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It is shown that spiral waves may possess many isolated point eigenvalues that appear near branch
points of the linear dispersion relation. These eigenvalues are created by the same mechanism that
leads to infinitely many bound states for selfadjoint Schrödinger operators with sufficiently weakly
decaying long-range potentials. For spirals, the weak decay of the potential is due to curvature
effects on the profile of the spiral in an intermediate spatial range that separates the spiral core
from the far field.
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I. INTRODUCTION

Spiral waves have been observed in various biolog-
ical, chemical and physical systems [1], as well as in
numerical simulations of reaction-diffusion systems and
complex Ginzburg–Landau equations. Part of their fas-
cination is due to the intriguing instabilities they ex-
hibit: For instance, spirals may begin to meander or to
drift, a scenario that has been observed in the Belousov–
Zhabotinsky reaction [2], during fibrillations in cardiac
tissue [3], and in the oxidation of carbon-monoxide on
platinum surfaces [4], and that has been attributed to
a supercritical Hopf bifurcation [5]. Of particular rele-
vance to this paper is spiral breakup where the core [6]
or the far field [7, 8] of a spiral wave breaks up into
a turbulent region with complex spatio-temporal behav-
ior. Other interesting instabilities are spatio-temporal
period-doubling bifurcations, which have been observed
in the Belousov–Zhabotinsky reaction [9] and in numeri-
cal simulations [10], and transverse instabilities [11] that
are characterized by a degenerate dispersion relation be-
tween asymptotic wavelength and wave speed.

Among the challenges for theoretical studies of spirals
are the tasks of investigating the nature of the above
instabilities and making predictions about the patterns
emerging from them. The first step toward these goals
is to understand spiral spectra as they inform us about
the stability or instability of a spiral and, through the
associated eigenmodes, about the spatio-temporal be-
havior associated with unstable modes. Spiral spectra
are composed of two disjoint sets: a discrete part con-
sisting of isolated point eigenvalues, and a continuous
part consisting of curves (for planar spirals) or of densely
distributed eigenvalues (for spirals on large disks). Iso-
lated point eigenvalues depend genuinely on the spiral in
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the sense that their location is determined by the spi-
ral shape between core and far field; in general, their
computation therefore requires knowledge of the entire
two-dimensional spiral. In contrast, the continuous part
of the spectrum depends only on the asymptotic one-
dimensional profile of the spiral in the far field. It is also
known, for instance from Ref. [12], that point eigenval-
ues and absolute instabilities caused by the continuous
part of the spectrum produce very different scaling laws
and bifurcation diagrams near onset. It is therefore desir-
able to develop analytical criteria that allow us to decide
whether spirals destabilize due to discrete or continuous
parts of their spectrum.

In this paper, we show that spiral spectra may contain
many isolated point eigenvalues whose approximate lo-
cation can be predicted from the asymptotic wave trains
upon accounting properly for curvature effects in the re-
gion between core and far field. Specifically, we show that
the linearization about a planar spiral wave near double
roots (or branch points) of its linear dispersion relation
can be reduced to a one-dimensional Schrödinger opera-
tor with a complex long-range potential. Depending on
a sign condition on its coefficients, this Schrödinger oper-
ator has infinitely many bound states which correspond
to isolated point eigenvalues of the spiral. These eigen-
values can shift the onset to instability, and our result
predicts precisely when such a shift occurs.

We apply our analyses to a modified FitzHugh–
Nagumo equation and the complex Ginzburg–Landau
equation: Our theoretical results turn out to be in ex-
cellent agreement with the recent spectral computations
by Barkley and Wheeler [13] for the modified FitzHugh–
Nagumo equation, which in fact motivated our study.
Furthermore, we show that spiral waves in the complex
Ginzburg–Landau equation can possess discrete eigenval-
ues generated by curvature effects and that these eigen-
values lead to a shift of the onset of spiral instability into
the regime where the asymptotic wave trains are only
convectively unstable.
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II. SPIRAL SPECTRA

To set the scene, we assume that u∗(r, ϕ−ωt), written
in polar coordinates, is a rigidly-rotating Archimedean
spiral wave with nonzero angular velocity ω of the
reaction-diffusion system

ut = D∆u + f(u), u ∈ Rn, (1)

where (x, y) lies in R2 or in large disks BR(0) of radius
R � 1 with, say, Neumann boundary conditions. We as-
sume that the diffusion matrix D is invertible but empha-
size that our analysis applies, under certain conditions, to
systems for which some of the diffusion coefficients van-
ish (see Eq. (20) below for an example). A typical spiral
wave is shown in Fig. 1. In particular, the asymptotic
profile of a spiral in the far field away from its core is lo-
cally of the form u0(κr+ϕ−ωt), where u0 is 2π-periodic
in its argument; we refer to Eq. (7)-(8) for the precise
far-field asymptotics of u∗. The function u0(κx − ωt) is
a planar wave that satisfies Eq. (1) on R2. Linearizing
Eq. (1) about this planar wave gives

wt = D∆w + fu(u0(κx− ωt))w, (x, y) ∈ R2. (2)

In the following, we focus on longitudinal instabilities of
the wave train which are captured by the ansatz

w = eλt+νxw0(κx− ωt; ν),

where λ, ν ∈ C and w0(ϑ; ν) is 2π-periodic in ϑ. Sub-
stitution into Eq. (2) yields the linear dispersion relation
λ∗(ν) of the wave train in the propagation direction and
its group velocity cg = −dλ∗/dν|ν=0 ∈ R in the labora-
tory frame. As we shall see below, the linear dispersion
relation in the transverse direction is not relevant to our
spectral analysis, but will nevertheless affect the spatial
spiral asymptotics given in Eq. (7)–(8) below. We there-
fore also introduce the ansatz

w = eλt+νyw⊥
0 (κx− ωt; ν) (3)

with λ, ν ∈ C and w⊥
0 (ϑ; ν) being 2π-periodic in ϑ, to get

the linear dispersion relation λ⊥∗ (ν) = d⊥ν2 + O(ν3) in
the transverse direction.

To relate these quantities to the spectrum of the spiral,
we shall work in the corotating frame ϕ 7→ ϕ+ωt in which
Eq. (1) becomes

ut = D∆u + ω∂ϕu + f(u). (4)

The eigenvalue problem associated with the spiral u∗ is
then given by

λu = D∆u + ω∂ϕu + fu(u∗(r, ϕ))u. (5)

We now briefly summarize the results established in
Refs. [14, 15]. Throughout, we reserve the term point
eigenvalue to denote eigenvalues with finite multiplicity
that are isolated uniformly in the disk radius R.

FIG. 1: Contour plots of 2D spiral waves of the FitzHugh–
Nagumo equation (20) computed on squares with Neumann
boundary conditions are shown. The left plot shows a rigidly
rotating spiral, while the right plot shows a spiral that is
breaking up in the far field.
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FIG. 2: (i) Spectra of spirals on R2. (ii) Spectra of spirals on
disks BR(0) with R � 1. See text for details.

On R2, spiral spectra consist of point eigenvalues,
among them eigenvalues at 0 and ±iω which are enforced
by the rotation and translation symmetry of the plane,
and the essential spectrum Σess, which is bounded by the
linear dispersion curves λ = λ∗(iγ) + iω` with γ ∈ R and
` ∈ Z (see Fig. 2(i)). The vertical periodicity with period
ω of the essential spectrum in the complex plane arises
since the essential spectrum is determined entirely by the
limiting eigenvalue problem for r →∞: In this limit, the
diffusion operator ∆ is replaced by ∂rr, and the eigen-
value problem (5) acquires an additional symmetry due
to the term ω∂ϕ which acts by replacing eigenmodes w
and spectrum λ by w exp(i`ϕ) and λ + iω`, respectively.

On the other hand, on disks BR(0) of radius R, spiral
spectra converge as R → ∞ to the union of the abso-
lute spectrum Σabs and point eigenvalues (see Fig. 2(ii)).
The absolute spectrum consists of all elements λ ∈ C for
which the equation λ = λ∗(ν)+ iω` has two roots ν1 and
ν2 with equal real part that have the correct Morse index
(see Refs. [14, 15] for details). It is therefore determined
solely by the asymptotic one-dimensional wave trains and
again vertically periodic in the complex λ-plane with pe-
riod ω. The edges of the absolute spectrum are given by
branch points λbp of the linear dispersion relation where,
by definition, the two roots ν1 and ν2 become equal to
each other to form a double root of λ∗(ν): In other words,
λbp = λ∗(ν1) + iω` and dλ∗/dν(ν1) = 0. The absolute
spectrum itself is not spectrum, but each of its elements
is approximated by infinitely many eigenvalues of (5) as
R → ∞; the convergence toward the absolute spectrum
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FIG. 3: Spiral spectra computed by Barkley and Wheeler [13]
for the FitzHugh–Nagumo equation (20) near core (i) and far-
field (ii) breakup on disks of radius R = 20, 40, 80, indicated
by different symbols and colors [Reproduced with permission].
The absolute and essential spectra shown in the above plots
were previously computed in Ref. [14].

is algebraic of order 1/R in R. While the absolute spec-
trum does not depend on the boundary conditions, the
actual eigenvalues near it will. The point eigenvalues,
which make up the remaining part of the spectrum, have
limits as R → ∞, which are approached exponentially
fast of order exp(−αR) in R, and these limiting elements
contain all eigenvalues and resonance poles of the spiral
on R2 plus possibly additional eigenvalues induced by the
boundary conditions.

The theoretical predictions for spiral spectra on large
disks were recently corroborated by numerical computa-
tions, summarized in Fig. 3, by Barkley and Wheeler [13],
which confirm in particular the clustering of eigenval-
ues along the absolute spectrum. In addition, however,
their computations show that certain point eigenvalues
appear to be intimately linked to the absolute spectrum
by aligning themselves along rays that emerge from the
edges of the absolute spectrum. As visible in Fig. 3(ii),
this phenomenon seems to occur along each branch of
the absolute spectrum (recall that the absolute spectrum
is vertically periodic with period ω). These observations
are surprising as point eigenvalues are determined by the
shape of the spiral in the region between core and far
field rather than by the far field itself.

In this paper, we explain the occurrence of these point
eigenvalues in terms of curvature corrections to the spi-
ral shape in an intermediate spatial regime between core
and far field which manifest themselves as a long-range
potential in Eq. (5). Our analysis provides criteria which
determine whether instabilities such as core or far-field
breakup are caused by the absolute spectrum or by point
eigenvalues arising through curvature effects. We shall
focus on spirals on R2 since point eigenvalues persist on
disks of finite but large radius R, independently of the
boundary conditions.

III. REDUCTION TO SCHRÖDINGER
EQUATIONS

We now reduce the eigenvalue problem of a pla-
nar spiral wave near branch points to a non-selfadjoint
Schrödinger operator with a complex long-range poten-
tial. The result is given toward the end of this section in
Eq. (13).

It will be convenient to write the steady-state equation
for Eq. (4) on R2 in polar coordinates:

D
[
urr +

ur

r
+

uϕϕ

r2

]
+ ωuϕ + f(u) = 0. (6)

To capture point eigenvalues, we need to expand the
spiral wave in the far field as r → ∞. Using the
Archimedean coordinate

ϑ = ϕ + κr + θ1 log r, (7)

where the constant θ1 is to be determined, the spiral wave
u∗(r, ϑ) has, for sufficiently large r � 1, the expansion

u∗(r, ϑ) = u0(ϑ) +
1
r
u1(ϑ) + O(1/r2), (8)

u1(ϑ) = bu′0(ϑ) + θ1∂κu0(ϑ) +
κ

2
∂ννw⊥

0 (ϑ; 0).

Here, θ1 = κd⊥/cg, w⊥
0 has been introduced in Eq. (3),

∂κu0 refers to the derivative of the wave train profile
with respect to its spatial wave number κ, and b ∈ R is
a constant that is determined by a compatibility condi-
tion at order 1/r2. The expansion (8) can be verified by
substituting it into Eq. (6) and expanding in powers of
1/r. Writing the eigenvalue problem (5) as a first-order
system in the Archimedean variables, we obtain

ur = −
(

κ +
θ1

r

)
uϑ + v (9)

vr = −uϑϑ

r2
+ D−1 [λ− ω∂ϑ − fu(u∗(r, ϑ))]u

−
(

κ +
θ1

r

)
vϑ −

v

r
,

which, using the expansion (8), is of the form

Ur =
[
A0(λ) +

1
r
A1(λ) + O

(
1
r2

)]
U, U =

(
u
v

)
,

(10)
where the operators Aj act on functions U = (u, v) that
are 2π-periodic in ϑ. Since all eigenmodes are necessarily
smooth in the ϑ-direction, the uϑϑ/r2 terms in Eq. (9)
can be considered as higher-order corrections that do not
cause any regularity problems.

Upon taking the limit r → ∞ in Eq. (9)–(10), we
recover the eigenvalue problem of the asymptotic wave
train. In particular, a direct computation shows that ν
is an eigenvalue of A0(λ), given by

A0(λ) =
(

−κ∂ϑ 1
D−1 [λ− ω∂ϑ − fu(u0(ϑ))] −κ∂ϑ

)
,
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if, and only if, it is a root of the linear dispersion of
the asymptotic wave train, i.e. if λ and ν are related via
λ = λ∗(ν).

Suppose now that λbp ∈ C is a branch point of the lin-
ear dispersion relation λ∗(ν) of the spiral wave with dou-
ble roots ν1 = ν2. Interpreted in the context of Eq. (10),
this assumption means that A0(λbp) has a double eigen-
value ν1 = ν2. We shall assume that the double eigen-
value ν1,2 has geometric multiplicity one, which is the
generic case.

Our goal is now to reduce Eq. (10) to a simpler scalar
equation for λ near λbp. Thus, we employ the perturba-
tion ansatz

U(r) = eν1rV (r), λ = λbp + Λ, ν = ν1 + V,

so that Eq. (10) becomes

Vr =
[
A0 − ν1 +

1
r
A1 + O

(
1
r2

)]
V, (11)

where A0−ν1 evaluated at Λ = 0 now has a double eigen-
value at V = 0 with geometric multiplicity one. In par-
ticular, we can apply center-manifold theory to Eq. (11)
for Λ and 1/r close to zero, which shows that we can
reduce Eq. (11) to an equation of the form

Wr =
[(

0 1
Λ/d 0

)
+

1
r
B1 + O

(
1
r2

)]
W, (12)

where W = (W1,W2) ∈ C2, for a certain complex coeffi-
cient d ∈ C and a complex 2× 2 matrix B1. The compo-
nents W1 and W2 of W can be thought of as being the
amplitudes of the eigenmode and the generalized eigen-
mode, respectively, associated with the double eigenvalue
V = 0 of the right-hand side of Eq. (11) at Λ = 0.

Equation (12) is equivalent to a second-order equation
for W1. Upon removing the ∂rW1 term in this second-
order equation by an appropriate coordinate transfor-
mation, we finally arrive at the scalar non-selfadjoint
Schrödinger equation

dwrr +
[
a

r
+ O

(
1
r2

)]
w = Λw, r ∈ [R0,∞) (13)

for the variable w, which corresponds to the transformed
W1. Here, R0 � 1 is determined by the region of valid-
ity of the center-manifold reduction, while the coefficient
a ∈ C describing the strength of the complex long-range
potential in Eq. (13) is determined from the entries of
the matrix B1 in Eq. (12).

Equation (13) describes the eigenvalue problem of the
spiral wave in the far field. To obtain genuine eigen-
modes of the spiral wave, we need to match its solutions
to the eigenvalue problem in the core region. We have
carried out this matching process in Ref. [15] for fronts
in reaction-diffusion equations and summarized the nec-
essary modifications for spirals in Ref. [14]. Therefore,

we shall omit the details here. The result of the match-
ing with the core is an effective boundary condition for
Eq. (13) at r = R0 of the form

s1(Λ)w(R0) + s2(Λ)wr(R0) = 0 (14)

which provides the correct coupling to the eigenvalue
problem near the spiral core. The complex-valued func-
tions s1 and s2 depend smoothly on Λ, and satisfy
|s1|2 + |s2|2 6= 0 near Λ = 0.

In summary, to determine the spectrum of the spiral
wave near the branch point λbp, it suffices to find the
spectrum of the Schrödinger operator given in Eq. (13)
subject to the boundary condition (14). Before turning
to the point spectrum of (13)–(14), we shall discuss the
interpretation of the coefficients a and d.

The continuous spectrum of (13) is given by the ray
Λ = −dγ2 with γ ∈ R as it is determined entirely by
the limiting problem at r = ∞. By construction, this
spectrum must coincide with the absolute spectrum of
the spiral wave near the branch point λbp. The algorithm
for the computation of the absolute spectrum of spirals
outlined in Ref. [14] therefore allows us to calculate d
numerically.

The coefficient a is determined as follows. Since
d(1/r)/dr = O(1/r2), we can treat the variable 1/r in
Eq. (11) for r � 1 as a slowly varying parameter. In par-
ticular, to compute the reduced vector field on the cen-
ter manifold of Eq. (11) to leading order, we can simply
consider 1/r as a small parameter, rather than treating
Eq. (11) as a genuinely non-autonomous system. This
observation allows us to make the following argument.
Truncating Eq. (13) at order 1/r and rewriting the re-
sulting equation as a first-order system yields

W̃r =
(

0 1
1
d

(
Λ− a

r

)
0

)
W̃ , W̃ = (w,wr). (15)

The coefficient matrix has a double eigenvalue precisely
when Λ = a/r. Thus, upon reversing the coordinate
transformations that led from Eq. (9) to Eq. (15), we
see that the coefficient matrix on the right-hand side of
Eq. (9), also truncated formally at order 1/r, has a double
eigenvalue precisely when λ is equal to λbp + a/r. Since
the truncated coefficient matrix, acting on 2π-periodic
functions in ϑ, is explicitly given by

A0(λ) +
1
r
A1(λ) =(

−
(
κ + θ1

r

)
∂ϑ 1

D−1 [λ− ω∂ϑ − fu(u0(ϑ) + u1(ϑ)/r)] −
(
κ + θ1

r

)
∂ϑ

)
,

and since we assumed that we know λbp, we can therefore
compute the value of λ for which A0 +A1/r has a double
eigenvalue numerically as a function of 1/r; from these
values and the expansion λ = λbp + a/r, we then obtain
the coefficient a.
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IV. SPECTRA OF NON-SELFADJOINT
SCHRÖDINGER EQUATIONS

We now discuss the spectrum of (13)-(14). When

Φ := arg
(a

d

)
(16)

satisfies |Φ| < π/2, the Schrödinger equation (13)-(14)
has infinitely many point eigenvalues, given approxi-
mately by

Λn =
a2

4dn2

[
1 + O

(
1
n

)]
, n � 1, n ∈ N, (17)

that accumulate at the origin along the ray

arg Λ = Ψ = arg
(

a2

d

)
(18)

(see Fig. 4(i)). The point eigenvalues depend on the
boundary conditions (14) only through the higher-order
term O(1/n). In contrast, when |Φ| > π/2, then (13)-
(14) does not have any point eigenvalues near the origin.
At the transition point Φ = ±π/2, the eigenvalues dis-
appear through the essential spectrum by moving to the
”wrong” Riemann sheet of the dispersion relation, thus
corresponding to resonance poles with exponentially in-
creasing eigenfunctions. Before we continue our discus-
sion, we remark that both cases |Φ| < π/2 and |Φ| > π/2
do occur, and we refer to §V below for examples.

We now provide arguments to support our claims.
If the ratios a/d and s1/s2 are real, then (13)–(14) is
selfadjoint, and [16, Thm. XIII.6(a)] readily shows that
the above dichotomy holds true. In the complex non-
selfadjoint case, consider first the truncated Schrödinger
equation

wrr +
a

dr
w =

γ2

4
w,

γ2

4
=

Λ
d

, r ∈ [R0,∞). (19)

Its unique bounded solution w(r) is the Whittaker func-
tion Wa/(dγ),1/2(γr) which, according to Ref. [17, (4.4.18)
and (4.4.33)], admits the expansion

w(R0) = R
1/4
0 cos

(√
4aR0

d
− aπ

γd
+

π

4

)[
1 + O(|γ|1/2)

]
at r = R0. Substituting w(R0) and its derivative wr(R0)
into the boundary condition (14), we see that Eq. (14) is
met provided γ = γn where γn = a

nd + O(1/n2) for inte-
gers n � 1. Note that the actual values of s1 and s2 enter
only at higher order. Reverting back to the variable Λ,
we obtain the asymptotics (17), as claimed. Lastly, using
variation-of-parameters and [18, Thm. 11.1 in §6] for the
rescaled spatial variable s = |γ|r in the limit γ → 0, this
analysis can be extended to the full problem (13) pro-
vided the coefficients in Eq. (13) are analytic in r (the
arguments in Ref. [18] require a holomorphic extension

Λ = −dγ2

d

Φ

a
Φ

Ψ

Φ = π/8
Φ = π/4
Φ = 3π/8

(i) (ii)
 0

 0.02

 0.04

-0.08 -0.04  0  0.04

         
 
 

FIG. 4: The complex Λ-plane is shown: (i) When Φ =
arg(a/d) satisfies |Φ| < π

2
, the Schrödinger equation (13) has

infinitely many bound states that accumulate on the origin
along the ray arg Λ = Ψ = arg(a2/d). (ii) Numerically com-
puted spectra of (19) for d = 1 and different values of Φ on
the interval (10, 210) with Dirichlet and Neumann conditions
at the left and right endpoints, respectively. Point eigenvalues
accumulate approximately along the ray arg Λ = 2Φ.

to complex r). We do not currently have mathemat-
ical proofs in the case of non-analytic coefficients, but
remark that all numerical simulations with non-analytic
coefficients that we performed have produced results con-
sistent with the claimed alignment with arg Λ = Ψ.

Hence, the results derived in this section indicate that
spiral waves will have many point eigenvalues to the right
of branch points of the linear dispersion relation when-
ever the angles Φ and Ψ are smaller than π/2.

One standard criterion for the onset of absolute in-
stability of spirals is the saddle-point condition derived
in Refs. [19, 20]. This criterion states that spiral waves
destabilize when the wave trains emitted by the spiral
waves become absolutely unstable which, in turn, occurs
when a branch point λbp of their linear dispersion rela-
tion, given by λbp = λ∗(ν) with dλ∗/dν(ν) = 0, crosses
the imaginary axis. Our results show that point eigen-
values caused by curvature effects may destabilize spirals
prior to branch points crossing and that the occurrence of
these eigenvalues can be predicted from the asymptotic
profile of the spiral.

V. APPLICATIONS

First, we compare the prediction in Eq. (18) with the
spectral computations by Barkley and Wheeler [13], re-
produced in Fig. 3, for the modified FitzHugh–Nagumo
equation

ut = ∆u− 1
ε
u(u− 1)

(
u− b + v

a

)
, (20)

vt = f(u)− v

with f(u) as in Ref. [6] and parameters as in Ref. [14,
(14)-(15)]. Note that our results are applicable to
Eq. (20) even though one of its diffusion coefficients van-
ishes. Indeed, the v-component of the eigenvalue problem
associated with a spiral wave (u∗, v∗) of Eq. (20) is given
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FIG. 5: The solid curve, shown in the (α, β)-plane and divided
into curve segments Γj , is the absolute instability limit of the
wave trains selected by spiral waves of the complex Ginzburg–
Landau equation: The wave trains are absolutely unstable
below the solid curve and convectively unstable above it. See
text for further details.

Im λ

Re λ
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-0.98

-0.96

-0.94

-0.06 -0.04 -0.02  0  0.02

FIG. 6: The critical part of the spectrum of the spiral of
Eq. (21), computed on a disk of radius R = 140, is shown for
(α, β) = (0.54, 4.2) ∈ Γ1. The branch point of the dispersion
relation is given by λbp = (0,−0.99).

in the corotating frame by

(λ + 1− ω∂ϕ)v = fu(u∗)u.

The operator on the left-hand side can be inverted for
each λ with Re λ > −1 and substituted into the equa-
tion for u, resulting in a nonlocal eigenvalue problem for
u with a non-zero diffusion coefficient. The remaining
analysis proceeds then exactly as before.

The absolute spectra of the spiral wave of Eq. (20)
have been previously computed in Ref. [14] which al-
lows us to compute d, while the coefficient a can be cal-
culated as outlined at the end of Section III using the
boundary-value problem solver auto [21]. Substitution
into Eq. (18) gives a prediction for the asymptotic angle
of the ray, emanating from the branch point, along which
the eigenvalues in Fig. 3 to the right of the absolute spec-
trum should align themselves. We also estimated this
angle from Fig. 3 using the branch point at the edge of
the absolute spectrum as origin. The resulting values are

Breakup at: core far field
arg(a/d) computed with auto 40◦ 44◦

arg Λn extracted from Ref. [13] 48◦ 45◦

which agree quite reasonably given that there are only
one or two point eigenvalues visible in Fig. 3.

Next, we consider spiral waves of the planar complex
Ginzburg–Landau equation

At = (1 + iα)∆A + A− (1 + iβ)|A|2A (21)

stable wave trains

unstable wave trains

Stable spirals

Γ1Γ2
unstable spirals

FIG. 7: A schematic illustration of the instability region of
spiral waves in (α, β)-parameter space. The dotted curve cor-
responds to those parameter values for which the first point
eigenvalue of the spiral wave crosses the imaginary axis.

on BR(0) with Neumann boundary conditions. Spiral
waves of Eq. (21) satisfy an ODE and can therefore be
computed using auto.

We have calculated the curve in (α, β)-space along
which the absolute spectrum of the asymptotic wave
trains crosses the imaginary axis, leading to an abso-
lute instability: This curve, further divided into the
four curve segments Γ1, . . . ,Γ4 which will be explained
shortly, is shown in Fig. 5. Our computations show that
the absolute spectrum crosses at a branch point for each
(α, β) on one of the curve segments Γ1, Γ2 and Γ3, thus
confirming the results in Ref. [20]. However, for (α, β)
on the curve segment Γ1, the spiral wave is already un-
stable due to point eigenvalues which have crossed the
imaginary axis prior to the branch point: our numeri-
cal computations show that both Φ from Eq. (16) and
Ψ from Eq. (18) are smaller than π/2 for parameters on
Γ1. We computed the point eigenvalues that arise due to
our results in §III and §IV for (α, β) = (0.54, 4.2) ∈ Γ1

and plotted them in Fig. 6. Along the curve Γ2, the point
eigenvalues are also present but lie to the left of the imag-
inary axis since the angle Ψ from Eq. (18) is larger than
π/2. Lastly, along the curve segment Γ3, the angle Φ is
larger than π/2 so that there are no point eigenvalues
emerging from the branch point of the linear dispersion
relation. Thus, in summary, our results show that the
stability region for spiral waves in the complex Ginzburg–
Landau equation is smaller than that predicted by the
absolute spectrum (see Fig. 7 for a schematic illustra-
tion).

For completeness, we point out that along the curve
segment Γ4 the absolute spectrum crosses the imaginary
axis away from branch points. In fact, the linear dis-
persion relation of the spiral does not have any branch
points with the correct Morse index, and the criterion
given in Ref. [20] therefore fails to predict the correct
onset of instability.

VI. CONCLUSIONS

We showed that the linearization about spiral waves
near branch points can be reduced to a non-selfadjoint
Schrödinger operator with a complex long-range poten-
tial which accounts for curvature effects and decays al-
gebraically like 1/r in the radius r. The spectral prop-
erties of the Schrödinger operator are characterized by
two complex coefficients a and d. Based on this reduc-
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tion, we have provided theoretical evidence that spiral
spectra contain isolated point eigenvalues near branch
points whenever the angle Φ = arg(a/d) has modulus
less than π/2. The number of these eigenvalues increases
as the domain size increases. Furthermore, if the angle
Ψ = arg(a2/d) has modulus less than π/2, then these
point eigenvalues destabilize the spiral prior to an abso-
lute instability. It is worthwhile to mention that branch
points of spiral waves are periodic in the imaginary direc-
tion with period given by the angular velocity ω: eigen-
values will emerge simultaneously from all these period-
ically spaced branch points.

Our results have the following consequence. A stan-
dard test for absolute instabilities of spirals is the branch
point or saddle-point criterion due to Refs. [19, 20] which

states that absolute instabilities of spirals occur whenever
certain branch points of their linear dispersion relation
cross the imaginary axis. As shown in this paper, point
eigenvalues emerging from branch points may destabilize
spirals prior to branch points crossing. The location of
these eigenvalues can be predicted from the angles Φ and
Ψ through the coefficients a and d using only the asymp-
totic 1D profile of the spiral. We showed that this insta-
bility scenario occurs for a modified FitzHugh–Nagumo
equation and the complex Ginzburg–Landau equation.

We thank D. Barkley and P. Wheeler for interesting
discussions, sharing an early version of Ref. [13], and
granting permission to use Fig. 3. We gratefully acknowl-
edge support from the NSF and the Royal Society.
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