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Abstract

We study the effect of algebraically localized impurities on striped phases in one space-dimension. We

therefore develop a functional-analytic framework which allows us to cast the perturbation problem as

a regular Fredholm problem despite the presence of essential spectrum, caused by the soft translational

mode. Our results establish the selection of jumps in wavenumber and phase, depending on the location

of the impurity and the average wavenumber in the system. We also show that, for select locations, the

jump in the wavenumber vanishes.
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1 Introduction

We are interested in the effect of localized impurities on self-organized, spatially periodic patterns, in partic-

ular in the idealized situation of an unbounded domain. Our goal is to quantify the effect of the impurity on

phases and wavenumbers in the far field. A prototypical example for the formation of self-organized periodic

patterns is the Swift-Hohenberg equation

ut “ ´p∆` 1q2u` µu´ u3,

where, for 0 ă µ ! 1 periodic patterns of the form u˚pkx; kq, u˚pξ; kq “ u˚pξ ` 2π; kq, exist for a band of

admissible wavenumbers k P pk´pµq, k`pµqq. Our results are concerned with this system in one-dimensional

space, x P R, including an impurity,

ut “ ´pB
2
x ` 1q2u` µu´ u3 ` εgpx, uq, (1.1)

where |gpx, uq| ď Cpuqp1` |x|q´γ˚ , for some γ˚ sufficiently large.

We find such perturbation problems interesting for a variety of reasons. First, small impurities are simple

examples of defects in spatially extended systems, and a systematic description of such defects is essential to

various multi-scale descriptions of extended systems. In particular, defects can be responsible for the selection

of wavenumbers k in extended systems. Second, perturbations of periodic patterns pose challenging technical

problems since the linearization at such periodic structures is generally not Fredholm when considered as an

operator on translation-invariant (or algebraically weighted) function spaces. The difficulty stems from the

presence of a non-localized neutral mode, in this case the derivative Bxu˚ of the periodic pattern, which induces

a branch of essential spectrum near the origin. In this regard, our results can be viewed as a continuation

of a variety of results on perturbation and bifurcation in the presence of essential spectrum. Third, one can

interpret the effect of inhomogeneities in relation to the notorious question of asymptotic stability of periodic

patterns, where the pattern is perturbed at time t “ 0, whereas in our case the perturbation is constant

in time. It would be quite interesting to bring those two view points together and study spatio-temporal

perturbations of striped phases; see, for instance, [5, 6, 12, 13, 25, 26, 27].

The effect of inhomogeneities on patterns with a soft mode has been studied in detail when periodic patterns

are oscillatory in time [14, 23]. In this case, inhomogeneities may create wave-sources such as target patterns,
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or act as weak sinks. In fact, in this case, the effects are quite similar to the effect of boundary conditions on

oscillatory media, or, more generally, the effect of self-organized coherent structures on waves in the far-field.

In the case of stationary periodic patterns, with vanishing group velocities, as they arise in the Swift-

Hohenberg equation, the literature on defects and their characterization is quite extensive [20], albeit arguably

not at the level of detail as we are striving for, here. In the direction of the present work, the characteri-

zation of boundary conditions on striped phases in [17] is closest. Results there show how to identify and

compute strain-displacement relations, that is, relations between wavenumbers and phases (translations) of

periodic patterns in the far field, induced by the presence of the boundary. Our present work can be viewed

as matching such relations at `8 and ´8.

Technically, our work is following up on recent studies of inhomogeneities in a variety of contexts [11, 9, 10],

where Kondratiev spaces were used to study perturbations of spatio-temporally periodic patterns by inho-

mogeneities. The present work goes however significantly past those techniques by treating non-normal form,

actual periodic patterns, where in [11, 9, 10] the periodic patterns were, after appropriate transformations,

constant in space.

Our results are concerned with the spatially one-dimensional situation, only, but we hope that our approach

will allow us to approach higher-dimensional questions, as well. From a phenomenological point of view, the

one-dimensional case is most difficult since effective diffusion of the neutral mode is weakest in one space-

dimension, so that the effect of the inhomogeneity on the far-field is the most significant. This phenomenon is

well understood in the case of diffusive stability, where decay of localized data is faster in n space-dimensions

t´n{2, or in the case of impurities in oscillatory media, where small impurities can generate wave sources only

in dimensions n ď 2 [11, 10, 14]. From a technical point of view, the one-dimensional case is easiest since

the problem of finding stationary solutions can be cast as an ordinary differential equation; see for instance

[17, 23] for this point of view. Our approach is different and in some sense more direct. We will however

comment on how to implement a proof using such “spatial dynamics” methods in the discussion.

Notations We collect useful notation used throughout. Let PjpRq and PjpZq denote the set of complex-

coefficient polynomials of degree less than j P Z` defined on the real line and on the set of integers, respec-

tively. The inner product in a Hilbert space H is denoted as x¨, ¨y and the linear subspace spanned by u P H

is denoted as xuy. The Fourier transform on L2pR, Hq and L2pZ, Hq are denoted respectively as F and Fd.

Moreover, for a Banach space B, the notation xxu˚, uyy represents the action of a linear functional u˚ P B˚

on u P B. Throughout the Lie bracket, rL1, L2s, of two operators L1 and L2 is the operator

rL1, L2s :“ L1 ˝ L2 ´ L2 ˝ L1.

We will use Banach spaces of functions on R and Z. Given s P Z` Y t0u, p P p1,8q, γ P R, and denoting

txu “
a

1` |x|2, the weighted Sobolev space W s,p
γ is defined as

W s,p
γ :“

 

u P L1
locpR, Hq

ˇ

ˇtxuγBαxu P L
ppR, Hq, for all α P r0, ss X Z

(

,

with norm
řs
α“0 }txuγBαxu}Lp , while the Kondratiev space Ms,p

γ on R is defined as

Ms,p
γ :“

 

u P L1
locpR, Hq

ˇ

ˇtxuγ`αBαxu P L
ppR, Hq, for all α P r0, ss X Z

(

,

with norm
řs
α“0 }txuγ`αBαxu}Lp . Their dual spaces are defined in the standard way and we write

W´s,q
´γ :“ pW s,p

γ q˚, M´s,q
´γ :“ pMs,p

γ q˚, where 1{p` 1{q “ 1.

For s “ 0, both spaces are simply weighted Lp-space, denoted as Lpγ . For p “ 2, we denote W s,2
γ as Hs

γ .

Additionally, one can allow different weights on R˘ to obtain an anisotropic version of these spaces. More

specifically, letting χ˘ be a smooth partition of unity, with supppχ`q Ă p´1,8q, χ´pxq “ χ`p´xq, we define

W s,p
γ´,γ` :“

!

u P L1
locpR, Hq

ˇ

ˇ

ˇ
χ˘u PW

s,p
γ˘

)

, Ms,p
γ´,γ` :“

!

u P L1
locpR, Hq

ˇ

ˇ

ˇ
χ˘u PM

s,p
γ˘

)

,
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which are Banach spaces respectively with norms

}u}W s,p
γ´,γ`

:“ }χ`u}W s,p
γ`
` }χ´u}W s,p

γ´
, }u}Ms,p

γ´,γ`
:“ }χ`u}Ms,p

γ`
` }χ´u}Ms,p

γ´
.

Replacing R with Z and Bx with the discrete derivative δ`ptujujPZq :“ tuj`1´ujujPZ, the discrete counterparts

of Lpγ´,γ` and Ms,p
γ´,γ` are denoted respectively as `pγ´,γ` , and M s,p

γ´,γ` . We point out that the discrete

counterparts of W s,p
γ´,γ` are isomorphic to `pγ´,γ` due to the fact that δ` is a bounded linear operator on

`pγ´,γ` .

Outline. The remainder of the paper is organized as follows. In Section 2, we present our main results.

Section 3 establishes Fredholm properties of one-dimensional differential operators with periodic coefficients

in suitable algebraically weighted spaces. Section 4 exploits these weighted spaces to treat impurities via an

implicit function theorem and establishes expansions for solutions. We conclude with a discussion in Section

5.

Acknowledgment. The authors acknowledge partial support through the National Science Foundation

through grants NSF-DMS-1311740 (AS) and NSF DMS-1503115 (GJ).

2 Main Result

We state assumptions and main results.

Hypothesis 2.1 (Localization of impurity) We consider (1.1) with smooth inhomogeneity gpx, uq that

is algebraically localized,

|Bj1x B
j2
u gpx, uq| ď p1` |x|q

´γ˚ , j1 ` j2 ď 3, (2.1)

where γ˚ ą 6.

We next assume the existence of a periodic pattern.

Hypothesis 2.2 (Existence of stripes) We assume that there exists an even, periodic solution up with

wavenumber k˚ ą 0, uppξ; k˚q “ uppξ ` 2π; k˚q “ upp´ξ; k˚q, to

´pk2˚B
2
ξ ` 1q2u` µu´ u3 “ 0, (2.2)

for some µ ą 0, fixed.

Note that this assumption is satisfied for 0 ă µ ! 1, |k˚ ´ 1| ! 1.

The next assumption requires in particular that up is Eckhaus-stable. In order to state this assumption

precisely, we introduce the family of Bloch-wave operators

LBpσq :“ ´
`

1` pBx ` iσq2
˘2
` µ´ 3u2ppxq, σ P r0, k˚q, (2.3)

defined on DpLBpσqq “ H4
perp0, 2π{k˚q Ă L2

perp0, 2π{k˚q. Note that all LBpσq have compact resolvent and

depend analytically on σ as closed operators with Fredholm index 0.

Hypothesis 2.3 (Stability of stripes) We assume that the periodic solution up is spectrally stable, that is,

0 P specpLBpσqq precisely for σ “ 0, when the eigenvalue λ “ 0 is algebraically simple, with eigenfunction u1p.

For σ „ 0, the expansion of the zero eigenvalue in σ does not vanish at second order, λpσq “ λ2σ
2 `Opσ3q,

for some λ2 ‰ 0.
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We note that for µ ! 1, Eckhaus-stable patterns satisfy this hypothesis with λ2 ă 0 [16], and Eckhaus-

unstable patterns do not, due to a kernel of LBpσq for some σ ‰ 0. On the other hand, long-wavelength

unstable patterns may satisfy this assumption with λ2 ą 0; see for instance [22]. We will give an expression

for λ2 in (4.20).

Lemma 2.4 (Family of stripes) There exists a smooth family of stripe solutions, uppkx´ ϕ; kq, to (1.1),

parameterized by wavenumber k „ k˚ and phase ϕ P R{ 2πk Z.

Proof. We solve

´p1` k2B2ξ q
2u` µu´ u3 “ 0,

as an equation H4
per,even Ñ L2

even using the implicit function theorem near uppξ; k˚q. The assumption that

the kernel of LBp0q is simple, spanned by u1p, odd, guarantees invertibility of the linearization.

Our main result is as follows.

Theorem 1 Assume Hypotheses 2.1–2.3. Then there exists ε0 and a two-parameter family of stationary

solutions to (1.1) of the form

upx; εq “
ÿ

˘

χ˘pxqupppk˚ ` k0 ˘ k1qx´ ϕ0 ¯ ϕ1; k˚ ` k0 ˘ k1q ` wpxq,

where w P H4
γ˚ , γ˚ ą 6, and ϕ1, k1 are C1-functions of ε, k0 P p´ε0, ε0q, ϕ0 P R. Moreover, k1 and ϕ1 have

the leading-order expansions

k1 “Mkpϕ0, 0qε`Opε2q, (2.4)

ϕ1 “Mϕpϕ0, 0qε`Opε2q, (2.5)

where for the case k0 “ 0,

Mkpϕ0, 0q “

π

ż

R
gpx, uppk˚x´ ϕ0; k˚qq ¨ Bξuppk˚x´ ϕ0; k˚qdx

λ2k˚
ş2π{k˚
0

pBξuppk˚x; k˚qq2dx
, (2.6)

Mϕpϕ0, 0q “

π

ż

R
gpx, uppk˚x´ ϕ0; k˚qq ¨ rpx´ ϕ0{k˚qBξuppk˚x´ ϕ0; k˚q ` Bkuppk˚x´ ϕ0; k˚qsdx

λ2k˚
ş2π{k˚
0

pBξuppk˚x; k˚qq2dx
. (2.7)

We note that when the inhomogeneity is a gradient field, i.e. g “ BuGpx, uq, then

´

ż

Mk dϕ0 :“
1

2π

ż 2π

0

Mkpϕ0, 0qdϕ0 “ 0,

and Mk necessarily vanishes for certain relative phase shifts ϕ0. We can therefore find relative phase shifts

for which k1 “ 0.

Corollary 2.5 Assume that g P H1
γ˚ , γ˚ ą 6, Mkpϕ˚, 0q “ 0, and M 1

kpϕ˚, 0q ‰ 0. Then there exists ε̄, k̄0 ą 0

and a function φ0pε, k0q : r0, ε̄s ˆ r0, k̄0s Ñ R with φ0p0, 0q “ ϕ˚ such that the wavenumber difference k1 from

Theorem 1 vanishes for ϕ0 “ φ0pε, k0q.

Proof. Scaling the equation (2.4) by ε we may write k1 “ εk̄ where

k̄pε;ϕ0, k0q “Mkpϕ0, k0q `Opεq.

Our assumptions Mkpϕ˚, 0q “ 0, M 1
kpϕ˚, 0q ‰ 0 imply that k̄ “ 0 satisfies the conditions for the implicit

function theorem, guaranteeing the results of the corollary. The conditions on g allow us to obtain a well

defined value for M 1
kpϕ, 0q .
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3 Fredholm properties in weighted spaces near the essential spec-

trum

The results in this section can be viewed independently of the remainder of the paper. The difficulty of

perturbing a striped pattern lies in the fact that the linearization is not Fredholm due to the presence of

essential spectrum at the origin, which in turn is induced by the non-localized eigenfunction u1p. It is well

known that the linearization “behaves” in many ways like an effective diffusion. We therefore expect that the

linearization at a periodic pattern possesses properties similar to the Laplacian Bxx. The Laplacian, on the

other hand, while not Fredholm when posed as a closed, densely defined operator mapping DpBxxq Ă L2 Ñ L2,

is Fredholm when posed as a closed, densely defined operator mapping DpBxxq Ă L2
γ´2 Ñ L2

γ , for γ R t 12 ,
3
2u.

The goal of this section is to generally describe Fredholm properties of operators with translation symmetry

in R or Z near points of the essential spectrum. The main restrictions are to one unbounded spatial direction,

and to “algebraically simple” points of the essential spectrum, and to non-critical weights γ. Throughout, we

consider bounded operators, only. We will point out how these results imply Fredholm properties for more

general operators.

The outline for this section is as follows. We first consider operators with unbounded variable x P R in Section

3.1, then show how to adapt in a straight-forward fashion to operators with unbounded direction ` P Z in

Section 3.2. We finally show how to relate those results to Floquet-Bloch theory for operators on x P R with

periodic coefficients and establish Fredholm properties for those operators in Section 3.3. For convenience,

we recall Fredholm properties of Bxx and of its discrete analogue in the appendix.

3.1 Operators with continuous translation symmetry

Setup — operator symbols and essential spectrum. We consider bounded operators L on L2pR, Y q,
where Y is a complex separable Hilbert space, that possess a translation symmetry, that is, they commute

with the action of translations on L2pR, Y q. The Fourier transform is an isomorphism of L2pR, Y q, and, due

to translation symmetry, the induced operator L̂ on the Fourier space is a direct integral of multiplication

operators with Fourier symbol L̂ “
ş

kPR Lpkqdk, that is,

L̂ : DpL̂q Ă L2pR, Y q ÝÑ L2pR, Y q
upkq ÞÝÑ Lpkqupkq,

(3.1)

with Lpkq linear and bounded on Y for all k P R, see [1]. Formally, we have L “ Lp´iBxq. Denoting the

Banach space of bounded operators on Y as BpY q, we have

Hypothesis 3.1 (Analyticity of symbol) We assume that Lpkq is analytic, uniformly bounded, with val-

ues in BpY q, in a strip k P Ω0 :“ Rˆp´iki, ikiq for some ki ą 0. Moreover, we require that Lpkq is Fredholm

for all k P R and invertible with uniform bounds for |Re k| ě k0 ą 0 for some k0 sufficiently large.

We mainly think of Lpkq rational, Lpkq “ P pkqQpkq´1, with matrix-valued polynomials P,Q, where the

zeros of Q lie off the real axis. On the other hand, our results allow to include convolution operators with

exponentially localized kernels. Specific examples are Bxxp1 ´ Bxxq
´1, Bxp1 ` Bxq

´1, p´id ` K˚q, K an

exponentially localized kernel, or p1` B2xq
2p1´ B2xq

´2.

Note that the spectrum of L is bounded, given through

specL2pR,Y qL “ tλ | Lpkq ´ λ not bounded invertible for some k P Ru.

In the case Y “ Rn, this can be more explicitly characterized through

specL2pR,RnqL “ tλ | det pLpkq ´ λq “ 0u.
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Since Lpkq is invertible for large k and Fredholm for all k P R, Lpkq is Fredholm of index 0 for all k P R and

the set of k P R where Lpkq is not invertible is discrete.

We are interested in the case where L is not invertible.

Hypothesis 3.2 (Simple kernel) There exists a unique k˚ and a unique (up to scalar multiples) e0 ‰ 0

such that Lpk˚qe0 “ 0. We then scale xe0, e0y “ 1.

In particular, λ “ 0 belongs to the essential spectrum of L. We can assume without loss of generality that

k˚ “ 0, possibly conjugating L with the multiplication operator eik˚x. We write e˚0 for the kernel of the

adjoint L˚p0q with xe˚0 , e
˚
0 y “ 1.

Spatial multiplicities in the essential spectrum. We are interested in the unfolding of the zero-

eigenvalue at k “ 0 for the family Lpkq. We therefore view Lpkq as an analytic operator pencil and define the

spatial multiplicity as the multiplicity of k “ 0 as an eigenvalue of the operator pencil. Since such construc-

tions are possibly not widely known, and the use here is less standard, we include the relevant constructions

here.

Recall that, according to Hypothesis 3.2, the kernel of Lp0q is one-dimensional.

Lemma 3.3 There exists m ą 0, maximal, and epkq “
řm
j“0 ejk

j such that

Lpkqepkq “ λmk
me˚0 `Opkm`1q,

k
ÿ

j“0

Ljek´j “ 0, k “ 0, . . . ,m´ 1; 0 ‰

C

m´1
ÿ

j“0

Lm´jej , e
˚
0

G

:“ λm.

(3.2)

We refer to m as the spatial multiplicity of λ “ 0.

Proof. Write Q0 for the orthogonal projection onto spante˚0 u. We solve Lpkqpe0 ` vq “ z by decomposing

xLpkqpe0 ` vq, e
˚
0 y “ z1 (3.3)

p id ´Q0qLpkqpe0 ` vq “ z2, (3.4)

where z “ z1e
˚
0 `z2, z1 P R and z2 P Rgp id ´Q0q. Since Lp0q is Fredholm of index 0, Lp0q : eK0 Ñ pe˚0 q

K is an

isomorphism, and the second equation (3.4) can be solved using the implicit function theorem, with solution

v “ v˚pk, z2q, where |k|, |z2| small. We then plug v˚pk, z2q into (3.3), yielding

fpk, z1, z2q :“ xLpkqpe0 ` v˚pk, z2qq, e
˚
0 y ´ z1 “ 0.

Due to the fact that Lpkq is invertible for all k ‰ 0 P Ω0, the reduced analytic function fpk, 0, 0q has non-

trivial Taylor jet, that is, there exists m P Z` and λm ‰ 0 P C so that fpk, 0, 0q “ λmk
m `Opkm`1q. Taking

v “ v˚pk, 0q, we have

Lpkqpe0 ` v˚pk, 0qq “ fpk, 0, 0qe˚0 “ λmk
me˚0 `Opkm`1q.

Letting epkq be the Taylor expansion up to order Opkmq of e0 ` v˚pk, 0q, the claims follow quickly.

Remark 3.4 In the case where λ is an algebraically simple eigenvalue of Lp0q, one can slightly modify the

construction in the proof of Lemma 3.3 and solve Lpkqepkq “ λpkqepkq together with xepkq ´ e0, e0y “ 0

using Lyapunov-Schmidt reduction in much the same way. The linearization with respect to pe, λq is onto and

one finds the function λpkq which is of course the expansion of the “temporal eigenvalue ” λ in the Fourier

parameter k. From this construction, one finds λpkq “ λ̃mk
m ` Opkm`1q, for some λ̃m ‰ 0, with m as in

Lemma 3.3.
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Since expansions typically do not converge globally, we introduce localized expansions as follows. Define the

pseudo-derivative symbols

Dpkq “ ikp1` ikq´1,

DC,mpkq “ k p1` Cikmq
´1
, (3.5)

with associated operators Dp´iBxq, DC,mp´iBxq. Here C ą 0 will eventually be chosen sufficiently large so

that the norm of the bounded multiplier DC,m is arbitrarily small. Restricting to the strip

Ω0pC,mq :“ tk P Ω0 | | Im k| ď k1 :“
1

m
?

2C
sinp

π

2m
qu,

DC,mpkq is in fact analytic and uniformly bounded, that is, there exists a constant Cpmq such that

}DC,mpkq} ď
Cpmq
m
?
C
, for all k P Ω0pC,mq.

Remark 3.5 On the enlarged strip, tk P C | | Im k| ă 1
m?C

sinp π2m qu, the pseudo-derivative DC,m is analytic

but not bounded. To obtain boundedness, we can restrict ourselves to any narrower strip, tk P C | | Im k| ă
1

m?NC
sinp π2m qu, for any N ą 1. For convenience, we simply chose N “ 2 and Ω0pC,mq Ă Ω0, where the

strip Ω0 is introduced in Hypothesis 3.1.

Note that replacing k by DC,mpkq in the expansion of epkq does not alter its Taylor expansion up to order

m. We therefore may define, for all k P Ω0pC,mq,

ẽpkq :“
m
ÿ

j“0

rDC,mpkqs
j
ej ,

such that

Lpkqẽpkq “ λme
˚
0k

m `Opkm`1q. (3.6)

Repeating these considerations for the adjoint, we also find e˚pkq “
řm
j“0 e

˚
j k̄

j and define

ẽ˚pkq :“
m
ÿ

j“0

”

DC,mpkq
ıj

e˚j

so that

L˚pkqẽ˚pkq “ λ̄me0k
m `Opkm`1q. (3.7)

Since L˚pkq is anti-analytic, e˚pkq is anti-analytic, and we use the complex conjugate DC,mpkq to guarantee

that ẽ˚pkq is anti-analytic.

Fredholm properties of L. Main results on Fredholm properties of L are stated in the following theorem.

Proposition 3.6 (Fredholm properties of L) Suppose the operator L satisfies Hypothesis 3.1 and 3.2,

with k˚ “ 0. Let m be the spatial multiplicity according to Lemma 3.3. Then, for γ´, γ` R t1{2, 3{2, ¨ ¨ ¨ ,m´

1{2u, the operator

L : DpLq Ă L2
γ´´m,γ`´mpR, Y q Ñ L2

γ´,γ`pR, Y q, (3.8)

is closed, densely defined, and Fredholm. Moreover, setting γmax “ maxtγ´, γ`u, γmin “ mintγ´, γ`u, we

have that

• for γmin P Im :“ pm´ 1{2,8q, the operator (3.8) is one-to-one with cokernel

Cok pLq “ span

#

β
ÿ

α“0

p´iqαpBαxx
βqe˚α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,
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• for γmax P I0 :“ p´8, 1{2q, the operator (3.8) is onto with kernel

Ker pLq “ span

#

β
ÿ

α“0

p´iqαpBαxx
βqeα

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,

• for γmin P Ii and γmax P Ij with Ik :“ pk ´ 1{2, k ` 1{2q for 0 ă k P Z ă m, the kernel of (3.8) is

Ker pLq “ span

#

β
ÿ

α“0

p´iqαpBαxx
βqeα

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ j ´ 1

+

,

and its cokernel is

Cok pLq “ span

#

β
ÿ

α“0

p´iqαpBαxx
βqe˚α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ , i´ 1

+

.

On the other hand, the operator (3.8) does not have closed range for γ´, γ` P t1{2, 3{2, ¨ ¨ ¨ ,m´ 1{2u.

The proof of the proposition will occupy the remainder of this section. The key ingredient is the construction

of a normal form representation of the operator L, through which we conclude that Fredholm properties of

the operator L are equivalent to those of the regularized derivative rDp´iBxqs
`. We organize the proof by first

establishing Fredholm properties of regularized derivatives defined in the Kondratiev spaces, then Fredholm

properties of the normal form of the operator L, and eventually concluding the proof by returning to physical

space.

Fredholm properties of regularized derivatives. We employ regularized derivatives as model operators.

More specifically, for any ` P Z` and γ˘ P R, we define the regularized derivative,

rDp´iBxqs
` : DprDp´iBxqs

`q Ă L2
γ´´`,γ`´`

ÝÑ L2
γ´,γ`

u ÞÝÑ B`xp1` Bxq
´`u,

(3.9)

with its domain DprDp´iBxqs
`q “ tu P L2

γ´´`,γ`´`
| p1 ` Bxq

´`u P M `,2
γ´´`,γ`´`

u. Moreover, the Fredholm

properties of the operator rDp´iBxqs
` are summarized in the following proposition.

Proposition 3.7 For γ˘ P Rzt1{2, 3{2, ¨ ¨ ¨ , `´1{2u, the regularized derivative rDp´iBxqs
` as defined in (6.1)

is Fredholm. Moreover, the operator rDp´iBxqs
` satisfies the following conditions.

• If γmax P I0 :“ p´8, 1{2q, the operator rDp´iBxqs
` is onto with its kernel equal to P`pRq.

• If γmin P I` :“ p`´ 1{2,8q, the operator rDp´iBxqs
` is one-to-one with its cokernel equal to P`pRq.

• If γmin P Ii and γmax P Ij with Ik :“ pk ´ 1{2, k ` 1{2q for 0 ă k P Z ă `, the kernel and cokernel of

the operator rDp´iBxqs
` are respectively spanned by P`´jpRq and PipRq.

On the other hand, the range of the operator rDp´iBxqs
` is not closed if γ´, γ` P t1{2, 3{2, ..., `´ 1{2u.

Proof. The proof is relegated to Appendix 6.1, where we prove a more general result.

Normal form operators. We diagonalize every operator Lpkq defined in Y into the direct sum of the

Fourier counterpart of a regularized derivative and an isomorphism. To start with, recalling the definitions of

the modified kernel and cokernel expansions (3.6) and (3.7), for any k P Ω0pC,mq, we define the projections,

P pkqu :“ xu, e0yẽpkq, Qpkqv :“ xv, ẽ˚pkqye˚0 , (3.10)

from which it is straightforward to conclude the following lemma.
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Lemma 3.8 There exists C0 ą 0 so that, for any C ą C0 and k P Ω0pC,mq, the operators

id ´ P pkq : xẽpkqyK Ñ xe0y
K, id ´Qpkq : xe˚0 y

K Ñ xẽ˚pkqyK

are isomorphisms whose inverses take the form,

p id ´ P pkqq´1 : xe0y
K ÝÑ xẽpkqyK

u ÞÝÑ u´ xu,ẽpkqy
xẽpkq,ẽpkqy ẽpkq,

p id ´Qpkqq´1 : xẽ˚pkqyK ÝÑ xe˚0 y
K

u ÞÝÑ u´ xu, e˚0 ye
˚
0 .

(3.11)

Moreover, for fixed C ą C0, both operators and their inverses admit uniform bounds for k P Ω0pC,mq.

We also introduce analytic isomorphisms ιpkq : xẽpkqy Ñ xe˚0 y and ιKpkq : xe0y
K Ñ xẽ˚pkqyK. Such isomor-

phisms can be constructed in many ways and we outline one construction here, that is,

ιpkq : xẽpkqy ÝÑ xe˚0 y

αẽpkq ÞÝÑ αe˚0 ,

ιKpkq : xe0y
K ÝÑ xẽ˚pkqyK

u ÞÝÑ p id ´QpkqqιKp0qu,
(3.12)

where we define the isomorphism ιKp0q : xe0y
K Ñ xe˚0 y

K to be a direct sum of the identity map on xe0y
KXxe˚0 y

K

and a linear length-preserving map from E0,K :“ span te˚0 ´ xe
˚
0 , e0ye0u to E˚0,K :“ span te0 ´ xe0, e

˚
0 ye

˚
0 u.

More specifically, we have

ιKp0qu :“

#

u, u P xe0y
K X xe˚0 y

K,

cpe0 ´ xe0, e
˚
0 ye

˚
0 q, u “ cpe˚0 ´ xe

˚
0 , e0ye0q P E0,K.

We are now ready to define the normal form operators,

LNFpkq : DpLNFpkqq Ă Y ÝÑ Y

u ÞÝÑ DmpkqιpkqP pkqu` ιKpkqp id ´ P pkqqu,
(3.13)

and prove the following lemma.

Lemma 3.9 (Factorization) For fixed C ą C0 and any k P Ω0pC,mq, the operator Lpkq admits the decom-

position,

Lpkq “MLpkqLNFpkq “ LNFpkqMRpkq,

where MLzR : Ω0pC,mq Ñ BpY q are analytic, L8-bounded with an L8-bounded inverse.

Proof. For k ‰ 0, the inverse of LNFpkq is analytic and takes the form,

L´1
NFpkqu “ D´mpkqι´1pkqQpkqu` ι´1

K pkqp id ´Qpkqqu “ D´mpkqxu, ẽ˚pkqyẽpkq ` ι´1
K p0q pu´ xu, e

˚
0 ye

˚
0 q .

In addition, we have that, based on (3.6),

lim
kÑ0

LpkqL´1
NFpkqu “ lim

kÑ0

„

p1` ikqm

km
xu, ẽ˚pkqyLpkqẽpkq ` Lpkqι´1

K p0q pu´ xu, e
˚
0 ye

˚
0 q



“λmxu, e
˚
0 ye

˚
0 ` Lp0qι

´1
K p0q pu´ xu, e

˚
0 ye

˚
0 q ,

is an invertible bounded operator. We now define

MLpkqu :“

#

LpkqL´1
NFpkqu, k ‰ 0,

limkÑ0 LpkqL
´1
NFpkqu, k “ 0,

(3.14)

which, according to Riemann’s removable singularity theorem and Hypothesis 3.2, implies MLpkq is analytic

and invertible for all k in the strip Ω0. Furthermore, noting that, according to Hypothesis 3.1, Lpkq is

invertible with uniform bounds for k P Ω0pC,mq with |Re k| ą k0 and

lim
Re kÑ8

L´1
NFpkq “ xu, e

˚
0 ye0 ` ι

´1
K p0q pu´ xu, e

˚
0 ye

˚
0 q ,

is bounded and invertible, we conclude that MLpkq is uniformly bounded with uniformly bounded inverses.

We can define and analyze MRpkq in a completely analogous fashion.
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Back to physical space — proof of Proposition 3.6. We introduce the multiplier operators

MLzR : SpR, Y q ÝÑ SpR, Y q
upxq ÞÝÑ MLzRûpxq.

(3.15)

which, according to the L8-boundedness and invertibility of BαkML and BαkMR for all α P Z` Y t0u, are

isomorphisms on the Schwartz space SpR, Y q. For any given γ˘ P R, it is straightforward to see that

SpR, Y q Ă L2
γ´,γ`pR, Y q is a continuous embedding. We claim that we can continuously extend the multiplier

operators MLzR onto L2
γ´,γ`pR, Y q. In other words, we have the following lemma.

Lemma 3.10 For any given γ˘ P R, the multiplier operators MLzR : L2
γ´,γ`pR, Y q Ñ L2

γ´,γ`pR, Y q are

isomorphisms.

Remark 3.11 We suspect that results analogous to Lemma 3.10 hold for general anisotropic weighted spaces

Lpγ´,γ`pR, Y q with p P p1,8q. It appears however that necessary-and-sufficient condition for Fourier mul-

tipliers on Lpγ´,γ`pR,Cq with general p P p1,8q are not available, only sufficient conditions such as the

Marcinkiewicz and the Hörmander-Mikhlin multiplier theorems, which both can be generalized to certain fam-

ilies of weighted LppR,Cq spaces; see [18, 4, 15] for details and [1, 7, 29, 2] for general background on

operator-valued Fourier multipliers.

Proof. We first prove the case of isotropic weights, that is, γ´ “ γ` “ γ. For γ P Z` Y t0u, we adopt the

notation L2
γpR, Y q :“ L2

γ,γpR, Y q and exploit the Plancherel theorem to derive that

}MLzRu}L2
γpR,Y q “ }MLzRû}HγpR,Y q ď Cpγq}û}HγpR,Y q “ Cpγq}u}L2

γpR,Y q,

which, together with a similar inequality for M´1
LzR, shows that MLzR : L2

γpR, Y q Ñ L2
γpR, Y q are isomor-

phisms for γ P Z`Yt0u and thus for γ P Z´ due to duality. By classical interpolation results, see, for example,

Theorem 6.4.5 in [3], Hn`θpR, Y q is a complex interpolation space between HnpR, Y q and Hn`1pR, Y q for

any given n P Z and θ P p0, 1q. Therefore, we conclude that MLzR : L2
γpR, Y q Ñ L2

γpR, Y q are isomorphisms

for γ P R.

To prove the case of anisotropic weights, we start by introducing the exponentially weighted space

L2
exp,ηpR, Y q :“

 

u P L1
locpR, Y q

ˇ

ˇeη¨up¨q P L2pR, Y q
(

,

with its norm }u}L2
exp,ηpR,Y q :“ }eη¨up¨q}L2pR,Y q for any given η P R. Our strategy is to exploit the fact that

the space L2
γ´,γ`pR, Y q admits the decomposition,

L2
γ´,γ`pR, Y q “

´

L2
γ´pR, Y q X L

2
exp,ηpR, Y q

¯

`

´

L2
γ`pR, Y q X L

2
exp,´ηpR, Y q

¯

, (3.16)

for any η ą 0, where norms on intersections and sums are defined in the usual way; see below.

With this in mind, we first study the multipliers on MLzR : L2
exp,ηpR, Y q Ñ L2

exp,ηpR, Y q and claim that

are isomorphisms, for any fixed |η| ď k1, where k1 is half of the width of the strip Ω0pC,mq. Note that the

multiplier on the Schwartz space can be viewed as a convolution operator. More specifically, denoting the

reflection pRuqpxq :“ up´xq, we define the distribution

M̌LzR : SpR, Y q ÝÑ C
u ÞÝÑ pMLzRRuqp0q,

from which we readily derive that, for all u P SpR, Y q,

pMLzRuqpxq “ pM̌LzR ˚ uqpxq “

ż

R
M̌LzRpx´ yqupyqdy.
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and the Fourier transform Fpeη¨M̌LzRp¨qqpkq “MLzRpk` iηq for |η| ď k1. As a result, we have the inequality

}MLzRu}L2
exp,ηpR,Y q “}

ż

R

“

eηpx´yqM̌LzRpx´ yq
‰“

eηyupyq
‰

dy}L2pR,Y q

“}F
`

eη¨M̌LzRp¨q
˘

Fpeη¨up¨qq}L2pR,Y q

“}MLzRp¨ ` iηqFpeη¨up¨qq}L2pR,Y q

ď}MLzRp¨ ` iηq}L8pR,BpY qq}Fpeη¨up¨qq}L2pR,Y q

ďC}u}L2
exp,ηpR,Y q,

holds for any |η| ď k1 and u P SpR, Y q. Noting that SpR, Y q Ă L2
exp,ηpR, Y q is dense, there are natural

extensions of MLzR as a bounded linear operator on L2
exp,ηpR, Y q. Analogous reasoning applied to the

inverses ofMLzR lets us conclude that the multipliersMLzR : L2
exp,ηpR, Y q Ñ L2

exp,ηpR, Y q are isomorphisms

for any fixed |η| ď k1.

We are now ready to prove the case of anisotropic weights. Given two Banach spaces E and F , the linear

space E X F and E ` F are also Banach spaces respectively with norms

}u}EXF :“ }u}E ` }v}F , }u}E`F :“ inft}v}E ` }w}F | v ` w “ u, v P E,w P F u.

Moreover, for a linear operator L bounded on both E and F , it is straightforward to check that L is also

bounded on E X F and E ` F . Therefore, given γ˘ P R and η P r0, k1s, due to the fact that MLzR are

isomorphisms on L2
γ˘ and L2

exp,˘η, we conclude that MLzR are isomorphisms on the Banach space

Bpγ´, γ`, η, Y q :“
´

L2
γ´pR, Y q X L

2
exp,ηpR, Y q

¯

`

´

L2
γ`pR, Y q X L

2
exp,´ηpR, Y q

¯

. (3.17)

Es defined in (3.16), the Banach spaces L2
γ´,γ`pR, Y q andBpγ´, γ`, η, Y q constitute the same linear space. It is

therefore sufficient to show that the natural norm on L2
γ´,γ`pR, Y q is equivalent to the norm on Bpγ´, γ`, η, Y q

induced by the intersection and sum property. For any u P L2
γ´,γ`pR, Y q, we have

u “ χ`u` χ´u, χ˘u P L
2
γ˘pR, Y q X L

2
exp,¯ηpR, Y q,

and
}u}Bpγ´,γ`,η,Y q ď}χ`u}L2

γ`
pR,Y qXL2

exp,´ηpR,Y q ` }χ´u}L2
γ´
pR,Y qXL2

exp,ηpR,Y q

“}χ`u}L2
γ`
pR,Y q ` }χ`u}L2

exp,´ηpR,Y q ` }χ´u}L2
γ´
pR,Y q ` }χ´u}L2

exp,ηpR,Y q

ďCpγ˘, ηq
“

}χ`u}L2
γ`
pR,Y q ` }χ´u}L2

γ´
pR,Y q

‰

“Cpγ˘, ηq}u}L2
γ´,γ`

pR,Y q,

which implies that the two norms are equivalent, concluding the proof.

Denoting the inverse Fourier transform of LNF as LNF, we have

L “MLLNF, Lad “Mad
R Lad

NF.

The proof of Proposition 3.6 now reduces to establishing Fredholm properties of LNF.

Proof. [of Proposition 3.6] Noting that Y – xẽpkqy ‘ xe0y
K – xe˚0 y ‘ xẽ

˚pkqyK, the normal form operator

LNFpkq admits an isomorphic diagonal form,

LDpkq : xẽpkqy ‘ xe0y
K ÝÑ xe˚0 y ‘ xẽ

˚pkqyK
ˆ

u1
u2

˙

ÞÝÑ

ˆ

Dmpkqιpkq 0

0 ιKpkq

˙ˆ

u1
u2

˙

. (3.18)
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According to Lemma 3.8-3.9 and definition (3.12) of projections ιpkq and ιKpkq, we derive that

LNF : DpLNFq Ă Lpγ´´m,γ`´mpR, Y q ÝÑ Lpγ´,γ`pR, Y q

u ÞÝÑ xDmp´iBxqu, e0ye
˚
0 ` ι̌Kpu´

řm
j“0xD

j
C,mp´iBxqu, e0yejq,

where upxq ´
řm
j“0xD

j
C,mp´iBxqupxq, e0yej P xe0y

K for all x P R and the mapping

ι̌K : Lpγ´,γ`pR, xe0y
Kq ÝÑ tu P Lpγ´,γ`pR, Y q |

řm
j“0xD

j
C,mp´iBxqupxq, e

˚
i y “ 0, for all x P Ru

v ÞÝÑ ιKp0qv ´
řm
j“0xD

j
C,mp´iBxqrιKp0qvs, e

˚
i ye

˚
0 ,

is an isomorphism. As a result, Fredholm properties of LNF are encoded in the regularized derivative operator

rDp´iBxqs
m. More specifically, we note that

F´1
”

Dmpkqιpkq
´

ûpkqẽpkq
¯ı

“

´

rDp´iBxqs
mupxq

¯

e˚0 , F´1
´

ûpkqẽpkq
¯

“

m
ÿ

j“0

´

rDC,mp´iBxqs
j
upxq

¯

ej ,

which implies that the kernel and cokernel of LNF is given respectively by

Ker pLNFq “

#

m
ÿ

j“0

´

rDC,mp´iBxqs
j
upxq

¯

ej

ˇ

ˇ

ˇ

ˇ

upxq P Ker
´

rDp´iBxqs
m
¯

+

,

Cok pLNFq “

#

m
ÿ

j“0

´ ”

DC,mpiBxq
ıj

upxq
¯

e˚j

ˇ

ˇ

ˇ

ˇ

upxq P Cok
´

rDp´iBxqs
m
¯

+

.

Therefore, the statements in Proposition 3.6 then follow by applying the statement of Proposition 6.1 to the

above analysis and noting that, for any u P PmpRq,

rDC,mp´iBxqs
j
upxq “ p´iqαBαxupxq.

3.2 Operators with discrete translation symmetry

The results from Section 3.1 can be easily adapted to the case of an operator, L, on `2pZ, Y q, that commutes

with the discrete translation group Z. The discrete Fourier transform takes the form

Fd : `2pZ, Y q ÝÑ L2pT1, Y q
u “ tujujPZ ÞÝÑ ûpσq “

ř

jPZ uje
´2πijσ,

(3.19)

where T1 :“ R{Z denotes the unit circle. The counterparts of the derivative Bx are the discrete derivatives,

δ`ptajujPZq :“ taj`1 ´ ajujPZ, δ´ptajujPZq :“ taj ´ aj´1ujPZ, δ :“ ´ipδ` ` δ´q{2. (3.20)

The Fourier transform of L, denoted as L̂ “
ş

T1
Lpσqdσ, is an isomorphism of L2pT1, Y q, that is,

L̂ : DpL̂q Ă L2pT1, Y q ÝÑ L2pT1, Y q
upσq ÞÝÑ Lpσqupσq,

(3.21)

with Lpσq linear and bounded on Y for all σ P T1.

Hypothesis 3.12 (Analyticity, periodicity and simple kernel) We assume that Lpσq is analytic, uni-

formly bounded, 1-periodic, with values in the set of bounded operators on Y , in a strip σ P Ω1 :“ Rˆp´iσi, iσiq

for some σi ą 0. Moreover, we require that Lpσq, restricted to σ P r´1{2, 1{2s, is invertible except at σ “ 0

and Lp0q admits a simple kernel spanned by e0 with xe0, e0y “ 1.
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Remark 3.13 For convenience, we identify the interval r´1{2, 1{2s with the unit circle T1, collapsing end-

points ´1{2 „ 1{2.

We adopt all the notations in the continuous case, except for those related to pseudo-derivative symbols. The

new pseudo-derivatives take the following forms,

D`pσq “ e2πiσ ´ 1, D´pσq “ 1´ e´2πiσ, DC,mpσq “ pe
2πiσ ´ 1q r1` iC sinmp2πσqs

´1
, (3.22)

whose associated physical operator are respectively δ`, δ´ and δ` r1` iCδms
´1

. Here m P Z` is the minimal

power index so that the continuation of eigenvalue 0, λpσq “ λmσ
m `Opσm`1q, with λm ‰ 0 for σ „ 0 P C.

The constant C ą 0 will eventually be chosen sufficiently large so that the norm of the bounded multiplier

DC,m is arbitrarily small. As a matter of fact, in the strip

Ω1pC,mq :“

"

σ P Ω1

ˇ

ˇ

ˇ

ˇ

|Reσ| ď 1{2,| Imσ| ă
1

2π
sinh´1

ˆ

1
m
?

2C
sinp

π

2m
q

˙*

,

DC,mpσq is analytic and uniformly bounded, that is, there exists a constant C(m) so that

}DC,mpσq} ď
Cpmq
m
?
C
, for all σ P Ω1pC,mq.

Moreover, we define epσq “
řm
j“0 ejσ

j and e˚pσq “
řm
j“0 e

˚
j σ̄

j so that

Lpσqepσq “ Opσmq, L˚pσqe˚pσq “ Opσmq,

C

m´1
ÿ

j“0

Lm´jej , e
˚
0

G

‰ 0,
k
ÿ

j“0

Ljek´j “ 0, k “ 0, . . . ,m´1.

There exist tẽj , ẽ
˚
j u
m
j“0 Ă Y , independent of C, and

ẽpσq :“
m
ÿ

j“0

rDC,mpσqs
j
ẽj , ẽ˚pσq :“

m
ÿ

j“0

”

DC,mpσq
ıj

ẽ˚j , σ P Ω1pC,mq.

so that Lpσqẽpσq “ Opσmq and L˚pσqẽ˚pσq “ Opσmq.

Proposition 3.14 (Fredholm properties of L) For γ˘ R t1{2, 3{2, ¨ ¨ ¨ ,m´ 1{2u, the operator satisfying

Hypothesis 3.12,

L : DpLq Ă `2γ´´m,γ`´mpZ, Y q Ñ `2γ´,γ`pZ, Y q, (3.23)

is closed, densely defined, and Fredholm. Letting γmax “ maxtγ´, γ`u, γmin “ mintγ´, γ`u and ηβ :“

tηβuηPZ, we have that

• for γmin P Im :“ pm´ 1{2,8q, the operator (3.23) is one-to-one with cokernel

Cok “ span

#

β
ÿ

α“0

pδα`η
βqẽ˚α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,

• for γmax P I0 :“ p´8, 1{2q, the operator (3.23) is onto with kernel

Ker “ span

#

β
ÿ

α“0

pδα`η
βqẽα

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,

• for γmin P Ii and γmax P Ij with Ik :“ pk ´ 1{2, k ` 1{2q for 0 ă k P Z ă m, the kernel of (3.23) is

Ker “ span

#

β
ÿ

α“0

pδα`η
βqẽα

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ j ´ 1

+

,

and its cokernel is

Cok “ span

#

β
ÿ

α“0

pδα`η
βqẽ˚α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ , i´ 1

+

.
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On the other hand, the operator (3.23) does not have closed range for γ´, γ` P t1{2, 3{2, ¨ ¨ ¨ ,m´ 1{2u.

Proof. Just as in the continuous case, the proof reduces to the verification of Fredholm properties of the

discrete derivative δm´j` δj´, for j “ 0, 1, ¨ ¨ ¨ ,m, which is relegated to Appendix 6.2.

3.3 Floquet-Bloch theory and periodic coefficients

We are interested in operators posed on the real line, with only a discrete translational symmetry. Examples

are of course the linearization at periodic structures, but include more generally operators with periodic

coefficients, PpBx, xq, periodic in x. One commonly introduces the Bloch-wave transform

B : L2pT1, rL2pr0, 2πsqsnq ÝÑ rL2pRqsn

Upσ, xq ÞÝÑ
ş

T1
eiσxUpσ, ¨qdσ,

which is an isometric isomorphism with its inverse

B´1 : rL2pRqsn ÝÑ L2pT1, rL2pr0, 2πsqsnq

upxq ÞÝÑ 1
2π

ř

`PZ ei`xpupσ ` `q.
(3.24)

We refer to [21, XIII.16.] for details. Under the Bloch-wave transform, PpBx, xq defined on rL2pRqsn becomes

a direct integral — the Bloch-wave decomposition,

B´1 ˝ P ˝ B “
ż

T1

PBLpσqdσ, (3.25)

where the Bloch-wave operator PBLpσq takes the form

PBLpσq : DpPBLpσqq Ă rL
2pr0, 2πsqsn ÝÑ rL2pr0, 2πsqsn

upxq ÞÝÑ P pBx ` iσ, xqupxq.
(3.26)

We assume that the family of Bloch-wave operators PBLpσq satisfies the following hypothesis.

Hypothesis 3.15 (Analyticity and simple kernel) We assume that PBLpσq is analytic and uniformly

bounded, 1-periodic, with values in the set of bounded operators on Y , in a strip σ P Ω1 :“ R ˆ p´iσi, iσiq

for some σi ą 0. Moreover, we require that PBLpσq,restricted to r´1{2, 1{2s, is invertible except at σ “ 0 and

PBLp0q admits a simple kernel spanned by e0 with xe0, e0y “ 1.

In order to exploit the results from Section 3.2, we first define the chopping operator C that identifies rL2pRqsn

with `2pZ, rL2pr0, 2πsqsnq, that is,

C : rL2pRqsn ÝÑ `2pZ, rL2pr0, 2πsqsnq

u ÞÝÑ tup2πj ` xqujPZ,

and the discrete Fourier transform taking the form

Fd : `2pZ, rL2pr0, 2πsqsnq ÝÑ L2pT1, rL2pr0, 2πsqsnq

u “ tujujPZ ÞÝÑ
ř

jPZ ujpxqe
´2πijσ.

(3.27)

Under the transformations C and Fd, PpBx, xq again becomes a direct integral with the notation

ż

T1

P pσqdσ :“ Fd ˝ C ˝ P ˝ C´1 ˝ F´1
d . (3.28)
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In fact, for any U P Dp
ş

T1
P pσqdσq, we have that

´

Fd ˝ C ˝ P ˝ C´1 ˝ F´1
d pUq

¯

pσ, xq “
ÿ

jPZ
e´2πijσ

ˆ

PpBx, xq
ż

T1

Upη, xqe2πijηdη

˙

“ PpBx, xq
ż

T1

Upη, xq

˜

ÿ

jPZ
e2πijpη´σq

¸

dη

“ PpBx, xq
ż

T1

Upη, xqδpη ´ σqdη

“ PpBx, xqUpσ, xq,

which shows that, for any σ P T1,

P pσq : DpP pσqq Ă rL2pr0, 2πsqsn ÝÑ rL2pr0, 2πsqsn

upxq ÞÝÑ PpBx, xqupxq.

We conclude with a commutative diagram of isomorphisms as follows, dropping the superscript n for ease of

notation,

L2pT1, L2pr0, 2πsqq
B
ÝÑ L2pRq C

ÝÑ `2pZ, L2pr0, 2πsqq
Fd
ÝÑ L2pT1, L2pr0, 2πsqq

Ó
ş

T1
PBLpσqdσ Ó P Ó

ş

T1
P pσqdσ

L2pT1, L2pr0, 2πsqq
B
ÝÑ L2pRq C

ÝÑ `2pZ, L2pr0, 2πsqq
Fd
ÝÑ L2pT1, r2pr0, 2πsqq,

from which it is straightforward to see that
ş

T1
PBLpσqdσ and

ş

T1
P pσqdσ are isomorphic. Moreover, we have

the following lemma.

Lemma 3.16 The operators P pσq and PBLpσq are canonically isomorphic for all σ P T1.

Proof. From (3.24-3.25) and (3.27-3.28), we summarize that for any σ P T1,

DpP pσqq “ teiσxupxq P rL2pr0, 2πsqsn | upxq P DpPBLpσqqu,

which directly implies that we have the isomorphism

PBLpσq “ e´iσxP pσqeiσx. (3.29)

According to Hypothesis 3.15, there exist m P Z`, λm ‰ 0, epσq “
řm
j“0 ejσ

j and e˚pσq “
řm
j“0 e

˚
j σ̄

j with

PBLpσqepσq “ λme0σ
m `Opσm`1q, (3.30)

and

P˚BLpσqe
˚pσq “ λ̄me

˚
0σ

m `Opσm`1q, (3.31)

so that
C

m´1
ÿ

j“0

PBL,m´jej , e
˚
0

G

‰ 0,
k
ÿ

j“0

PBL,jek´j “ 0, k “ 0, . . . ,m´ 1.

According to Lemma 3.16 and Proposition 3.14, we have the following proposition.

Proposition 3.17 (Fredholm properties of L) For γ´, γ` R t1{2, 3{2, ¨ ¨ ¨ ,m ´ 1{2u, the operator satis-

fying Hypothesis 3.15,

P : DpPq Ă L2
γ´´m,γ`´m Ñ L2

γ´,γ` , (3.32)

is closed, densely defined, and Fredholm. Letting γmax “ maxtγ´, γ`u, γmin “ mintγ´, γ`u, we have that
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• for γmin P Im :“ pm´ 1{2,8q, the operator (3.32) is one-to-one with cokernel

Cok “ span

#

β
ÿ

α“0

pixqα

α!
e˚β´α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,

• for γmax P I0 :“ p´8, 1{2q, the operator (3.32) is onto with kernel

Ker “ span

#

β
ÿ

α“0

pixqα

α!
eβ´α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ 1

+

,

• for γmin P Ii and γmax P Ij with Ik :“ pk ´ 1{2, k ` 1{2q for 0 ă k P Z ă m, the kernel of (3.32) is

Ker “ span

#

β
ÿ

α“0

pixqα

α!
eβ´α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ ,m´ j ´ 1

+

,

and its cokernel is

Cok “ span

#

β
ÿ

α“0

pixqα

α!
e˚β´α

ˇ

ˇ

ˇ

ˇ

β “ 0, 1, ¨ ¨ ¨ , i´ 1

+

.

On the other hand, the operator (3.32) does not have closed range for γ´, γ` P t1{2, 3{2, ¨ ¨ ¨ ,m´ 1{2u.

Proof. All results in this proposition, except explicit forms of kernels and cokernels, are direct consequences

of Proposition 3.14. From the isomorphism property (3.29) and the expansion (3.30), we have, for β “

0, 1, ¨ ¨ ¨ ,m´ 1,

P
β
ÿ

α“0

pixqα

α!
eβ´α “ 0,

which, combining with the domain of P for given γ˘, concludes the proof.

Remark 3.18 There is an alternative way to obtain the explicit forms of kernels and cokernels. The first

step is to obtain explicit forms of ẽj and ẽ˚j . Taking ẽj for example, we note that the first m ` 1 terms of

the Taylor expansion of eixσepσq and
řm
j“0pe

2πiσ´ 1qj ẽj with respect to σ are the same. More specifically, we

have

eixσepσq “ e0 `
m
ÿ

k“1

˜

k
ÿ

j“0

pixqj

j!
ek´j

¸

σk `Opσm`1q,

m
ÿ

j“0

pe2πiσ ´ 1qj ẽj “ ẽ0 `
m
ÿ

k“1

p2πiqk

k!
pApk, jqẽjqσ

k `Opσm`1q,

where

Apk, jq “
j
ÿ

`“1

ˆ

j

`

˙

`kp´1qj´`,

with Apk, jq “ 0 for 1 ă k ă j. We can then solve tẽju
m
j“0 in terms of teju

m
j“0. In a second step, we plug all

these explicit expansions of ẽj’s into Proposition 3.14 to derive explicit forms of kernels and cokernels.

4 Impurities

We prove Theorem 1. Recalling χ˘ is a smooth partition of unity with supppχ`q Ă p´1,8q, χ´pxq “ χ`p´xq,

we write θ “ χ` ´ χ´ and

ϕpxq “ k0x´ ϕ0 ` k1Θ´ ϕ1θpxq, ϕ1pxq “ k0 ` k1θpxq ´ ϕ1θ
1pxq,

ϕ˘pxq “ k0x´ ϕ0 ˘ pk1x´ ϕ1q, pϕ˘q1pxq “ k0 ˘ k1,
(4.1)
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where Θpxq :“
şx

0
θpyqdy ` c with the constant c ą 0 chosen so that Θpxq “ |x| for |x| ą 1. We think of

ϕj and kj as matching variables in the far field and we will consider ψ0 “ pϕ0, k0q as free parameters and

ψ1 “ pϕ1, k1q as variables, and write ψ “ pψ0, ψ1q, so that ϕ “ ϕpx;ψq, ϕ˘ “ ϕ˘px;ψq. We write

uψp pxq :“ uppk˚x` ϕpx;ψq; k˚ ` ϕ
1px;ψqq, u˘,ψp pxq :“ uppk˚ ` ϕ

˘px;ψq; k˚ ` pϕ
˘q1px;ψqq. (4.2)

We then substitute the ansatz upxq “ uψp ` w into the stationary Swift-Hohenberg equation, to obtain

LSHpu
ψ
p ` wq ` F pu

ψ
p ` wq ` εg “ 0, (4.3)

where

LSH “ ´p1` B
2
xq

2, F puq “ µu´ u3.

The phase shifts ϕ˘ encode simply shifted phases and wavenumbers, so that u˘,ψp are solutions to the Swift-

Hohenberg equation and, for both ` and ´,

χ˘
`

LSHu
˘,ψ
p ` F pu˘,ψp q

˘

“ 0.

Subtracting these from (4.3) gives

LSHw ` F
1puψp qw `Npw,ψq `K ` εG “ 0, (4.4)

where

Npw,ψq “ F puψp ` wq ´ F pu
ψ
p q ´ F

1puψp qw “ Opw2q, G “ gpx, uψp ` wq,

and the commutator K depends on ψ, only,

K “ LSHu
ψ
p ´

ÿ

˘

χ˘LSHu
˘,ψ
p ` F puψp q ´

ÿ

χ˘F pu
˘,ψ
p q.

In particular, one readily finds that K is compactly supported and smooth in ψ as an element of Hk
γ for any

k, γ. Expanding

K “ K1 ¨ ψ `K2, K2 “ Op|ψ|2q,

gives

Lψpw,ψq `N pw,ψq ` εGpw,ψq “ 0, (4.5)

where

Lψpw,ψq “ LSHw ` F
1puψp qw `K1 ¨ ψ,

with the following notation

K1 :“ BψK|ψ“0 “ pKϕ0 ,Kk0 ,Kϕ1 ,Kk1q, N pw,ψq :“ Npw,ψq `K2 “ Op|w|2 ` |ψ|2q.

Our goal is to use Lyapunov-Schmidt reduction to solve (4.5) with variables w,ψ1 and parameters ε, ψ0, near

the trivial solution k0 “ k1 “ ϕ1 “ ε “ 0, w “ 0, and fixed ϕ0 P r0, 2πq.

Remark 4.1 Without loss of generality, we can also redefine the primary pattern, shifting its location by ϕ0

k˚

in a ϕ0-dependent fashion, and subsequently applying the shift x1 “ x ´ ϕ0

k˚
in (1.1). As a consequence, in

our proof, ϕ0 ” 0, or, in other words, ϕ0 as a variable does not appear within uψp and the dependence on ϕ0

is moved to g “ gpx1 ` ϕ0

k˚
, uq.

Making the role of variables versus parameters explicit, we further decompose

Lψpw,ψq “ Lψ1 pw,ψ1q ` Lψ0 ψ0,

with

Lψ1 pw,ψ1q “ LSHw ` F
1puψp qw `Kϕ1

ϕ1 `Kk1k1, Lψ0 ψ0 “ Kϕ0
ϕ0 `Kk0k0.
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In order to implement Lyapunov-Schmidt reduction, we proceed as follows. We precondition (4.5) with

Mpψq :“ pLψ1 q´1 and consider the resulting equation

pw,ψ1q `Mpψq
´

Lψ0 ψ0 `N pw,ψq ` εGpw,ψq
¯

“ 0,

on H4
γ˚´3´δ ˆ R2, in a neighborhood of the origin, with parameters ψ0, ε. The following two ingredients

ensure that we can actually apply the implicit function theorem near the trivial solution w “ ψ1 “ 0.

(i) The inverseMpψq is bounded from L2
γ to H4

γ´2ˆR2, and C1 in ψ when considered as an operator from

L2
γ to H4

γ´3´δ, for γ ą 3{2.

(ii) The nonlinearity N is of class C1 as a map from H4
γ ˆ R4 into L2

2γ , with vanishing derivatives at the

origin.

We then choose γ “ γ˚ in (i) and 2γ “ γ˚ in (ii), which gives the restriction 2pγ˚ ´ 3´ δq ą γ˚, compatible

with γ˚ ą 6.

The second part is quite standard, using that u ÞÑ u ¨ u maps Hk
γ into Hk

2γ for k ą 1{2, and we will focus

on the first part in the next two sections. We therefore proceed in several steps. We first show bounded

invertibility for ψ “ 0 in section 4.1 , in particular computing the derivatives of K and their projection on the

cokernel of L0
1 “ LSH`F

1pupq, where up simply stands for uppξ; k˚q. We then show bounded invertibility and

continuity of Lψ1 for ψ ‰ 0 using a decomposition argument in Section 4.2. Finally, we compute expansions

in Section 4.3.

4.1 Invertibility at ψ ” 0

In this subsection we drop the subscripts from L0
1. We first show that

L0 “ LSH ` F
1pupq, (4.6)

is Fredholm and identify the cokernel, then compute projections of the partial derivatives of K1 on the

cokernel, and finally identify projection coefficients with effective diffusivity. Recall that uppξ; k˚q, with

ξ “ k˚x, denotes a periodic solution to the unperturbed Swift-Hohenberg equation. Throughout this section

we will write u1p :“ Bxup “ k˚Bξuppξ; k˚q, Bξup :“ Bξuppξ; k˚q and Bkup :“ Bkuppξ; k˚q.

Fredholm properties of L0. We start by putting the results from Section 3 to work.

Proposition 4.2 Assume Hypotheses 2.1–2.3. For all γ ą 3{2, the linear operator L0 : DpL0q Ă H4
γ´2 Ñ L2

γ

is Fredholm of index -2, with trivial kernel and cokernel spanned by u1p and up,k “ xBξup ` Bkup.

Proof. According to Proposition 3.17 and the fact that m “ 2, there exists e0 and e1 so that the operator

L̃0 :“ ´r1` pk˚Bξq
2s2 ` µ´ 3u2ppξ; k˚q, which is the counterpart of the operator P, satisfies

L̃0e0 “ 0, L̃0pe1 ` iξe0q “ 0.

By definition, L̃0 is a rescaling of L0 and thus e0 is the normalized version of u1p “ k˚Bξup. According to the

dependence on parameter k of uppξ; kq, we readily derive

L̃0pBkup ` xBξupq “ 0,

which, combining with the invertibility of L̃0 restricted to the subspace of even, 2π-periodic functions, shows

that Bkup`xBξup is a rescaling of e1` iξe0. As a result, we now conclude that the results in this proposition

follows naturally from the self-adjointness of L0.
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Spanning the cokernel. As a next step, we compute scalar products between

K1 :“ BψK|ψ“0 “ pKϕ0
,Kk0 ,Kϕ1

,Kk1q,

and the elements in the cokernel. More precisely, we show that Kϕ0
“ Kk0 “ 0 and that Kϕ1

and Kk1 span

up,k and u1p in the sense of

det

ˆ

xu1p,Kϕ1
y xup,k,Kϕ1

y

xu1p,Kk1y xup,k,Kk1y

˙

‰ 0. (4.7)

where x¨, ¨y denotes the standard inner product in L2pRq.

To start with, a straight forward calculation shows that the total derivative of K is

BψK|ψ“0 “ L0pBξupBψϕ|ψ“0 ` BkupBψϕ
1|ψ“0q ´

ÿ

˘

χ˘L0pBξupBψϕ
˘|ψ“0 ` BkupBψpϕ

˘q1|ψ“0q (4.8)

where L0 “ LSH ` F
1pupq as defined in (4.6) and

Bψϕ “ p´1, x,´θ,Θq, Bψϕ
1 “ p0, 1,´θ1, θq,

Bψϕ
˘ “ p´1, x,¯1,˘xq, Bψpϕ

˘q1 “ p0, 1, 0,˘1q.

We then exploit the fact that χ˘ is a partition of unity and θ “ χ` ´ χ´ to obtain expressions for each

partial derivative in (4.8),

Kϕ0
“ Kk0 “ 0,

Kϕ1
“ rθ,L0sBξup ´ L0pθ1Bkupq,

Kk1 “ L0 pΘBξup ` θBkupq ´ θL0pxBξup ` Bkupq.

Recalling that up,k “ xBξup ` Bkup, we can further simplify the formula for Kk1 into the following form,

Kk1 “ rL0, θsup,k ` L0 pΘBξup ´ θxBξupq .

We now proceed to show that (4.7) is true. Noting that L0 is self-adjoint, θ1 and Θ ´ θx are compactly

supported, u1p “ k˚Bξup and

rL0, wsv “ LSHpwvq ´ wLSHv “ r´B
4
x ´ 2B2x, wsv,

we derive the expressions of projections of Kϕ1
and Kk1 on the cokernel,

xu1p,Kϕ1y “ k´1
˚ xu

1
p, rθ,L0su1py “ k´1

˚ xu
1
p, rB

4
x ` 2B2x, θsu

1
py, (4.9)

xup,k,Kϕ1
y “ k´1

˚ xup,k, rθ,L0su1py “ k´1
˚ xup,k, rB

4
x ` 2B2x, θsu

1
py, (4.10)

xu1p,Kk1y “ xu
1
p, rL0, θsup,ky “ ´xu

1
p, rB

4
x ` 2B2x, θsup,ky, (4.11)

xup,k,Kk1y “ xup,k, rL0, θsup,ky “ ´xup,k, rB
4
x ` 2B2x, θsup,ky, (4.12)

A straightforward computation gives

ż

R
urB2mx , wsv dx “

ż

R
w1

2m´1
ÿ

j“0

p´1qjupjqvp2m´1´jq dx, (4.13)

which has the following two consequences related to (4.7).

(i) Applying (4.13) to equation (4.10) and (4.11), we conclude that the off-diagonal elements in (4.7)

coincide, taking the expression

xu1p,Kk1y “ k˚xup,k,Kϕ1y “

ż

R
θ1

«

3
ÿ

j“0

p´1qju
pjq
p,ku

p4´jq
p ` 2

1
ÿ

j“0

p´1qju
pjq
p,ku

p2´jq
p

ff

dx. (4.14)
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(ii) The expression (4.13) is zero if u ¨ v ¨w is odd and each of u, v, w is either even or odd. Noting that u1p
and θ are odd, up,k is even, we conclude that the diagonal elements in (4.7) vanish, that is,

xu1p,Kϕ1
y “ xup,k,Kk1y “ 0. (4.15)

To further simplify the expression of off-diagonal elements (4.14), we notice that the projections on the

cokernel are independent of the choice of θ. More specifically, suppose θ1 and θ2 differ by a compactly

supported term, δθ, we can evaluate the contribution of δθ to our projections:
ż

R
u1prL0, δθsup,k dx “

ż

R
u1pL0pδθup,kq ´ u

1
pδθL0up,k dx “ 0.

As a result, the expression in (4.14) converges, as θ1 Ñ 2δx0
, to

xu1p,Kk1y “ k˚xup,k,Kϕ1
y “ 2

«

3
ÿ

j“0

p´1qju
pjq
p,ku

p4´jq
p ` 2

1
ÿ

j“0

p´1qju
pjq
p,ku

p2´jq
p

ffˇ

ˇ

ˇ

ˇ

ˇ

x“x0

, (4.16)

where x0 P R is arbitrary. Now, using up,k “
x
k˚
u1p`Bkup and u1pp0q “ u1pp2π{k˚q “ 0, averaging the constant

expression in (4.16) over a period x0 P r0, 2π{k˚s and integrating by parts, we find,

xu1p,Kk1y “ k˚xup,k,Kϕ1y “
2

π

ż 2π{k˚

0

“

k˚Bk
`

pu2pq
2 ´ pu1pq

2
˘

`
`

3pu2pq
2 ´ pu1pq

2
˘‰

dx. (4.17)

We will see how this expression relates to the effective diffusivity, next, and hence conclude that it does not

vanish. As a consequence, L0 is bounded invertible.

Computing the effective diffusivity. We first recall the definition of LBpσq from (2.3), and consider the

eigenvalue equation

LBpσqepσq “ λpσqepσq, (4.18)

for λp0q “ 0 and σ „ 0. Expanding

LBpσq “ L0 ` L1σ ` L2σ
2 `Opσ3q, epσq “ e0 ` e1σ ` e2σ

2 `Opσ3q, λpσq “ λ2σ
2 `Op3q,

and setting e0 “ u1p and xe0, epσq ´ e0yL2p0,2π{k˚q “ 0, we find explicitly

L0 “ ´p1` B
2
xq

2 ` µ´ 3u2ppxq, L1 “ ´4ip1` B2xqBx, L2 “ 2` 6B2x,

which, plugged in the eigenvalue equation (4.18), solve

L0e0 “ 0, L1e0 ` L0e1 “ 0, L0e2 ` L1e1 ` L2e0 “ λ2e0.

Noting xe1, e0yL2p0,2π{k˚q “ 0, we project the equation for λ2 onto e1, that is,

λ2xe0, e0yL2p0,2π{k˚q “ xL1e1 ` L2e0, e0yL2p0,2π{k˚q. (4.19)

In order to determine e1, we recall Lemma 2.4 and notice that the derivative Bkuppkx; kq at k “ k˚ satisfies

´4k˚p1` k
2
˚B

2
ξ qB

2
ξup `

`

´p1` k2˚B
2
ξ q

2 ` µ´ 3u2p
˘

Bkup “ 0,

or equivalently, L1e0 ` L0pik˚Bkupq “ 0, which gives

e1 “ ikBkup.

Inserting the expansion for L1, L2 and e1 into equation (4.19) gives

λ2

ż 2π{k˚

0

pu1pq
2 dx “ ´2

ż 2π{k˚

0

“

k˚Bk
`

pu2pq
2 ´ pu1pq

2
˘

`
`

3pu2pq
2 ´ pu1pq

2
˘‰

dx. (4.20)

Therefore, combining (4.17) and (4.20), we conclude

xu1p,Kk1y “ k˚xup,k,Kϕ1y “ ´
λ2
π

ż 2π{k˚

0

pu1pq
2 dx. (4.21)
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Remark 4.3 Notice that a similar reasoning to the proof of Proposition 4.2 shows that for γ ą 3{2 the

operators L˘,ψ “ LSH ` F
1pu˘,ψp q, with u˘,ψp as in equation (4.2), are also Fredholm operators from H4

γ´2 to

L2
γ . Moreover, because the inner products (4.9),(4.10),(4.11), and (4.12) depend continuously on the parameter

ψ, the terms Kφ1 and Kk1 span the cokernel of these operators as well.

4.2 Invertibility for Lψ1

The invertibility of Lψ1 for ψ “ p0, ϕ0, 0, 0q can be derived straightforwardly from the invertibility of L0
1 due

to the simple fact that Lψ1 for ψ “ p0, ϕ0, 0, 0q is conjugate to L0
1 via a spatial translation. As a result, we

only need to deal with the operator Lψ1 for ψ „ 0. The operators Lψ1 are close to L0
1, but the difference is

in general not relatively bounded. The difficulty stems from the fact that L0
1 “gains localization” in certain

components, whereas the difference Lψ1 ´L0
1, a bounded multiplication operator, does not affect localization.

Therefore, a simple Neumann series perturbation argument will not suffice to establish invertibility of Lψ1 .

We establish somewhat weaker bounds on an inverse of Lψ1 as follows. First, using the results from subsection

4.1 and changing notation in oder to make the distinction between variables and parameters explicit, we write

a more complete definition of Lϑ1 , that is,

Lϑ1 pw,ψ1q :“ ´p1` B2xq
2w ` µw ´ 3puϑpq

2w `Kϕ1
α0 `Kk1α1 “ h (4.22)

where ϑ “ pϑ1, ϑ2, ϑ3, ϑ4q denotes the parameter, and w,ψ1 “ pα0, α1q are variables. The following proposi-

tion then shows the invertibility of this operator and its differentiability with respect to ϑ.

Proposition 4.4 For γ ą 3{2, (4.22) possesses a solutions pw,ψ1q such that

}w}H4
γ´2

` |ψ1| ď C}h}L2
γ
,

with constant C independent of ϑ, sufficiently small. Moreover, the solution depends continuously on ϑ in

H4
γ´2´δ, and is differentiable in ϑ, when considered in spaces with weaker localization,

}Bϑw}H4
γ´3´δ

` |Bϑψ1| ď C}h}L2
γ
.

Proof. For ease of notation we let m0 “ Kϕ1
,m1 “ Kk1 , and look for solutions to

Lϑ1 pw,ψ1q “ Lϑw ` α0m0 ` α1m1 “ h, (4.23)

where w P H4
γ´2, α0, α1 P R are variables, h P L2

γ´2, and

Lϑw “ ´p1` B2xq2w ` µw ´ 3puϑpq
2w.

We recall as well that m0 and m1 span the cokernel of L˘,ϑ “ ´p1`B2xq2 ` µ´ 3pu˘,ϑp q2, where u˘,ϑp follows

the same definition as in equation (4.2). We decompose (4.23) using the partition of unity, w “ w` ` w´,

h “ h` ` h´, w˘ “ χ˘w, h˘ “ χ˘h, and obtain

L`,ϑw` `
1
ÿ

j“0

pαj ´ βjqmj `
`

Lϑ ´ L´,ϑ
˘

w´ ´ h` “ 0, (4.24)

L´,ϑw´ `
1
ÿ

j“0

βjmj `
`

Lϑ ´ L`,ϑ
˘

w` ´ h´ “ 0. (4.25)

To solve (4.24) and (4.25) for w˘, αj , βj , j P t0, 1u, we will consider the cross-coupling terms
`

Lϑ ´ L˘,ϑ
˘

w˘
as small perturbations. Note that, given h P L2

γ , the system

L`,ϑw` `
ÿ

pαj ´ βjqmj ´ h` “ 0

L´,ϑw´ `
ÿ

βjmj ´ h´ “ 0,
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possesses a unique solution, pw`, w´, α1, α2, β1, β2q, where w´ P H
4
γ´2,γ1 , w` P H

4
γ1,γ´2, with γ1 arbitrarily

large since h˘ are supported on ˘x ą ´1. Given |ϑ| small, the cross terms are small, bounded operators when

considered on these spaces since, for instance, supppLϑ ´ L´,ϑq Ă R`, and w´|R` P H
4
γ1 . This establishes

the existence of a bounded inverse, with w “ w` ` w´ P H
4
γ´2. It remains to establish the desired smooth

dependence of the solution w “ pw,α0, α1q on ϑ. Writing Lϑ1w “ h briefly as Lpϑqpwpϑqq “ h, we find

wpϑ` ζ%q ´ wpϑq “ ´Lpϑq´1 pLpϑ` ζ%q ´ Lpϑqqwpϑ` ζ%q,

where 0 ă ζ ! 1, ϑ, % P R4 with |%| “ 1 and |ϑ| sufficiently small. Now Lpϑq´1pLpϑ` ζ%q ´ Lpϑqq converges

to zero when considered as an operator from H4
γ´2 Ñ H4

γ´2´δ, for any δ ą 0, which, using uniform bounds

for wpϑ` ζ%q, establishes continuity. Difference quotients and therefore continuity of partial derivatives can

be established in a similar fashion. Notice however that the dependence of the operator Lϑ on the parameter

comes from the coefficient

3puϑpq
2 “ 3ruppk˚x` ϕ; k˚ ` ϕ

1qs2,

via

ϕpxq “ ϑ1x` ϑ2 ` ϑ3Θpxq ´ ϑ4θpxq.

Therefore, derivatives of wpϑq with respect to ϑj , j “ 1, 3 induce linear growth and involve loss of one degree

of localization.

4.3 Reduced equations and expansions

To obtain approximations for the variables pw,ϕ1, k1q, we assume expansions of the form

w “ w1pϕ0, k0qε`Opε2q,

ϕ1 “Mϕpϕ0, k0qε`Opε2q,

k1 “Mkpϕ0, k0qε`Opε2q,

and we observe that the first order approximations of pw1,Mϕ,Mkq satisfy the following equation

L0w1 `Kϕ1
Mϕ `Kk1Mk `G1 “ 0,

where by Remark 4.1 we have that

G1 “ gpx1 `
ϕ0

k˚
, upppk˚ ` k0qx

1; k˚ ` k0qq.

We then proceed to use Lyapunov-Schmidt reduction and obtain the following reduced equations by projecting

on the cokernel of L0,

0 “ xup,k,Kϕ1
yMϕ ` xup,k, G1y

0 “ xu1p,Kk1yMk ` xu
1
p, G1y,

where the variables Mϕ and Mk depend on k0 and ϕ0. Then combining these results with (4.21) and (4.16),

and in the particular case of k0 “ 0, we obtain formulas for Mϕpϕ0, 0q and Mkpϕ0, 0q, that is,

Mϕpϕ0, 0q “

πk˚

ż

R
gpx1 `

ϕ0

k˚
, upqup,k dx1

λ2
ş2π{k˚
0

pu1pq
2 dx

,

Mkpϕ0, 0q “

π

ż

R
gpx1 `

ϕ0

k˚
, upqu

1
p dx1

λ2
ş2π{k˚
0

pu1pq
2 dx

.
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It is useful to consider again the change of variables x1 “ x´ ϕ0

k˚
, and write

ż

R
gpx1 `

ϕ0

k˚
, upqu

1
p dx1 “

ż

R
gpx, uppk˚x´ ϕ0; k˚qqu

1
ppk˚x´ ϕ0; k˚qdx,

which, in the case of g “ BuHpx, uq for some function H, implies that

´

ż

Mk dϕ0 :“
1

2π

ż 2π

0

Mkpϕ0, 0qdϕ0 “ 0.

5 Discussion

In this paper, we developed a functional-analytic framework for perturbation theory in the presence of essential

spectrum, induced by non-compact translation symmetry. The key ingredient are algebraically weighted

spaces, including loss of localization by the inverse according to the spatial multiplicity of the essential

spectrum. We restricted to “simple” branches of essential spectrum for notational simplicity but the methods

generalize to more complicated situations. The framework included problems on infinite lattices and cylinders.

A crucial assumption is that there is precisely one unbounded direction.

We showed how such results can be used to study defects, here impurities, in striped phases. The framework of

algebraically localized spaces here allows for algebraic decay of impurities. One naturally encounters negative

Fredholm indices in the linearization, which one compensates for by adjusting parameters in the far field.

In fact, the spatial multiplicity is related in a direct way to the fact that periodic patterns come in two-

parameter families. Technically, the decomposition into core deformations (algebraically localized functions)

and far field deformations (wavenumber and phase corrections) can be employed in a variety of different

contexts. In particular, our approach lays the basis for the continuation of localized deformations such as

defects in parameters using more classical algorithms of numerical continuation [17].

We emphasize that our results do not depend on the particular equation, studied, as long as one is able

to determine the existence of periodic patterns and establish properties of the linearization. It is worth

noting that both, existence and stability properties, can be established in very reliable ways solving simple

periodic boundary-value problems. In particular, one can treat reaction-diffusion systems without much

adaptation. More interesting are systems with conserved quantities such as Cahn-Hilliard, Phase-Field,

or DiBlock Copolymer models, since mass conservation induces an additional multiplicity in the essential

spectrum, thus violating Hypothesis 3.2 on simple kernels of Lp0q. One could also study problems in channels

or infinite cylinders, in particular deformations of hexagonal spot arrays with periodicity of inhomogeneities

in one direction.

There are at least two alternative approaches. First, one could work in exponentially weighted spaces,

resorting to stronger assumptions on the inhomogeneity. Fredholm properties of differential operators on

the real line in exponentially weighted spaces are well known [19, 24] and have been used in the context of

perturbation and bifurcation theory in the presence of essential spectrum [24, 8].

In a similar vein, one could cast the existence problem as a non-autonomous differential equation in space x,

and use dynamical systems tools to investigate the effect of inhomogeneities. From this point of view, the

periodic patterns form a two-dimensional normally hyperbolic manifold of equilibria. One can then readily

calculate the effect of inhomogeneities on the periodic flow on this center manifold, using traditional methods

of averaging.

A major drawback of these more subtle methods is the reliance on a phase space and exponential behavior

in normal directions. In particular, there is no clear path towards perturbation of two-dimensional patterns.

Algebraic weights, however, allow for finite-dimensional reductions in the presence of essential spectrum also

in higher dimensions [9, 10].
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6 Appendix

6.1 Fredholm properties of pseudo-derivatives rDp´iBxqs
´`

In this section we prove a more general version of Proposition 6.1. More specifically, for any ` P Z`, p P p1,8q

and γ˘ P R, we define the regularized derivative,

rDp´iBxqs
` : DprDp´iBxqs

`q Ă Lpγ´´`,γ`´` ÝÑ Lpγ´,γ`
u ÞÝÑ B`xp1` Bxq

´`u,
(6.1)

with its domain DprDp´iBxqs
`q “ tu P Lpγ´´`,γ`´` | p1 ` Bxq

´`u P M `,p
γ´´`,γ`´`

u. Moreover, the Fredholm

properties of the operator rDp´iBxqs
` are summarized in the following proposition.

Proposition 6.1 For γ˘ P R{t1´ 1{p, 2´ 1{p, ¨ ¨ ¨ , `´ 1{pu, the regularized derivative rDp´iBxqs
` as defined

in (6.1) is Fredholm. Moreover, the operator rDp´iBxqs
` satisfies the following conditions.

• If γmax P I0 :“ p´8, 1´ 1{pq, the operator rDp´iBxqs
` is onto with its kernel equal to P`pRq.

• If γmin P I` :“ p`´ 1{p,8q, the operator rDp´iBxqs
` is one-to-one with its cokernel equal to P`pRq.

• If γmin P Ii, γmax P Ij with Ik :“ pk ´ 1{p, k ` 1{pq for 0 ă k P Z ă `, the kernel and cokernel of the

operator rDp´iBxqs
` are respectively spanned by P`´jpRq and PipRq.

On the other hand, the range of the operator rDp´iBxqs
` is not closed if γ´, γ` P t1´1{p, 2´1{p, ..., `´1{pu.

We will only prove the result in the isotropic case, that is for γ´ “ γ` “ γ, since the proof for the anisotropic

case follows the same arguments with straightforward modifications. We start by showing in Lemma 6.2 that

the operator p1 ˘ Bxq : W `,p
γ Ñ W `´1,p

γ is an isomorphism and then establish the Fredholm properties of

B`x : Mk``,p
γ´` ÑMk,p

γ in Lemma 6.4. By combining these two results one arrives at Proposition 6.1.

Lemma 6.2 Given ` P Z`, p P p1,8q, γ P R, the operator 1˘ Bx : W `,p
γ ÝÑW `´1,p

γ is an isomorphism.

Proof. We have the following commutative diagram

W `,p
γ

1˘Bx
ÝÑ W `´1,p

γ

txuγ Ó txuγ Ó

W `,p M˘
ÝÑ W `´1,p.

As a result, we have pM˘uqpxq “ txuγp1˘Bxqptxu´γupxqq “ p1˘Bxqupxq´γxtxu´2upxq, that is, according to

the Kondrachov embedding theorem, the operator M˘ is equal to a compact perturbation of the invertible

operator p1˘ Bxq : W `,p ÑW `´1,p. Noting that KerM˘ “ t0u, we conclude that M˘ is invertible.

To obtain the Fredholm properties of B`x, we first generalize the canonical definition of Bx : Mk`1,p
γ´1 Ñ Mk,p

γ

where k ě 0 to the k ă 0 regime: given k P Z´, the operator Bx : Mk`1,p
γ´1 ÑMk,p

γ is defined as

Bxupvq “ ´xxu, Bxvyy, @u PMk`1,p
γ´1 , v PM´k,q

´γ , (6.2)

where 1{p` 1{q “ 1.

Remark 6.3 The generalized operator Bx : Lpγ´1 Ñ M´1,p
γ is an extension of the canonical operator Bx :

M1,p
γ´1 Ñ Lpγ in the sense that Bxupvq “ xxBxu, vyy, for any u PM1,p

γ´1 and v PM1,q
´γ .

For this generalized operator, we have the following lemma whose proof will occupy the rest of this section.
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Lemma 6.4 Given k P Z, ` P Z`, p P p1,8q, and γ P Rzt1´ 1{p, 2´ 1{p, ..., `´ 1{pu, the operator

B`x : Mk``,p
γ´` ÝÑMk,p

γ , (6.3)

is Fredholm. Moreover,

• if γ ă 1´ 1{p, the operator (6.3) is onto with its kernel equal to P`pRq.

• if γ ą `´ 1{p, the operator (6.3) is one-to-one with its cokernel equal to P`pRq.

• if j ´ 1{p ă γ ă j ` 1´ 1{p, where j P Z` X r1, `´ 1s, the kernel and cokernel of the operator (6.3) are

respectively P`´jpRq and PjpRq.

On the other hand, the operator (6.3) does not have a closed range if γ P t1´ 1{p, 2´ 1{p, ..., `´ 1{pu.

We focus on the proof of the two primary cases when ` “ 1 and k “ 0,´1, which can be readily generalized to

the case when ` “ 1 and k “ n,´n´1 for n P Z`, and then the case ` ą 1. The proof is given in various steps

written as lemmas. We first establish Fredholm properties of the operator Bx : M1,p
γ´1 Ñ Lpγ when γ ą 1´ 1{p

in Lemma 6.5. We then establish Fredholm properties of the operator Bx : Lpγ´1 ÑM´1,p
γ when γ ‰ 1´ 1{p

in Lemma 6.7-6.8, where Fredholm properties of the operator Bx : M1,p
γ´1 Ñ Lpγ when γ ă 1 ´ 1{p follows.

Finally, we show in Lemma 6.9 that for γ “ 1´ 1{p both operators do not have closed ranges.

Lemma 6.5 Given p P p1,8q and γ ą 1 ´ 1{p, the operator, Bx : M1,p
γ´1 Ñ Lpγ , is Fredholm and one-to-one

with its cokernel spanned by P1pRq.

Remark 6.6 We can readily apply the techniques from the following proof to show that, given p P p1,8q and

rγ` ´ p1´ 1{pqsrγ´ ´ p1´ 1{pqs ă 0, the operator, Bx : M1,p
γ´´1,γ`´1 Ñ Lpγ´,γ` , is bounded and invertible.

Proof. Given γ ą 1´ 1{p, we denote

Lpγ,K :“ tf P Lpγ |

ż

R
f “ 0u,

which is closed in Lpγ since 1 is a bounded linear functional on Lpγ . It is not hard to see that, for any u PM1,p
γ´1,

its derivative Bxu P L
1. We then consider vpxq :“

şx

8
Bxupyqdy and take C1 “ limxÑ´8 vpxq. It is clear that

there exists some C2 P R such that upxq ´ vpxq “ C2, which leads to

lim
xÑ8

upxq “ C2, lim
xÑ´8

upxq “ C2 ` C1.

The fact that u P Lpγ´1 implies that if the limxÑ˘8 upxq exists, it must be zero. Thus, we have C1 “ C2 “ 0,

that is,
ş

R Bxudx “ 0, and consequently

RgpBxq Ď Lpγ,K.

We now claim that the inverse of Bx can be defined as

B´1
x : Lpγ,K ÝÑ M1,p

γ´1

f ÞÝÑ

ż x

8

fpyqdy.
(6.4)

The fact that B´1
x is well defined reduces to verifying that upxq “

şx

8
fpyqdy P Lpγ´1. To do that, we let

γ̃ :“ γ ´ p1´ 1{pq ą 0 and split R into three intervals, that is, R “ p´8,´1q Y r´1, 1s Y p1,8q. First, it is

not hard to see that

}upxq}Lp
γ̃´1{p

pr´1,1sq ď Cpγ, pqmax
|x|ď1

|upxq| ď Cpγ, pq}f}L1pRq ď Cpγ, pq}f}LpγpRq, (6.5)
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where Cpγq is a constant varying with γ and p. For the interval p1,8q, we use a logarithmic scaling, that is,

τ :“ lnpxq, wpτq :“ eγ̃τupeτ q, gpτq :“ epγ̃`1qτfpeτ q.

so that the ODE wτ ´ γ̃w “ g admits a solution wpτq “
şτ

8
eγ̃pτ´sqgpsqds. Applying Young’s inequality to

the above integral equation, we obtain

?
2
p1{p´γ̃q

}upxq}Lp
γ̃´1{p

pp1,8qq ď }wpτq}Lppp0,8qq ď
1

γ̃
}gpτq}Lppp0,8qq ď

1

γ̃
}fpxq}Lp

γ̃`1´1{p
pp1,8qq. (6.6)

For the interval p´8, 1q, a similar argument can be applied and leads to the inequality,

}upxq}Lp
γ̃´1{p

pp´8,´1qq ď Cpγ, pq}fpxq}Lp
γ̃`1´1{p

pp´8,´1qq. (6.7)

Combining the inequalities (6.5)–(6.7), we conclude that the operator (6.4) is well defined and we have

}B´1
x f}M1,p

γ´1
“ }u}Lpγ´1

` }f}Lpγ ď Cpγq}f}Lpγ ,

which implies that B´1
x is also a bounded linear operator.

Lemma 6.7 Given p P p1,8q, we have that,

• for γ ą 1´ 1{p , the operator Bx : Lpγ´1 ÑM´1,p
γ is one-to-one;

• for γ ă 1´ 1{p, the operator Bx : Lpγ´1 ÑM´1,p
γ is Fredholm, onto with its kernel equal to P1pRq.

Proof. For γ ą 1´ 1{p, consider u P Lpγ´1 with Bxu “ 0. We let tununPN Ă C80 such that un Ñ u in Lpγ´1

and then have that, for any v PM1,q
´γ ,

Bxupvq “ ´xxu, Bxvyy “ lim
nÑ8

xxBxun, vyy “ 0,

which implies Bxun Ñ 0 in Lpγ . We therefore have u “ 0, proving the first statement of the lemma.

For γ ă 1´ 1{p, the operator Bx : M1,q
´γ Ñ Lq1´γ , according to Lemma 6.5, is a Fredholm operator with index

´1 and cokernel equal to P1pRq. Therefore, the operator Bx : Lpγ´1 Ñ M´1,p
γ , as the adjoint operator of

Bx : M1,q
´γ Ñ Lq1´γ with an extra negative sign, is Fredholm with index 1 and kernel equal to P1pRq.

Lemma 6.8 Given p P p1,8q, we have

• for γ ă 1´ 1{p, the Fredholm operator Bx : M1,p
γ´1 Ñ Lpγ is onto with its kernel equal to P1pRq.

• for γ ą 1 ´ 1{p, the Fredholm operator Bx : Lpγ´1 Ñ M´1,p
γ is one-to-one with its cokernel equal to

P1pRq.

Proof. To prove the lemma we just need to show that each operator has a closed range. We restrict

our attention to the first operator, the second being analogous. By way of contradiction, suppose that

Bx : M1,p
γ´1 Ñ Lpγ does not have a closed range for γ ă 1´ 1{q, then there exists a sequence tununPN ĂM1,p

γ´1

such that distpun,P1pRqq “ 1 and }Bxun}Lpγ Ñ 0. The norm inequality }Bxun}M´1,p
γ

ď }Bxun}Lpγ , together

with the fact that the operator Bx : Lpγ´1 Ñ M´1,p
γ has closed range show that we can find a subsequence

tvnu Ă Ker pBxq ĂM1,p
γ´1 such that }un ´ vn}Lpγ´1

Ñ 0. Therefore, we have

}un ´ vn}M1,p
γ´1

ď }un ´ vn}Lpγ´1
` }Bxun ´ Bxvn}Lpγ Ñ 0, as nÑ8,

that is, distpun,P1pRqq Ñ 0, which is a contradiction and concludes the proof.

Lemma 6.9 Given p P p1,8q and γ “ 1 ´ 1{p, the operators Bx : M1,p
γ´1 Ñ Lpγ and Bx : Lpγ´1 Ñ M´1,p

γ do

not have closed ranges.

Proof. Let φ P C80 with 0 ď φ ď 1 and supppφq “ r´1, 1s. Let unpxq “ φpx{nq, then tBxununPZ` is a

bounded sequence in M´1,p
γ (also, in Lpγ). However, if γ “ 1 ´ 1{p the sequence tununPN is unbounded in

Lpγ´1 (also, in W 1,p
γ´1). Therefore, both operators do not have closed ranges.

26



6.2 Fredholm properties of operators δ`´i` δi´

Proposition 6.10 Given k P Z, ` P Z`, p P p1,8q, and γ P Rzt1´ 1{p, 2´ 1{p, ..., `´ 1{pu, the operator

δ`´i` δi´ :Mk``,p
γ´` ÝÑMk,p

γ , (6.8)

is Fredholm for i P r0, `s X Z. Moreover,

• if γ ă 1´ 1{p, the operator in (6.8) is onto with its kernel equal to P`pZq;

• if γ ą `´ 1{p, the operator in (6.8) is one-to-one with its cokernel equal to P`pZq;

• if j ´ 1{p ă γ ă j ` 1´ 1{p, where j P Z` X r1, `´ 1s, the kernel and cokernel of the operator in (6.8)

are respectively P`´jpZq and PjpZq.

On the other hand, the operator in (6.8) does not have a closed range if γ P t1´ 1{p, 2´ 1{p, ..., `´ 1{pu.

The proof of Proposition 6.10 is essentially the same as in the continuous case, that is, the proof of Lemma

6.4. The main technical difference lies in the proof of the the discrete version of Lemma 6.5, which we shall

establish now.

Lemma 6.11 For γ ą 1´ 1{p and p P r1,8s, discrete derivative operators, δ˘ : M 1,p
γ´1 ÞÑ `pγ , are one-to-one

Fredholm operators with both cokernels spanned by P1pZq.

Proof. It is straightforward to see that δ˘ are isomorphic and we only need to prove the results for δ`.

Just like the continuous, the essential part is to prove that

δ´1
` : `pγ,K ÝÑ `pγ´1

tbjujPZ ÞÝÑ t´
ř8

i“j biujPZ,

where `pγ,K “ ttbjujPZ P `
p
γ |

ř

jPZ bj “ 0u, is the bounded inverse of δ`. To do that, we instead consider the

following operator
rδ´1
` : `pγ,KpNq ÝÑ `pγ´1pNq

tbjujPN ÞÝÑ t´
ř8

i“j |bi|ujPN,

We denote aj “ ´
ř8

i“j bi for all j P Z and raj “ ´
ř8

i“j |bi| for all j P N. It is then not hard to conclude that

• aj`1 ´ aj “ bj , for all j P Z;

• raj`1 ´ raj “ |bj |, for all j P N;

• trajujPN is an increasing sequence with non-negative entries;

• |raj | ě |aj |, for all j P N.

For any rγ ą 0 and j P N, we introduce

Aj “ 2jrγra2j , Bj “ 2jrγ
2j`1

´1
ÿ

i“2j

|bj |,

and have 2´rγAj`1´Aj “ Bj , or equivalently, Aj “ ´
ř8

i“j 2pj´iqrγBi, which, according to Young’s inequality,

leads to that

}tAjujPN}`ppNq ď }t2
´rγjujPN}`1}tBjujPN}`ppNq ď

2rγ

2rγ ´ 1
}tBjujPN}`ppNq. (6.9)
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Moreover, on one hand, we have

}tAjujPN}
p
`ppNq “

8
ÿ

j“0

2rγpj´j
`

2j |ra2j |
p
˘

ě

8
ÿ

j“0

2prγp´1qj

¨

˝

2j`1
´1

ÿ

i“2j

|rai|
p

˛

‚

ě mint41´rγp, 1u
8
ÿ

j“0

¨

˝

2j`1
´1

ÿ

i“2j

tiurγp´1|rai|
p

˛

‚

“ mint41´rγp, 1u}trajujPZ`}
p
`p
rγ´1{p

pZ`q

ě mint41´rγp, 1u}tajujPZ`}
p
`p
rγ´1{p

pZ`q.

(6.10)

On the other hand, we have

}tBjujPN}
p
`ppNq “

8
ÿ

j“0

2prγ`1qpj

¨

˝

1

2j

2j`1
´1

ÿ

i“2j

|bi|

˛

‚

p

ď

8
ÿ

j“0

2rprγ`1qp´1sj

¨

˝

2j`1
´1

ÿ

i“2j

|bi|
p

˛

‚

ď maxt41´prγ`1qp, 1u
8
ÿ

j“0

¨

˝

2j`1
´1

ÿ

i“2j

iprγ`1qp´1|bi|
p

˛

‚

“ maxt41´prγ`1qp, 1u}tbjujPZ`}
p
`p
rγ`1´1{p

pZ`q.

(6.11)

Combining these inequalities (6.9), (6.10) and (6.11), we conclude that, there exists Cpγ̃, pq ą 0 so that

}tajujPZ`}`p
rγ´1{p

pZ`q ď Cpγ̃, pq}tbjujPZ`}`p
rγ`1´1{p

pZ`q ď Cpγ̃, pq}tbjujPZ}`p
rγ`1´1{p

pZq.

By shifting and letting j Ñ ´j, we can also show that

}tajujPZ´Yt0u}`p
rγ´1{p

pZ´Yt0uq ď Cpγ̃, pq}tbjujPZ}`p
rγ`1´1{p

pZq.

In conclusion, letting γ̃ “ γ ´ 1´ 1{p ą 0, there exists Cpγ, pq ą 0 such that

}tajujPZ}`pγ´1
ď Cpγ, pq}tbjujPZ}`pγ ,

which concludes the proof.
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