Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

$$-$$
 Homework 2 $-$

(1) Assume that the vector field f is globally Lipshitz with Lipshitz constant L. We want to prove global existence directly. For any $\eta \in \mathbb{R}$, onsider therefore the space C_{η}^{0} of continuous functions on \mathbb{R} that are bounded with respect to the norm

$$||u||_{\eta} = \sup_{t} e^{-\eta|t|} |u(t)|$$

- (a) Show that C_{η}^0 is a Banach space.
- (b) Show that the operator T used for Picard iterations defines a contraction on C_{η}^{0} when $\eta > L$.
- (c) Conclude global existence and uniqueness of solutions.
- (2) Consider the solution $(x(t; x_0), y(t; x_0))$ to the pendulum equation

$$x' = y,$$
 $y' = -x - x^2,$ $x(0) = x_0,$ $y(0) = 0.$

(a) Find the expansion of $x(t; x_0)$ for fixed t to second order in x_0 , that is, find functions $a_j(t), j = 0, 1, 2$ such that

$$x(t; x_0) = a_0(t) + a_1(t)x_0 + a_2(t)x_0^2 + O(x_0^3).$$

- (b) Conclude from the Hamiltonian function that $x(t; x_0), y(t; x_0)$ are bounded functions for any fixed, small x_0, y_0 .
- (c) Optional: Compute the expansion to order 3,

$$x(t;x_0) = a_0(t) + a_1(t)x_0 + a_2(t)x_0^2 + a_3(t)x_0^3 + O(x_0^4),$$

and find that $a_3(t)$ is linearly growing. Conclude that the Taylor approximation is not valid uniformly in t.

(d) *Optional:* Explain how linear growth in the expansion results from a change in period of the periodic orbits.

Homework is due on Monday, September 24, in class