Math 8501, Fall 2018

Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

$$-$$
 Homework 4 $-$

(1) Recall the definition of the chain recurrent set CR for a flow Φ_t ,

 $x \in R :\Leftrightarrow$ for all $\varepsilon, T > 0$ ex. ε -pseudo orbit with $x_n = x$,

where ε -pseudo orbits are piecewise orbits with at most ε -jumps, that is, there exist $T_j > T$, x_j , $0 \le j \le n - 1$, $|\Phi_{T_j}(x_j) - x_{j+1}| < \varepsilon$.

- (a) Show that the ω -limit set is chain recurrent, that is, for $\gamma_+(x_0)$ bounded, show $\omega(x_0) \subset \mathbb{R}$.
- (b) Suppose $H = \{x(t), t \in \mathbb{R}\} \subset \mathbb{R}^n$ is a heteroclinic trajectory, $x(t) \to x_{\pm}$ for $t \to \pm \infty, x_- \neq x_+$. Conclude that \overline{H} is not the ω -limit set for some initial condition y_0 .
- (2) Suppose our numerical method $\varphi_h = \Phi_h$ is exact for some h > 0. Are the ω -limit sets of φ_h the same as the ω -limit sets of the flow:

$$\{y \mid \text{ex. } n_k \to \infty, n_k \in \mathbb{N}, \ \varphi^{n_k} x = y\} = \{y \mid \text{ex. } t_k \to \infty, \ t_k \in \mathbb{R}, \ \Phi_{t_k}(x) = y\} ?$$

- (3) Consider the vector field $x' = \mu + \sin(x)$ for parameters $\mu > 0$, with associated flow on the circle $x \in \mathbb{R}/2\pi\mathbb{Z}$. For the three cases $\mu = 0, 1, 2$, find all invariant sets and determine their stability.
- (4) Consider the equation on $\mathbb{C} \sim \mathbb{R}^2$

$$z' = (1 + i)z - z|z|^2.$$

- (a) Draw the phase portrait after analyzing the equation in polar coordinates.
- (b) Find the ω -limit sets for all $z_0 \in \mathbb{C}$.
- (c) By the Riemann Mapping theorem, we can map the open unit disc in \mathbb{C} to the strip $\{|\operatorname{Im} z| < 1\}$. Conclude that there exists a smooth flow such that the ω -limit set of a (unbounded) trajectory is not connected.
- (5) We wish to analyze

$$x' = -y^2, \qquad y' = -x^2,$$

using various methods.

(a) Show that the system is Hamiltonian, compute the Hamiltonian and plot the phase portrait (level sets of the Hamiltonian).

- (b) Introduce polar coordinates $X = R \cos \varphi$, $y = R \sin \varphi$, and find the differential equation for R, φ .
- (c) Use the Euler multiplier R to simplify the ODE. The equation for φ now decouples. What are the equilibria φ_j for the φ -equation? What are the dynamics on the invariant rays (R, φ_j) ?
- (d) Describe the dynamics outside of the rays.
- (e) As an alternate coordinate system, introduce "projective coordinates"

$$x = x_1, \qquad y = x_1 y_1,$$

on x > 0, find the equation for x_1, y_1 and use the Euler multiplier x_1 to simplify the equation into a skew-product. Discuss "ray solutions" in these coordinates.

(f) Add a coordinate system

$$y = y_2, \qquad x = x_2 y_2,$$

in y > 0 and repeat the construction above. Describe the coordinate change between the (x_2, y_2) and the (x_1, y_1) -coordinates.

- (g) Describe how you would treat the regions x < 0 and y < 0, respectively.
- (6) Consider two linear coupled oscillators

$$x'' + \omega^2 x = y, \qquad y'' + y = 0.$$

- (a) For which $\omega \in \mathbb{R}$ are all trajectories bounded?
- (b) Suppose $\omega \notin \mathbb{Q}$. Describe the ω -limit sets of trajectories depending on the initial condition, that is, specify when ω is a point, a circle, or a torus, \mathbb{T}^2 or \mathbb{T}^3 .

Homework is due on Monday, October 15, in class. Four (4!) correct exercises required for full score.