Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 4 -
(1) Recall the definition of the chain recurrent set $C R$ for a flow Φ_{t},

$$
x \in R: \Leftrightarrow \text { for all } \varepsilon, T>0 \text { ex. } \varepsilon \text {-pseudo orbit with } x_{n}=x \text {, }
$$

where ε-pseudo orbits are piecewise orbits with at most ε-jumps, that is, there exist $T_{j}>T, x_{j}, 0 \leq j \leq n-1,\left|\Phi_{T_{j}}\left(x_{j}\right)-x_{j+1}\right|<\varepsilon$.
(a) Show that the ω-limit set is chain recurrent, that is, for $\gamma_{+}\left(x_{0}\right)$ bounded, show $\omega\left(x_{0}\right) \subset \mathbb{R}$.
(b) Suppose $H=\{x(t), t \in \mathbb{R}\} \subset \mathbb{R}^{n}$ is a heteroclinic trajectory, $x(t) \rightarrow x_{ \pm}$for $t \rightarrow \pm \infty, x_{-} \neq x_{+}$. Conclude that \bar{H} is not the ω-limit set for some initial condition y_{0}.
(2) Suppose our numerical method $\varphi_{h}=\Phi_{h}$ is exact for some $h>0$. Are the ω-limit sets of φ_{h} the same as the ω-limit sets of the flow:

$$
\left\{y \mid \text { ex. } n_{k} \rightarrow \infty, n_{k} \in \mathbb{N}, \varphi^{n_{k}} x=y\right\}=\left\{y \mid \text { ex. } t_{k} \rightarrow \infty, t_{k} \in \mathbb{R}, \Phi_{t_{k}}(x)=y\right\} ?
$$

(3) Consider the vector field $x^{\prime}=\mu+\sin (x)$ for parameters $\mu>0$, with associated flow on the circle $x \in \mathbb{R} / 2 \pi \mathbb{Z}$. For the three cases $\mu=0,1,2$, find all invariant sets and determine their stability.
(4) Consider the equation on $\mathbb{C} \sim \mathbb{R}^{2}$

$$
z^{\prime}=(1+\mathrm{i}) z-z|z|^{2}
$$

(a) Draw the phase portrait after analyzing the equation in polar coordinates.
(b) Find the ω-limit sets for all $z_{0} \in \mathbb{C}$.
(c) By the Riemann Mapping theorem, we can map the open unit disc in \mathbb{C} to the strip $\{|\operatorname{Im} z|<1\}$. Conclude that there exists a smooth flow such that the ω-limit set of a (unbounded) trajectory is not connected.
(5) We wish to analyze

$$
x^{\prime}=-y^{2}, \quad y^{\prime}=-x^{2},
$$

using various methods.
(a) Show that the system is Hamiltonian, compute the Hamiltonian and plot the phase portrait (level sets of the Hamiltonian).
(b) Introduce polar coordinates $X=R \cos \varphi, y=R \sin \varphi$, and find the differential equation for R, φ.
(c) Use the Euler multiplier R to simplify the ODE. The equation for φ now decouples. What are the equilibria φ_{j} for the φ-equation? What are the dynamics on the invariant rays $\left(R, \varphi_{j}\right)$?
(d) Describe the dynamics outside of the rays.
(e) As an alternate coordinate system, introduce "projective coordinates"

$$
x=x_{1}, \quad y=x_{1} y_{1},
$$

on $x>0$, find the equation for x_{1}, y_{1} and use the Euler multiplier x_{1} to simplify the equation into a skew-product. Discuss "ray solutions" in these coordinates.
(f) Add a coordinate system

$$
y=y_{2}, \quad x=x_{2} y_{2},
$$

in $y>0$ and repeat the construction above. Describe the coordinate change between the $\left(x_{2}, y_{2}\right)$ and the $\left(x_{1}, y_{1}\right)$-coordinates.
(g) Describe how you would treat the regions $x<0$ and $y<0$, respectively.
(6) Consider two linear coupled oscillators

$$
x^{\prime \prime}+\omega^{2} x=y, \quad y^{\prime \prime}+y=0
$$

(a) For which $\omega \in \mathbb{R}$ are all trajectories bounded?
(b) Suppose $\omega \notin \mathbb{Q}$. Describe the ω-limit sets of trajectories depending on the initial condition, that is, specify when ω is a point, a circle, or a torus, \mathbb{T}^{2} or \mathbb{T}^{3}.

Homework is due on Monday, October 15, in class. Four (4!) correct exercises required for full score.

