Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@math.umn.edu

- Examples and exercises -

1) [From: Hubbard \& West (1991)]

Consider a water bucket with a hole in the bottom. Let $h(t)$ be the height of the water remaining in the bucket at time t. The cross-sectional area of the bucket is denoted by A, while a is the area of the hole in the bucket. Lastly, $v(t)$ is the velocity of the water passing through the hole.

(i) Show that

$$
a v(t)=A \frac{\mathrm{~d} h}{\mathrm{~d} t}(t)
$$

What physical law are you invoking?
(ii) We need an additional equation that relates the exit velocity v and the height h of the water in the bucket. Use conservation of energy to derive this equation. If we assume that potential energy is converted only into kinetic energy, then show that

$$
\frac{1}{2} m v^{2}=m g h .
$$

(iii) Hence, combining the results obtained so far, we see that the height $h(t)$ satisfies the equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{\sqrt{2 g} a}{A} \sqrt{h} .
$$

(iv) Given that $h(0)=0$, so that the bucket is empty at time $t=0$, show that the solution $h(t)$ is non-unique in backwards time, i.e. for $t<0$.
2) Show that the product of two functions that are locally Lipshitz is locally Lipshitz.
3) Let

$$
P: C^{0}([0,1]) \rightarrow C^{0}([0,1]), \quad f(\cdot) \mapsto(f(\cdot))^{k} .
$$

Show that P is well-defined, continuous, and differentiable. What is the derivative?
4) (Existence"by hand", without Banach) Suppose f is globally Lipshitz with constant L. Consider the Picard iteration sequence

$$
u_{k+1}(t)=u_{0}+\int_{0}^{t} f\left(u_{k}(s)\right) \mathrm{d} s, \quad u_{0}(t) \equiv u_{0}
$$

and show that it converges uniformly on $|t| \leq \delta$. Conclude the existence of a solution to the ODE $\dot{u}=f(u), u(0)=u_{0}$.
5) Consider the following normed vector spaces, all subsets of the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$, and decide if they are Banach spaces:
(i) the bounded functions $\mathcal{B}:=\left\{f \mid\|f\|_{\infty}<\infty\right\}$ with $\|f\|_{\infty}=\sup _{x}|f(x)|$;
(ii) $\{f \mid f$ bounded and locally Lipshitz $\}$ with norm $\|f\|_{\infty}$;
(iii) $C_{\text {unif }}^{0}:=\{f \mid f$ uniformly continuous $\}$ with norm $\|f\|_{\infty}$;
(iv) the continuous functions with weighted norm $\|f\|_{\omega}:=\|f(\cdot) \omega(\cdot)\|_{\infty}$, for some fixed, continuous, positive function $\omega(x)>0$.
6) Decide for which values of α the function $f_{\alpha}(x)=x^{\alpha}$ is locally Lipshitz or globally Lipshitz on $(0,1]$ or $(0, \infty)$.

