the role of absolute

spectra and then present a formal exponential matching argument that mimicks the main strategy of

proof. Last, we give a brief outline of geometric desingularization, the center piece of our approach

and connect it with these two other points of view.
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Absolute spectra. Taking the perspective of a numerical simulation in a comoving frame, we

could attempt to understand trigger fronts as steady states (up to the gauge symmetry) bifurcating

from the trivial state A ≡ 0 when the latter looses stability. One would then linearize the system at

A ≡ 0 in a bounded domain, in a comoving frame, equipped with separated boundary conditions. In

order to realistically capture the phenomena, we would assume that the size of the domain L is large.

One can even simplify further and substitute “effective” boundary conditions at ξ = 0 and restrict

to ξ ∈ [−L, 0]. The linearized operator (1+iα)∂ξξ +c∂ξ +1− iω then possesses constant coefficients

but is not self-adjoint and spectra in large domains are not approximated by spectra in unbounded

domains. In fact, eigenvalues of the linearized operator in the bounded interval accumulate, as

L→∞, at curves referred to as the absolute spectrum, Σabs [30]; see Fig. 1.3. Those curves can be

computed from the dispersion relation d(λ, ν) = 0 as follows. One varies λ as a parameter, solves

for all roots ν = νj(λ), and orders those roots by real part Re ν1 ≤ Re ν2 ≤ . . . ≤ Re νN for each

fixed λ. For Reλ → ∞, one always finds Re νj < 0 < Re νj′ , for j ≤ M < j′, with some fixed M .

The absolute spectrum then is the set of λ so that Re νM (λ) = Re νM+1(λ).

In our case, dc(λ, ν) = (1 + iα)ν2 + cν + 1− λ, with roots

ν± = − c

2(1 + iα)
±

√
c2

4(1 + iα)2
− 1− λ

1 + iα
.

At the absolute spectrum, we must have Re ν+ = Re ν−, so

c2

4(1 + iα)2
− 1− λ

1 + iα
< 0. (2.1)

Bifurcations in a bounded domain occur when eigenvalues cross the imaginary axis, λ = iω, leading

to periodic orbits with frequency close to ω. We are therefore interested in the intersection of the

absolute spectrum with the imaginary axis, which, starting with (2.1), is readily found at

ωabs(c) = −α+
αc2

2(1 + α2)
, (2.2)

for c < clin. We caution the reader that ωabs is not constant, due to two effects: the curve of absolute

spectrum is not horizontal and the imaginary part of the leading edge will depend on c. As the

domain size increases, eigenvalues will move along the curve of absolute spectrum towards the edge

[30, Lemma 5.5], which is located in {Reλ > 0}, thus leading to a sequence of Hopf bifurcations. The

periodic solutions with frequency ω emerging from these Hopf bifurcations converge to the trigger

fronts described in our main result; see also the subsequent discussion, pointing to a countable

family of trigger fronts.

While this view point gives a rather simple and universal prediction, it is generally not clear how

the bifurcating solutions evolve as L→∞. One can easily envision pushed fronts leading to a faster

propagation mechanism, thus inducing turning points in the branch of periodic solutions. We refer

to [8, 37, 35] for more detailed analyses in this direction.

Inspecting the proofs in [30], eigenvalues are generated by oscillatory dynamics in the Grassman-

nian: one evolves the boundary condition at ξ = −L as an element of the Grassmannian and seeks
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intersections with the boundary condition at ξ = L. Since eigenvalues in the Grassmannian are

differences of eigenvalues in the linear system, oscillatory dynamics occur when Reν− = Reν+, in

our simple case. In the following, we explain how these oscillatory dynamics can be found in a

more local analysis.

Exponential matching. Starting with the assumption that the amplitude of the trigger front

would be small at ξ = 0 when c . clin, we try to glue the free front, shifted appropriately, at ξ = 0

with an exponentially decaying tail in ξ > 0.

To leading order, the free front decays like A∞ζeν(ξ+ζ) + B∞eν(ξ+ζ), with shifted variable ζ. We

next vary ω and c and neglect the dependence of the coefficients A∞ and B∞ on c, ω. In order to

track the dependence of the exponential rate ν on ω, c, we inspect the linear dispersion relation

(1 + iα)ν2 + cν + 1 − iω = 0. Near ω = ωlin and c = clin, we have two roots ν1 ∼ ν2, so that one

expects decay in the front profile Aeν2(ξ+ζ), when Re ν1 < Re ν2 < 0.

On the other side, small solutions in ξ > 0 decay likeA+eν+ξ, where ν+ solves (1+iα)ν2+cν−1−iω =

0.

Trying to match A and Aξ at ξ = 0, we find that due to leading order scaling invariance (keeping

only linear terms) and gauge invariance, it is enough to match Aξ/A. This however gives ν+ = ν1 in

our leading order expansion, an equation that cannot be solved varying ω and c locally. In fact, our

expansion for the invasion front Aeν1(ξ+ζ) is not valid uniformly when varying ω and c. In order to

get smooth and uniform expansions, one needs to use a smooth expansion in terms of exponentials

near the double root, using either smooth normal forms near a Jordan block [3] or, more along the

lines of our strategy, normal forms for the induced flow on Aξ/A. Without going into details, one

readily finds that the expansion in eν2ξ alone will fail near Re ν1 = Re ν2, where one would keep

both terms Aeν1ζ + Beν2ζ . Varying ζ and the difference ν1 − ν2 as a function of ω, one can then

solve the matching problem with ξ > 0.

Note that here the absolute spectrum appears in a natural way as parameter values ω where

Reν1 = Reν2.

Geometric desingularization. The global aspect of the matching procedure is illustrated in

Figure 2.1. The dynamics with χ ≡ χ− show a periodic orbit Ap with a two-dimensional unstable

manifold that converges to the stable equilibrium A ≡ 0. In this phase portrait, the linearization

at the origin is a complex Jordan block. Overlayed is the phase portrait for χ ≡ χ+, where A ≡ 0

possesses a two-dimensional stable manifold. Factoring the S1-symmetry, both manifolds are 1-

dimensional in a 3-dimensional ambient space. We are looking for intersections close to the origin.

Our main control parameter is ω, which, together with the bifurcation parameter c unfolds the

complex Jordan block and leads to possible flips in the position of the unstable manifold of Ap near

A ≡ 0.

From the above discussion, it is apparent that a description of a neighborhood of A = Aξ = 0

is crucial to the understanding of the matching procedure. There are several dynamical systems

techniques for such a description. First, one can try to use smooth linearization for the ODE (1.10).

Since ν = νlin has negative real part, the double eigenvalue is in fact non-resonant, and smooth
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linearization results are available; see for instance [21, §6.6]. In our context, we would however

also require smooth parameter-dependence and S1-equivariance. While such results may well be

true, our approach appears more robust and elementary. Roughly speaking, we introduce polar

coordinates for (A,Aξ) ∈ C2 ∼ R+×S3, and factor the gauge symmetry, C2/S1 ∼ R+× (S3/S1) ∼
R+×S2, where the last equivalence collapses the Hopf fibration. Identifying S2 with the Riemann

sphere C, we end up with coordinates |A|2 and Aξ/A, that we identified above. In these coordinates,

the sphere |A|2 = 0 is normally hyperbolic and carries an explicit linear projective flow that allows

us to compute expansions at leading order. Matching outside of the sphere, which corresponds

to taking higher-order terms in the exponential matching procedure into account, can be readily

achieved after straightening out smooth foliations. We refer to the next sections for details of this

procedure.

W ss
− (0)

c, ω

Ap

W cu
− (Ap)

W s
+(0)

Figure 2.1: Schematic diagram of intersection between W cu
− (Ap) and W s

+(0). The red lines denote the
invariant manifolds of the origin in the ξ > 0 dynamics. These act as boundary conditions for a shooting from
W cu

− (Ap). Unfolding c and ω from clin and ωlin, we obtain a non-trivial intersection at (ξ, ω) = (ξ∗, ωtf(c))
(blue dot) .

3 Heteroclinic bifurcation analysis

In this section we prove our main result. We start in Section 3.1 by several simple rescaling

transformations and calculate dimensions of stable and unstable manifolds using information from

the dispersion relation. Section 3.2 introduces the coordinate system near the origin that we use

to factor the gauge symmetry and desingularize the linear dynamics. Section 3.3 examines the

asymptotics of the free invasion front and shows that our assumptions are verified in the regime

α ∼ γ. Section 3.4 contains the matching analysis in the desingularized coordinates.
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3.1 Scalings and dimension counting

The following change of variables will slightly simplify the remainder of our analysis, essentially

eliminating α as a parameter. Suppose first that 1 + αγ > 0. Setting

S =
cα

2
√

1 + α2
, m2 = 1 +

(cα)2

4(1 + α2)
− αω, l2 =

1 + αγ

m2
, (3.1)

we scale and parameterize

a = le−iSξA, ĉ =
c

m
√

1 + α2
, ω̂ =

ω − ωabs(α, c)

m2
, ζ =

m√
1 + α2

ξ, γ̂ =
γ − α
1 + γα

, (3.2)

so that (1.10) simplifies to

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2 +
(1− χ)

m2
(1 + iα)a. (3.3)

If we restrict to ζ < 0 we have χ = 1 and obtain

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2, (3.4)

whereas for ζ ≥ 0 we obtain

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2 +
2

m2
(1 + iα)a. (3.5)

The cases 1 + αγ < 0 and 1 + αγ = 0 can be treated in a similar fashion. For 1 + αγ < 0 one finds

aζζ = −(1− iω̂)a− ĉaζ + (−1 + iγ̂)a|a|2 +
(1− χ)

m2
(1 + iα)a, (3.6)

and for 1 + αγ = 0 we find

aζζ = −(1− iω̂)a− ĉaζ + iγ̂a|a|2 +
(1− χ)

m2
(1 + iα)a. (3.7)

Since those cases do not alter the subsequent discussion, we omit the straightforward details and

focus on the case 1 + αγ > 0 in the sequel.

Remark 3.1. The fact that the scaled equation changes type when 1 +αγ changes sign reflects the

Benjamin-Feir instability: for 1 + αγ < 0, all wave trains are unstable. One observes secondary

invasion fronts, Figure 1.4, which for moderate values of |αγ| propagate slower than the primary

invasion front, leaving a long plateau of unstable wave trains. For large values of |αγ|, the instability

catches up with the primary front and one observes chaotic dynamics in the immediate wake of the

primary front. In this case, our results, while correct, do not describe actually observed wavenumbers

due to the strong, absolute instability in the wake; we refer to [38, §2.11.5] and [28] for a discussion

of this behavior for free invasion fronts.

For the remainder of the proof, we will consider the first order form of (3.3), writing ζ as our spatial

12



variable, A once again as the amplitude, and B := Aζ .

Aζ = B

Bζ = −(1− iω̂)A− ĉAζ + (1 + iγ̂)A|A|2 +
(1− χ)

m2
(1 + iα)A. (3.8)

The following proposition shows that free fronts are unique up to spatial translation and gauge

symmetry.

Proposition 3.2. Let c = clin and ω = ωlin. Then the CGL traveling wave equation (1.10) possesses

a unique relative equilibrium Ap with wavenumber klin. In other words, there exists a unique wave

train with frequency ωlin in a frame moving with speed clin. In (1.10), this relative equilibrium

possesses a smooth two-dimensional center-unstable manifold W cu
− (Ap).

Proof. The proof of the proposition is a direct calculation of eigenvalues of the linearization at

Ap. We refer to [39, §2.2.3], where explicit conditions are given so that this linearization possesses

precisely one unstable eigenvalue but caution the reader that the convention in this paper is to

define frequency and wavenumber of wavetrains via A = re−iωt+kx (i.e. with the opposite sign as

ours). Substituting c = clin and ω = ωlin into the formulas there, we obtain the desired result for

all α, γ.

3.2 Symmetry reduction and geometric blowup

In order to carry out the matching procedure near the origin, we would like to quotient the S1-

action and exhibit the leading-order scaling symmetry from the linearized equation. It turns out

that this can be achieved in a very simple fashion, introducing |A|2 ≥ 0 and Aζ/A ∈ C as new

variables. While very effective, this choice appears somewhat arbitrary and we will show how to

obtain these coordinates in a systematic fashion.

Since the S1-action is not free near the origin, the quotient C2/S1 is not a manifold. A canonical

parameterization of the orbit space is given by the Hilbert map and canonical coordinates are given

by the generators of the ring of invariants of the action; see [7, Thm 5.2.9]. In our case, the ring of

invariants is generated by

R = |A|2, S = |B|2, N = AB̄ (3.9)

where, once again, we have set B = Aζ , with a relation

H(R,S,N) := RS −NN̄ = 0, R ≥ 0, S ≥ 0, (3.10)

hold. The generators of the ring of invariants can be found either through a direct computation or

using the general theory of invariants as outlined in [7, §5]. Explicitly, one checks that a monomial

A`1Ā`2B`3B̄`4 is invariant if `1 + `3 = `2 + `4, which defines a submodule M of N4. One then

readily verifies that this submodule is generated by the vectors

e1 = (1, 1, 0, 0), e2 = (0, 0, 1, 1), e3 = (1, 0, 0, 1)

which correspond to the monomials in (3.9) above. In other words, any invariant monomial can
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be written as a product of R,S,N, and N̄ in an obvious fashion. More generally, one can compute

the Molien series [7, Thm 5.4.1] of this specific representation of the group S1 as 1+z2

(1−z2)3
. The

denominator indicates three algebraically independent quadratic monomials, say R,S,Re(N), and

the numerator suggests another, algebraically dependent, quadratic invariant, Im(N); see [7, Rem

5.4.2].

The orbit space C2/S1 is then homeomorphic to the subset of R,S,N ∈ R2×C where the relations

(3.10) hold. One can now express (3.8) in invariants, only, and derive equations for R,S,N [7, §6].

We next would like to eliminate the leading-order scaling symmetry, which, since all invariants

are quadratic, acts equally on R,S,N . Directional blowup [11], allows us to exploit the leading-

order scaling symmetry in an explicit fashion. We therefore use an equivariant, R, and associated

invariants S/R, N/R, with respect to the scaling symmetry as new variables. The idea is that the

invariants represent the quotient space and the equivariant, which commutes with the action of the

scaling group rather than being invariant, tracks the scaling action. One finds that the relations

simplify and the orbit space is given as a graph, S/R = N/R ·N/R, so that we may consider the

invariant z = N̄/R = B/A ∈ C, only2. We find the system

z′ = −z2 − ĉz − (1 + iω̂) + (1 + iγ̂)R

R′ = 2Re(zR) = R(z + z) (3.11)

in the phase space R+ × C. In order to obtain a complete set of charts in a neighborhood of the

origin, one also uses the directional blowup in the S-direction, with variables z̃ = A/B = 1/z and

S,

z̃′ = 1 + ĉz̃ + z̃2
[
1 + iω̂ − (1 + iγ̂)|z̃|S2

]
S′ = 2S

[
−Re((1− iω̂)z̃)− c+ Re((1 + iγ̂)z̃)|z̃|2S

)
. (3.12)

Note that the z̃ equation is precisely the Poincaré inversion of the z-equation in system (3.11), and

that the singularity z =∞ is non-degenerate, with z̃′ = 1.

Also, note that the sphere z ∈ C, R = 0, together with the point z̃ = 0, S = 0, is flow-invariant, the

blown-up origin of the original system. On this singular sphere S, we isolated the scaling-invariant,

leading-order part of the equation. Of course, the sphere can also be understood as the result of

collapsing the Hopf fibration, obtained via C2/S1 ∼ R+ × (S3/S1) ∼ R+ × S2.

Since a direct calculation using (1.4) and (3.2) shows that ĉlin = 2, it is convenient to introduce the

detuning of the trigger speed from the free front speed as a new parameter,

∆ĉ = ĉlin − ĉ = 2− ĉ, 0 < ∆ĉ� 1.

The system (3.11) now reads

z′ = −(z + 1)2 + ∆ĉ z − iω̂ + (1 + iγ̂)R

R′ = 2Re(zR) = R(z + z). (3.13)

2We do not know when to expect such a simplification for more general group actions.
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To conclude this section, we study the flow on the singular sphere, given by the Riccati equation

z′ = −(z + 1)2 + ∆ĉ z − iω̂. (3.14)

Equilibria

z−1/2 = −2−∆ĉ

2
±
√
−∆ĉ − iω̂ +

(∆ĉ )2

4
,

correspond to eigenspaces of the original linearized equation. The equilibria undergo a complex

saddle-node at z = −1 when ∆ĉ = 0, ω̂ = 0, and a Hopf bifurcation at ∆ĉ > 0, ω̂ = 0. At the Hopf

bifurcation, the flow on S consists of periodic orbits, whereas outside of the Hopf bifurcation, all

non-equilibrium trajectories converge to the same equilibrium. At the saddle-node, all trajectories

are homoclinic to z = −1. Of course, the Riccati equation can be integrated explicitly, and we will

exploit this later on.

We also note that for the ζ > 0 dynamics (χ(ζ) = −1) the equilibria on S satisfy

z2 + (2−∆ĉ )z + (−1 + iω̂) +
2

m2
(1 + iα),= 0.

The equilibrium with negative real part corresponds to the tangent space of the stable manifold

W s
+ and is explicitly given through

z+ = −2−∆ĉ

2
−
√

2−∆ĉ − iω̂ +
(∆ĉ )2

4
+

2

m2
(1 + iα). (3.15)

3.3 Existence of generic free invasion fronts and the blowup geometry

We show that generic free fronts exist when |α − γ| � 1 and analyze asymptotics in our blowup

coordinates. As we saw in the previous section, the dynamics on the sphere consist of homoclinic

orbits converging to a saddle-node equilibrium zb = −1 when ∆ĉ = ω̂ = 0, corresponding to the

unscaled parameters c = clin and ω = ωlin. In particular, there exists a unique trajectory in the

strong stable manifold of the equilibrium, which corresponds to decay e−ζ . All other trajetories

decay with rate 1/ζ in the tangent space of the sphere, which translates into decay A(ζ) ∼ A∞ζe−ζ+

B∞e−ζ with A∞ 6= 0. In fact, one readily obtains

zf (ζ) ∼ ν +
1

ζ + B∞
A∞

= −1 +
1

ζ + B∞
A∞

, Rf (ζ) = e2Re νζ |A∞ζ + B∞|. (3.16)

The following proposition shows that A∞ 6= 0 for α ∼ γ.

Proposition 3.3. For fixed α, generic free fronts as defined in Definition 1.1 exist when |α− γ| is

sufficiently small.

Proof. In scaled variables, when ĉ = ĉlin = 2 and ω̂ = ω̂lin = 0, we find

A′′ = −A− 2A′ + (1 + iγ̂)A|A|2, (3.17)
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where, from (3.2), γ̂ = O(|γ − α|). For γ̂ = 0, this equation posseses a real heteroclinic solution

connecting A = 1 to A = 0, with the desired asymptotics A(ζ) ∼ A∞ζe−ζ + B∞e−ζ , A∞ > 0.

Since the heteroclinic is a saddle-sink connection between the circle of relative equilibria |A| = 1

and the origin, it persists for small values of γ̂ as a heteroclinic orbit between a nearby relative

equilibrium and the origin. Moreover, the heteroclinic is not contained in the strong stable manifold

of the saddle-node equilibrium at α = γ and therefore does not lie in the strong stable manifold for

|α− γ| � 1. This proves the proposition.

These genericity assumptions can be visualized in the blowup coordinates coordinates of Section 3.2.

Since the gauge symmetry is eliminated in such coordinates, the neutral direction of the periodic

orbit is removed so that dimW cu
− (Ap) = 1; see Figure 3.1 for a schematic drawing of dynamics in

blowup coordinates near the origin.

W s
+(0)

W cu
− (Ap)

W ss
− (0)

z+

zb

Ap

c = clin
W s

+(0)

W cu
− (Ap)

z−2

Ap

ω > ωabs

z−1

c < clin

Figure 3.1: Dynamics near the singular sphere: free front heteroclinic (blue) and stable manifold W s
+(0)

(red). Left: Unscaled parameters set c = clin, ω = ωlin. On the sphere, homoclinic trajectories are tangent
to the real circle (green) at the branch point zb. Right: Perturb in c < clin at ω = ωabs(c). The branch
point zb bifurcates into two equilibria which are encircled by periodic orbits. For ω perturbed away from
ωabs equilibria become unstable and stable respectively causing drift along the family of periodics.

We also tested our hypotheses on existence and genericity of free fronts numerically for α− γ not

necessarily small. Using a shooting method for (3.13), we calculate the unstable manifold of

zp = ik̃lin, R =

√
1− k̃2

lin,

where k̃lin is the linearly selected wavenumber calculated using (3.4). We then track the base point

z∗ of the fiber in which this trajectory lies when R = δ small. For parameters at the branch point,
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if z∗ is far away from zb = −1, we observe that W cu
− (Ap) does not approach the sphere along the

strong stable manifold of the branch point. Thus if the quantity |z∗+ 1| is non-zero we obtain that

the free front is generic and thus A∞ 6= 0. This quantity is plotted for a range of γ-values in Figure

3.2. Recall that α = γ implies that in our scaled coordinates γ̂ = 0. Using z∗ we can also calculate

∆Zi defined in (3.22). We then use this in calculating our O((∆c)3/2)-prediction in Figure 4.1. The

righthand side shows the coefficient ∆Zi over a range of γ̂-values.
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Figure 3.2: Left: Plot of |z∗ + 1| for γ̂ ranging from zero to ten. Right: Plot of ∆Zi over the same range of
γ̂.

3.4 Matching stable and unstable manifolds at ζ = 0

We now prove our main result. The road map is as follows. We shall see that the singular sphere

S is normally hyperbolic. This will give that the flow is locally foliated by smooth one dimensional

fibers with base points in S. Then, well-known results of Fenichel and an inclination lemma will

essentially reduce the connection problem to the singular sphere S. On the sphere, we give a series

of coordinate changes which allow us to explicitly integrate the dynamics on S in a robust fashion,

dependent on the scaled parameters ∆ĉ and ω̂. We find a connecting orbit using time and ω̂ as

matching parameters. A local analysis yields a leading order expansion for the angular frequency

ω̂sel(∆ĉ) in ∆ĉ near zero. We finally unwind our scaling transformations to obtain an expansion of

ωtf in the unscaled ∆c := clin− c. This expansion can then be inserted into the dispersion relation

(1.5) to obtain a wavenumber prediction for the pattern left in the wake of a trigger front.

Normal hyperbolicity and smooth foliations near S. In what follows, consider all manifolds

in the reduced phase space R+ × S2. Let Φζ be the flow of the full system (3.13) and φζ the flow

on S. Now, note for ∆ĉ = ω̂ = 0, all trajectories on the sphere S converge to the branch point zb

with algebraic decay O(1/ζ). Since the the linearization at zb is normally hyperbolic, this implies

that the invariant singular sphere S is normally hyperbolic and Fenichel’s results [13, 15] imply

that the phase space R+×S2 is locally smoothly foliated by smooth one-dimensional strong-stable

invariant fibers ΦζFz ⊂ Fφζ(z). More precisely, all leaves are Ck manifolds, with Ck-dependence

on base point and parameters, for any finite fixed k <∞.
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As a consequence, there exists a smooth change of coordinates that straightens out the local stable

foliation, so that (3.13) can be written as

z′ = −(z + 1)2 + ∆ĉ z − iω̂

R′ = R · g(R, z; ω̂,∆ĉ ), (3.18)

where g(0,−1; 0, 0) = −1.

To prove existence of the desired connection, we need to choose ∆ĉ > 0 small and find ω̂∗ and ζ∗
such that there exists a point (R, z) = (δ, z−) ∈W cu

− (Ap) with δ > 0 sufficiently small so that

Φ−ζ∗
(
W s

+(0)
)
∩W cu

− (Ap) 3 (δ, z−).

Before we prove the existence of such an intersection, we investigate the structure of W s
+(0). It is

important to remember that W s
+(0) is not a stable or unstable manifold in the ζ < 0 dynamics,

but just the set of initial conditions for the ζ < 0 flow that will give rise to decaying solutions

when integrated forward in the ζ > 0 dynamics. In the blowup coordinates (3.13), W s
+(0) is one

dimensional and can be written locally as a graph over the fiber Fz+ in the ζ < 0 dynamics. More

precisely, there exists an h : R+ → C, with h(0) = 0 so that locally

W s
+(0) = {(R, z+ + h(R)) |R ≥ 0}.

The normal hyperbolicity of S then allows us to study how this set evolves under the flow. Heuris-

tically, when flowed in backwards time, a piece W s
+(0)loc of the ζ > 0 local stable manifold will be

stretched out in the normal direction while expanding comparatively little in the S directions. Since

W s
+(0) is a graph over the strong stable fiber Fz+ , the considerations above imply that Φ−ζ(W

s
+(0))

will remain a graph over the strong-stable fiber with base point φζ(z+). This graph will converge

to the strong stable fibration as ζ increases. This strong inclination result is commonly referred to

as a λ-Lemma and is stated precisely in the following lemma; see also Figure 3.3 for an illustration.

Lemma 3.4 (λ-Lemma). The image of the local ζ > 0-stable manifold W s
+(0)loc under the flow

Φ−ζ , with ζ > 0, large, is exponentially close to the strong stable fiber Fφ−ζ(,z+). More precisely,

there exist constants κ,C > 0 and a function h̃(·, z+) : R+ → C such that

Φ−ζ(W
s
+(0)loc) = {

(
R,φ−ζ(z+) + h̃(R,−ζ, z+)

)
|R ≥ 0}

where ‖h̃(R,−ζ, z+)‖Ck ≤ Ce−κζ for any k <∞, h̃(0, ζ, z) = 0, and ∂zh̃ 6= 0.

Proof. This lemma is a consequence of the existence proof for invariant foliations [15]: one shows

that trial foliations over the linear strong stable foliation converge to the invariant foliation when

transported with the backward flow.
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z−

φ−ζ∗(z+)

(z−, δ)

z+

Φ−ζ∗(W
s
+(0))

S

W cu
− (Ap)

h

h̃

ω̂

Mz−

W s
+(0)

Fz− Fφζ(z−)

Figure 3.3: Depiction of foliations and heteroclinic connection. The strong-stable foliation of the trajectory
φζ(z−) is denoted as Mz− (blue). Here h̃ = h̃(δ,−ζ∗, z+) and h = h̃(δ, 0, z+). The stable manifold W s

+(0)
(dark red) is stretched in the normal direction under the backwards flow, approachingMz− . We vary ω̂ and
ζ so that Φ−ξ∗(W s

+(0)) ∩ Fz− = (z−, δ).

Connecting via the singular flow. With these results in hand,we wish to establish a connection

by finding a time-of-flight ζ∗ and frequency ω̂∗ such that

z− = φ−ζ∗(z+; ω̂∗) + h̃(δ,−ζ∗, z+). (3.19)

Recall that z+ is the base point of W s
+(0) and z− is the base point of the strong stable fiber that

contains W cu
− (Ap) with R = δ.

We rewrite (3.19) as

φ−ζ(z+; ω̂∗) = z− − h̃(δ,−ζ∗, z+), (3.20)

and change variables in parameter space,

µ(∆ĉ , ω̂) = −∆ĉ − iω̂ +
(∆ĉ )2

4
:= M2eiθ, M, θ ∈ R.

Next, we shift z = ẑ + ∆ĉ
2 − 1 in (3.11) and obtain

ẑ′ = −ẑ2 + µ(ω̂,∆ĉ ). (3.21)

In these variables, W s
+(0) intersects the blowup sphere at the point

ẑ+ = ẑ+(∆ĉ, ω̂) = z+ −
∆ĉ

2
+ 1 = −

√
K −∆ĉ +

(∆ĉ )2

4
− iω̂ = −

√
K +M2eiθ,
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where K = 2 + 2
m2 (1 + iα), m was defined in (3.1), and z+ was defined in (3.15).

We note that ẑ+(0, 0) = 4 + 2iα is non-zero. Also, our assumptions give that ẑ− is non-zero, but

needs to be evaluated numerically. This allows us to define,

∆Z =

(
1

ẑ+
− 1

ẑ−

) ∣∣∣∣∣
M=0

, ∆Zr = Re ∆Z, ∆Zi = Im ∆Z. (3.22)

Note that M = 0 corresponds to ∆ĉ = ω̂ = 0.

Next, we scale ẑ = Mw, ζ̂ = Mζ and use the Möbius transformation

ρ =
w + η

w − η
, η = ei θ

2

to shift equilibria to the north and south pole of the sphere, respectively.

Last, we set r = log(ρ) and find the constant vector field

ṙ = (log(ρ))ζ̂ = 2η. (3.23)

In our new coordinates, the points ẑ+ and ẑ− − h̃(δ, ẑ−,−ζ̂/M), which we wish to connect, have

the representations

r+ = log

(
1 + Mη

ẑ+

1− Mη
ẑ+

)
+ i(2πj+), r− = log

1 + Mη−h̃
ẑ−

1− Mη−h̃
ẑ−

+ i(2πj−),

where h̃ = h̃(δ, ẑ+,−ζ̂/M), and j± ∈ Z take into account that the complex logarithm is multi-

valued. By varying µ (i.e. ω̂ and ∆ĉ) we wish to find a solution r(ζ̂ ) connecting these points in

finite time ζ̂ = T̂ .

As we are expanding from ∆ĉ = ω = 0, we have that M is small. Thus we find to first order

r+ = i(2πj+) +
2Mη

ẑ+
+O(M3), r− = i(2πj−) + 2

Mη − h̃
ẑ−

+O(M3).

Now integrating (3.23), setting r(0) = r+ and r(−ζ̂) = r−, we obtain

−2η ζ̂ = r− − r+ = −i(2π∆j)− 2ηM ∆Z − 2h̃

ẑ−
+O(M3), (3.24)

where ∆j = j+ − j− and we have discarded all but the leading order term, in M , of 1
ẑ+
− 1

ẑ−
. We

then obtain the equation

ζ̂ = i∆jπe−i
θ
2 +M ·∆Z +

2h̃

ηẑ−
+O(M3). (3.25)

By Lemma 3.4, we have for ζ̂ > 0, h̃ = h̃(δ,−ζ̂/M, ẑ+) = O(Mk) for all k ≥ 1. Thus, we can

smoothly extend h̃ at M = 0 to h̃ = 0.
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Now setting θ̂ = −π + θ we obtain

ζ̂ = −∆jπe−
θ̂
2 +M∆Z +O(M3) (3.26)

This equation has the solution

M = 0, θ̂ = 0, ζ̂ = −∆j π.

We choose ∆j < 0 so that ζ̂ > 0. We wish to find a solution near this point for M small. Considering

the imaginary part of (3.26)

0 = ∆jπ sin(θ̂/2) +M ∆Zi +O(M3)

and expanding in θ̂, we obtain

θ̂ = −2
M ∆Zi

π∆j
+O(M3).

Inserting this into the real part of (3.26) and solving for ζ̂, we obtain

ζ̂ = −π∆j +M ∆Zr +O(M2).

Now using the polar change of coordinates −∆ĉ + (∆ĉ )2/4 − iω̂ = M2eiθ, the Implicit Function

Theorem allows us to obtain the expansion

−∆ĉ +
(∆ĉ )2

4
− iω̂ = −M2 ·

(
1 + i

2∆Zi

π∆j
M +O(M2)

)
.

Noticing that M =
√

∆ĉ +O(∆ĉ ), we solve the imaginary part of this equation for ω̂ and expand

ω̂(∆ĉ ) =
2∆Zi

π∆j
(∆ĉ )3/2 +O((∆ĉ )2).

We summarize the above discussion in the following proposition.

Proposition 3.5. Set ∆Zi := Im( 1
ẑ+
− 1

ẑ−
) where z = ẑ+ ∆ĉ

2 −1 and choose ∆j ∈ Z−, fixed. Then

for ∆ĉ > 0 small, there exists ζ∗ and ω̂∗ for which (3.19) is satisfied. Furthermore, we have the

following expansions:

ω̂∗(∆ĉ ) =
2∆Zi

π∆j
(∆ĉ )3/2 +O((∆ĉ )2), ζ∗ = −π(∆j)(∆ĉ )−1/2 + ∆Zr +O((∆ĉ )1/2). (3.27)

Remark 3.6. We emphasize that the behavior of W s
+(0) and W cu

− (Ap) near the origin determine the

coefficient ∆Zi of the leading order term in the expansion (3.27). As pointed out in the introduction,

∆Zi measures a distance between the leading edge of the front and the stable subspace in projective

coordinates. This can be made explicit by considering the Poincaré-inverted coordinates zinv =

1/(z + 1), in which ∆Z = z+
inv − z

−
inv. Since z−inv, the base point of the stable fiber corresponding to

W cu
− , is only defined up to flow translates, we can vary Re(z−inv) arbitrarily by shifting the free front.

Therefore, the imaginary part ∆Zi merely measures the distance between z+
inv and the homoclinic

orbit in the base of the fibers corresponding to W cu
− .
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Also notice that, since trajectories approaching S have the asymptotic form (3.16), we have that

Im{ 1

z−
} = Im{ζ + B∞/A∞} = Im{B∞/A∞}.

3.5 Proof of Theorem 1

Proposition 3.5 gives the existence of trigger fronts: Given (ω̂∗, ζ̂∗) there are corresponding ω∗ and

ξ∗ such that W s
+(0) and W cu

− (Ap) intersect non-trivially. By taking points in this intersection as

an initial condition at ξ = 0, then sending ξ → −∞, the trajectory (which is in W cu
− (Ap)) must

converge to Ap . In the same way, sending ξ → +∞ the trajectory (which is in W s
+(0)) must

converge to A ≡ 0.

In order to prove our main result, it remains to track the scalings from Section 3.1. We there-

fore reintroduce hats, writing for instance ω̂ for the frequency in scaled coordinates as given in

Proposition 3.5, and ω for the parameter in CGL (1.2); see (3.1) and (3.2).

Using (3.2) to write the leading order expansion from the above proposition in terms of the unscaled

variables ∆c := (clin − c) and ∆ω = (ω − ωabs(α, c)), we obtain

∆ω

m2
=

2∆Zi

π∆j

(∆c)3/2

(m2(1 + α2))3/4
+O((∆c)2).

Further simplifying we find

2∆Zi

π∆j
(∆c)3/2 +O((∆c)2) =

(1 + α2)3/4∆ω

m1/4

= (1 + α2)3/4∆ω +O(∆ω∆c, (∆ω)2, (∆c)2), (3.28)

where we have used the fact that m−1/4 = 1 +O(∆c,∆ω).

From here we can use the Implicit Function Theorem to obtain

∆ω =
2∆Zi

π∆j(1 + α2)3/4
(∆c)3/2 +O((∆c)2)

from which we obtain the expansion as stated in the main theorem by setting ∆j = −1:

ω = ωabs(α, c)−
2∆Zi(clin − c)3/2

π∆j(1 + α2)3/4
+O((clin − c)2).

In the same manner we can also obtain the expansions for the unscaled ξ∗, the distance between

the trigger and the invasion front, and ktf the selected wavenumber as given in Theorem 1.
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4 Comparison with direct simulations and heteroclinic continua-

tion

We now compare our leading order prediction with both direct simulation of (1.2) and computation

of trigger fronts via continuation. For the direct simulations, we used a first order spectral solver,

simulating in a moving frame of speed c. The calculations were performed on a large domain (L =

2400) to avoid wavenumber/wavelength measurement error. Since wavelengths converge slowly as

expected [38], simulations were run for sufficiently long times (t ∼ 5000). To corroborate these

simulations, we used the continuation software auto07p to find the heteroclinic orbit directly as

solution to a truncated boundary value problem, and then continue in c with ω as a free parameter.

As seen in Figure 4.1, both methods are in reasonably good agreement.
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Figure 4.1: Left: Comparison of wavenumbers from direct simulations with auto07p calculations for a range
of c values for fixed α = −0.1, γ = −0.2. Discrepancy between the two calculations is less than 0.1% for
dt = 0.01 and dx = 0.0767. Right: Comparison of different predictions for the selected wavenumber with
AUTO07p calculations. The speed is varied while other parameters are fixed at α = −0.1, γ = −0.2.

We also give comparisons between auto07p computations, the prediction based on the absolute

spectrum ω ∼ ωabs, and the O((∆c)3/2) correction from Theorem 1 in Figure 4.1. There we also

compare with a somewhat naive prediction, assuming that the frequency ω of the invasion process is

constant at leading order. As pointed out in Figure 1.3, this neglects frequency detuning based on

wavenumber changes (slope of absolute spectrum) and speed (shift of absolute spectrum). Finally,

Figure 4.2 shows how our predictions fare when c is fixed and γ is varied, as well as a log-log plot

of ωtf − ωabs, confirming the exponent 3/2 and the coefficient ∆Zi.

5 Discussion and Future Work

In this work, we have proved the existence of a coherent triggered front in the CGL equation for

trigger speeds close to, but less than, the linear invasion speed, under mild generic assumptions on

free invasion fronts. Furthermore, we have shown how the trigger selects the periodic wave-train

created in the wake and how its speed affects the wavenumber. Our main tools were a sequence

of coordinate changes in a neighborhood of the origin, based on geometric desingularization and
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Figure 4.2: Left: Comparison of different predictions for the selected wavenumber with AUTO07p cal-
culations for a range of γ with fixed c = 1.8 and α = −0.1. Right: Logarithmic plot of the difference
ωabs(c)− ωtf(c) using expansion from the Theorem 1 above, and data from AUTO07p continuation.

invariant foliations. As a byproduct, we establish expansions for the frequency of the trigger front

with universal leading order coefficient determined by the absolute spectrum. At higher order,

coefficients in the expansion depend on a projective distance between the leading edge of the front

and a stable manifold ahead of the trigger.

While some of the tools used in this paper may not immediately apply in other situations (such as

those mentioned in the introduction), we expect that one could adapt the main concepts from Sec-

tion 2. Namely, for a triggered front in such systems, selected wave numbers should be determined

by the intersection of the absolute spectrum with the imaginary axis at leading order. In many of

these systems, explicit expressions for the spectra are not known but simple algebraic continuation

usually allows one to easily obtain accurate predictions.

The present paper addresses existence and qualitative properties of trigger fronts in the simplest

possible (yet interesting) context, leaving many open questions.

First, it would be interesting to study stability of the trigger fronts. Stability is determined,

at first approximation, by spectral properties of the linearization at such a front. Essential and

absolute stability of this linearized operator are determined by essential and absolute spectra at

ξ = ±∞. Since we have stability at ξ = +∞, the only destabilizing influence in the far field

comes from instabilities of wave trains in the wake. For c ∼ clin these instabilities are known to be

convective [28, 39] or absent for α, γ not too large. In addition, it would be interesting to study and

possibly exclude instabilities via the extended point spectrum. Based on the geometric construction

of coherent trigger fronts and direct simulations, we do not anticipate such instabilities. We do

suspect however that fronts with ∆j < −1 (1.9) would pick up unstable eigenvalues near A = 0 and

hence be unstable. A larger ∆j will lead to fronts with larger distance ξ∗ to the trigger location

ξ = 0 (3.27) and several small oscillations in this gap. One then expects this unstable plateau to

generate unstable eigenvalues in the linearization; see [31] for a similar scenario. From a different

perspective, fronts with higher |∆j| arise through bifurcations from an already unstable primary

state as explained in the discussion of the role of absolute spectra in Section 2, when considering

large, bounded domains. As a consequence, one expects the bifurcated states to be unstable as
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well.
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Figure 5.1: We fix α = −0.1, γ = −0.2. Left: Comparison of AUTO07p calculation with the absolute
spectrum prediction and the O((∆c)3/2) correction for speeds ranging from c = 0 to c = clin. Right: Front
profiles calculated in the blow-up coordinates using AUTO07p for various speeds. Here the left boundary
condition is given by the periodic orbit (z,R) = (iktf , 1− k2tf) and the right is given by (z+, 0).

One can also envision many generalizations of our result. Using ill-posed spatial dynamics on

time-periodic functions as in [19, 33], one can study similar problems in pattern-forming systems

without gauge symmetry. In a different direction, we expect that triggers χ with χ′ sufficiently

localized would be immediately amenable to our analysis. In particular, monotone triggers with

χ′ sufficiently localized should yield the same type of expansion, albeit with different, non-explicit,

projective distances ∆Z. On the other hand, one can envision how non-monotone triggers with

long plateaus where χ > χ−, would generate triggered fronts even for speeds c > clin. In terms of

our linear heuristics, the linearized operator at the origin, (1 + iα)∂ξξ + c∂ξ + χ− iω now possesses

unstable extended point spectrum [29] in addition to the unstable absolute spectrum. In a different

direction, slowly varying triggers |χ′| � 1 or triggers that do not simply modify the linear driving

coefficient pose a variety of interesting challenges.

Another direction is suggested by Figures 4.2 and 5.1. For speeds further away from the linear

spreading speed, our predictions deviate significantly from the actual selected wavenumber and it

is not clear in which context one might be able to establish analytic predictions. Going all the

way to trigger speed c = 0 could however serve as another point in parameter space where analytic

expansions can be derived. In fact, thinking of the trigger as an effective Dirichlet-type boundary

condition, one expects standing triggers similar to Nozaki-Bekki holes [34]. Such holes are explicitly

known coherent structures in CGL that emit wave trains. Selected wavenumbers for c close to zero

would be corrections to the wave numbers selected by these coherent structures.

References

[1] A. Aotani, M. Mimura, and M. Mollee, A model aided understanding of spot pattern

formation in chemotactic e. coli colonies., Japan J. Ind. Appl. Math., 27 (2010), pp. 5–22.

25



[2] I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev.

Mod. Phys., 74 (2002), pp. 99–143.

[3] V. I. Arnol′d, Matrices depending on parameters, Uspehi Mat. Nauk, 26 (1971), pp. 101–114.

[4] E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J. S. Langer, Pattern propagation

in nonlinear dissipative systems, Phys. D, 14 (1985), pp. 348–364.

[5] R. M. Bradley and J. M. E. Harper, Theory of ripple topography induced by ion bombard-

ment, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 6 (1988),

pp. 2390–2395.

[6] R. M. Bradley and P. D. Shipman, Spontaneous pattern formation induced by ion bom-

bardment of binary compounds, Phys. Rev. Lett., 105 (2010), p. 145501.

[7] P. Chossat and R. Lauterbach, Methods in equivariant bifurcations and dynamical sys-

tems, vol. 15 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co. Inc.,

River Edge, NJ, 2000.

[8] A. Couairon and J.-M. Chomaz, Absolute and convective instabilities, front velocities and

global modes in nonlinear systems, Phys. D, 108 (1997), pp. 236–276.

[9] G. Dee and J. S. Langer, Propagating pattern selection, Phys. Rev. Lett., 50 (1983),

pp. 383–386.

[10] M. Droz, Recent theoretical developments on the formation of liesegang patterns, Journal of

Statistical Physics, 101 (2000), pp. 509–519.

[11] F. Dumortier, Techniques in the theory of local bifurcations: blow-up, normal forms, nilpo-

tent bifurcations, singular perturbations, in Bifurcations and periodic orbits of vector fields

(Montreal, PQ, 1992), vol. 408 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad.

Publ., Dordrecht, 1993, pp. 19–73.

[12] J.-P. Eckmann and C. E. Wayne, The nonlinear stability of front solutions for parabolic

partial differential equations, Comm. Math. Phys., 161 (1994), pp. 323–334.

[13] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indian Univ. Math.

J., 21 (1972), pp. 193–226.

[14] , Asymptotic stability with rate conditions, Indian Univ. Math. J., 23 (1974), pp. 1109–

1137.

[15] , Asymptotic stability with rate conditions ii, Indian Univ. Math. J., 26 (1977), pp. 81–93.

[16] E. M. Foard and A. J. Wagner, Survey of morphologies formed in the wake of an enslaved

phase-separation front in two dimensions, Phys. Rev. E, 85 (2012), p. 011501.

[17] R. Friedrich, G. Radons, T. Ditzinger, and A. Henning, Ripple formation through

an interface instability from moving growth and erosion sources, Phys. Rev. Lett., 85 (2000),

pp. 4884–4887.

26



[18] M. P. Gelfand and R. M. Bradley, Highly ordered nanoscale patterns produced by masked

ion bombardment of a moving solid surface, Phys. Rev. B, 86 (2012), p. 121406.

[19] R. Goh, S. Mesuro, and A. Scheel, Spatial wavenumber selection in recurrent precipita-

tion, SIAM Journal on Applied Dynamical Systems, 10 (2011), pp. 360–402.

[20] G. Iooss and A. Mielke, Time-periodic Ginzburg-Landau equations for one-dimensional

patterns with large wave length, Z. Angew. Math. Phys., 43 (1992), pp. 125–138.

[21] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,

vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press,

Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.

[22] J. B. Keller and S. I. Rubinow, Recurrent precipitation and liesegang rings, The Journal

of Chemical Physics, 74 (1981), pp. 5000–5007.
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