Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 2 -
(1) Assume that the vector field f is globally Lipshitz with Lipshitz constant L. We want to prove global existence directly. For any $\eta \in \mathbb{R}$, onsider therefore the space C_{η}^{0} of continuous functions on \mathbb{R} that are bounded with respect to the norm

$$
\|u\|_{\eta}=\sup _{t} \mathrm{e}^{-\eta|t|}|u(t)| .
$$

(a) Show that C_{η}^{0} is a Banach space.
(b) Show that the operator T used for Picard iterations defines a contraction on C_{η}^{0} when $\eta>L$.
(c) Conclude global existence and uniqueness of solutions.
(2) Consider the solution $\left(x\left(t ; x_{0}\right), y\left(t ; x_{0}\right)\right)$ to the pendulum equation

$$
x^{\prime}=y, \quad y^{\prime}=-x-x^{2}, \quad x(0)=x_{0}, \quad y(0)=0 .
$$

(a) Find the expansion of $x\left(t ; x_{0}\right)$ for fixed t to second order in x_{0}, that is, find functions $a_{j}(t), j=0,1,2$ such that

$$
x\left(t ; x_{0}\right)=a_{0}(t)+a_{1}(t) x_{0}+a_{2}(t) x_{0}^{2}+\mathrm{O}\left(x_{0}^{3}\right) .
$$

(b) Conclude from the Hamiltonian function that $x\left(t ; x_{0}\right), y\left(t ; x_{0}\right)$ are bounded functions for any fixed, small x_{0}, y_{0}.
(c) Optional: Compute the expansion to order 3,

$$
x\left(t ; x_{0}\right)=a_{0}(t)+a_{1}(t) x_{0}+a_{2}(t) x_{0}^{2}+a_{3}(t) x_{0}^{3}+\mathrm{O}\left(x_{0}^{4}\right),
$$

and find that $a_{3}(t)$ is linearly growing. Conclude that the Taylor approximation is not valid uniformly in t.
(d) Optional: Explain how linear growth in the expansion results from a change in period of the periodic orbits.

Homework is due on Monday, September 24, in class

